Cursor display privacy product

Information

  • Patent Grant
  • 7034803
  • Patent Number
    7,034,803
  • Date Filed
    Tuesday, September 19, 2000
    24 years ago
  • Date Issued
    Tuesday, April 25, 2006
    18 years ago
  • Inventors
  • Examiners
    • Liang; Regina
    • Nguyen; Jennifer T.
    Agents
    • Hallihan Intellectual Property Law
    • Mayer; Don
    • Hallihan; William
Abstract
The privacy product—used with an information system which has a data processor (71) signal connected (72) to a display device (81) and has an input device (51, 51A) signal connected (52, 52A) to the data processor with the input device being manipulated (21) by a person to control cursor motions—comprises a computer readable signal bearing medium (11) signal connected (14) to the data processor with the medium having a chaff component (12) which causes the data processor to cause the display device to display (82) a chaff path (31A) which is indistinguishable from the cursor path (31) by a sequent person.
Description
BACKGROUND

The privacy product causes an information system to display chaff paths so that—while a person controlling a cursor motion can recognize cursor motions—onlookers can not recognize cursor motions amidst chaff paths.


The invention provides progress over prior art shown for example in U.S. Pat. Nos. 3,671,668 and 3,718,759 by Reiffel.





DRAWINGS


FIG. 1 depicts the product schematically.



FIG. 2 depicts the path of an input device controlling a cursor.



FIG. 3 depicts a display of a segmented cursor path and chaff paths.





DESCRIPTION

The privacy product—depicted schematically in FIG. 1—is used with an information system which has a data processor 71 signal connected 72 to a display device 81 and has an input device 51 signal connected 52 to the data processor. The input device is manipulated by a person to control cursor motions.


“Signal connected” here and throughout means that signals pass between signal connected devices.


The input device sends a motion signal to the data processor which the data processor uses to generate a cursor component of a display signal sent to the display device. The cursor component causes the display device to display a cursor path representing cursor motions.


The privacy product comprises a computer readable signal bearing medium 11 signal connected 14 to the data processor. The medium has a chaff component 12 which causes the data processor to add a chaff component to the display signal. The chaff component causes the display device to display a chaff path which is indistinguishable from the cursor path by a sequent person.


The clause “indistinguishable from the cursor path” means that there is no property of the chaff path, nor of the cursor path, distinguishable by anyone other than the person controlling cursor motions by which anyone other than the person controlling the cursor could tell which of the chaff path and the cursor path is the cursor path.


The information system can have a sequent input device 61 signal connected 62 to the data processor with the sequent input device being manipulated by a sequent person to control sequent cursor motions. The sequent input device sends a sequent motion signal to the data processor which the data processor uses to generate a sequent cursor component of the display signal sent to the display device. The sequent cursor component of the signal causes the display device to display a sequent cursor path representing sequent cursor motions.


Here the chaff component of the medium also causes the data processor to add a sequent chaff component to the display signal which causes the display device to display a sequent chaff path which is indistinguishable from the cursor path by the person.


There can also be a segment component 13 of the medium which causes the data processor to segment the cursor component of the display signal so that the cursor component causes the display device to display cursor path segments and sequent cursor path segments when a sequent input device is operating.


The input device 51 is depicted in FIG. 2 as a computer mouse 51A signal connected 52A to the data processor and moving on a mouse pad 54A. Here the mouse has completed motions beginning by heading diagonally 21 toward a center, turning to head diagonally away 22 from the center, returning diagonally to and past 23 the center, returning diagonally toward the center, and turning to head diagonally away 24 from the center.


A display device screen 82 display is depicted in FIG. 3. On the screen a first cursor path segment 31 representing a first cursor motion segment about 21 is displayed along with several chaff paths 31A, 31B, 31C. Also, a second cursor path segment 32 representing a second cursor motion segment about 22 is displayed along with several chaff paths 32A, 32B, 32C, and a third cursor path segment 33 representing a third cursor motion segment about 23 is displayed along with several chaff paths 33A, 33B.


The person controlling the input device can tell which among cursor path segments and chaff paths represents cursor motion segments because of the correspondence between manipulation of the input device and the cursor path segment. A sequent person—who is not controlling the cursor motion—can not distinguish the cursor path segments amidst the chaff paths.


Symmetrically, a sequent person controlling a sequent input device can tell which among sequent cursor path segments and all chaff paths represents sequent cursor motion segments because of the correspondence between manipulation of the sequent input device and the sequent path segment. The person—who is not controlling the sequent cursor motion—can not distinguish the sequent cursor path segments amidst all chaff paths.


Because the situation is symmetric relative to exchange of “person” and “sequent person,” sequent cursor path segments and sequent chaff paths are not depicted. Though the paths depicted are segmented by the segment component of the medium, the segment component could be left off so that the cursor paths would be unsegmented. This is not depicted because it is clear what the unsegmented cursor path would be. In the case without the segment component, chaff paths can create a jumble which if depicted would be a jumble.


A display of a cursor path can be a display of the cursor only, can be a display of a line representing motions of the cursor, and can be combinations of these. A display of a chaff path can be a display of a chaff cursor only, can be a display of a line comprising the chaff path, and can be combinations of these.


In FIG. 3 a displayed cursor is depicted 41 as about to enter a displayed location 86. Displayed chaff cursors—41A, 41B, 41C—are about to enter locations 85, 84, 83. Again while the person can tell that the displayed cursor is entering a location, the sequent person can not tell this amid the chaff.


The medium can cause the displayed cursor and chaff cursors to blink at the same and different rates and can cause the displayed cursor and chaff cursors to change shapes according to a relationship and at random. A person controlling cursor motions can control cursor blinks and shape changes.


Cursor blinks and shape changes are depicted in FIG. 3. The cursor 41 is a circle blinked on, a first chaff cursor 41A has changed shape to a small circle and has blinked off, a second chaff cursor 41B changed shape to a larger circle and blinked off, and a third chaff cursor 41C has changed shape to a smaller circle and blinked on.


Sounds can accompany the display of any, and all, of the displayed paths. Sounds accompanying display of a cursor path—including blinks and shape changes—can be controlled by the person controlling cursor motions. Sounds can be caused by the medium. Tactile signals corresponding to sounds accompanying a cursor path can be caused to be sent to the input device controlling cursor motions.


The symmetry between the person, and the sequent person extends to symmetries between all pairs in a plurality of sequent persons. Each controls distinct motions via distinct input devices. Each can control distinct cursor blinks and cursor shape changes via distinct input devices. For each of the motions (and cursor blinks and shape change, if present), the chaff component can cause endless variations of chaff paths, cursor and chaff cursor blinks, cursor and chaff cursor shape changes, and combinations of these.


The data processor can be a special purpose data processor, can be a general purpose data processor, can be stand-alone, can be part of a network, and can be stand-alone and part of a network in alternate time intervals.


The computer-readable signal-bearing medium can be a transmitted signal, a data storage medium, and a combination of a transmitted signal and a data storage medium.


The transmitted signal can be any of various point-to-point and broadcast forms of energy transmission—wireless and via wires, cables, and fibers—known in the art. Parts of the signal can reside with one form of the transmitted signal, parts can reside with a second form of transmitted signal, and parts can reside with various combinations of transmitted signals.


The data storage medium can be any of various mechanical, electrical, magnetic, optical, molecular, atomic, and quantum data storage media known in the art. Parts of the computer-readable signal can reside with a data storage medium, parts can reside with a second data storage medium, parts can reside with the transmitted signal, parts can reside with a second transmitted signal, and parts can reside with various combinations data storage media and transmitted signals.


Though an input device is depicted as a conventional computer mouse, any input device—including sound activated devices—which can be signal connected to a data processor can be used. For example, the input devices disclosed in international patent application PCTUS0007538 and U.S. patent applications 60211471 and 60226183 can be used.


The cursor display privacy product is especially useful for entering private information—such as a personal identification number—where onlookers could otherwise see the information. Several specific applications are disclosed in international patent application PCTUS0021518 and in U.S. patent application 60226183.

Claims
  • 1. A privacy product used with an information system, the information system comprising: a data processor;a display device signal connected to the data processor; andan input device signal connected to the data processor, the input device being manipulated by a person to control cursor motions, the input device sending a motion signal to the data processor, the data processor using the motion signal to generate a cursor component of a display signal sent to the display device, the cursor component causing the display device to display a cursor path representing cursor motions;
  • 2. The product of claim 1 wherein the cursor path comprises a blinking cursor and the chaff path comprises a blinking chaff cursor.
  • 3. The product of claim 2 wherein the blinking cursor changes shape and the blinking chaff cursor changes shape.
  • 4. The product of claim 1 wherein the cursor path comprises a shape changing cursor and the chaff path comprises a shape changing chaff cursor.
  • 5. The product of claim 1 further comprising a segment component of the medium, the segment component causing the data processor to segment the cursor component of the display signal so that the cursor component causes the display device to display cursor path segments representing cursor motion segments.
  • 6. A privacy product used with an information system, the information system comprising: a data processor;a display device signal connected to the data processor;an input device signal connected to the data processor, the input device being manipulated by a person to control cursor motions, the input device sending a motion signal to the data processor, the data processor using the motion signal to generate a cursor component of a display signal sent to the display device, the cursor component causing the display device to display a cursor path representing cursor motions; anda sequent input device signal connected to the data processor, the sequent input device being manipulated by a sequent person to control sequent cursor motions, the sequent input device sending a sequent motion signal to the data processor, the data processor using the sequent motion signal to generate a sequent cursor component of the display signal, the sequent cursor component causing the display device to display a sequent cursor path representing sequent cursor motions;
  • 7. The product of claim 6 further comprising a segment component of the medium, the segment component causing the data processor to segment the cursor component of the display signal and to segment the sequent cursor component of the signal so that the display signal causes the display device to display cursor path segments and sequent cursor path segments representing cursor motion segments and sequent cursor motion segments.
  • 8. A privacy product used with an information system, the information system comprising: a data processor;a display device signal connected to the data processor;an input device signal connected to the data processor, the input device being manipulated by a person to control cursor motions, the input device sending a motion signal to the data processor, the data processor using the motion signal to generate a cursor component of a display signal sent to the display device, the cursor component causing the display device to display a cursor path representing cursor motions; anda sequent input device signal connected to the data processor, the sequent input device being manipulated by a sequent person to control sequent cursor motions, the sequent input device sending a sequent motion signal to the data processor, the data processor using the sequent motion signal to generate a sequent cursor component of the display signal, the sequent cursor component causing the display device to display a sequent cursor path representing sequent cursor motions;
Parent Case Info

This application claims benefit of international application PCT/US00/25703 filed on Sep. 19, 2000 which claims benefit of 60/226,183 Aug. 18, 2000.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US00/25703 9/19/2000 WO 00 2/11/2003
Publishing Document Publishing Date Country Kind
WO02/17291 2/28/2002 WO A
US Referenced Citations (77)
Number Name Date Kind
4053233 Bien et al. Oct 1977 A
4099050 Sauermann Jul 1978 A
4228430 Iwamura et al. Oct 1980 A
4439672 Salaman Mar 1984 A
4603231 Reiffel et al. Jul 1986 A
4637797 Whitney et al. Jan 1987 A
4650334 Alster et al. Mar 1987 A
4684349 Ferguson et al. Aug 1987 A
4945914 Allen Aug 1990 A
4998441 Stuart Mar 1991 A
5107350 Omori Apr 1992 A
5111410 Nakayama et al. May 1992 A
5181015 Marshall et al. Jan 1993 A
5214414 Levine et al. May 1993 A
5260556 Lake et al. Nov 1993 A
5282045 Mimura et al. Jan 1994 A
5415553 Szmidla May 1995 A
5448261 Koike et al. Sep 1995 A
5453015 Vogel Sep 1995 A
5507527 Tomioka et al. Apr 1996 A
5537211 Dial Jul 1996 A
5563401 Lemelson Oct 1996 A
5644126 Ogawa Jul 1997 A
5710416 Belknap et al. Jan 1998 A
5712658 Arita et al. Jan 1998 A
5729220 Russell Mar 1998 A
5789732 McMahon et al. Aug 1998 A
5795161 Vogel Aug 1998 A
5821523 Bunte et al. Oct 1998 A
5822735 De Lapa et al. Oct 1998 A
5825045 Koenck et al. Oct 1998 A
5826578 Curchod Oct 1998 A
5835237 Ebrahimi Nov 1998 A
5852211 Dumpelmann et al. Dec 1998 A
5852823 De Bonet Dec 1998 A
5867265 Thomas Feb 1999 A
5900869 Higashio May 1999 A
5912700 Honey et al. Jun 1999 A
5917472 Perala Jun 1999 A
5917486 Rylander Jun 1999 A
5963145 Escobosa Oct 1999 A
5982352 Pryor Nov 1999 A
5988505 Shellhammer Nov 1999 A
5990872 Jorgenson et al. Nov 1999 A
6000612 Xu Dec 1999 A
6047893 Saporetti Apr 2000 A
6048117 Banton Apr 2000 A
6056199 Wiklof et al. May 2000 A
6082619 Ma et al. Jul 2000 A
6118848 Reiffel Sep 2000 A
6121958 Clark et al. Sep 2000 A
6155489 Collins, Jr. et al. Dec 2000 A
6163946 Pryor Dec 2000 A
6167607 Pryor Jan 2001 B1
6301763 Pryor Oct 2001 B1
6311214 Rhoads Oct 2001 B1
6314631 Pryor Nov 2001 B1
6317118 Yoneno Nov 2001 B1
6317188 Shibahara Nov 2001 B1
6317953 Pryor Nov 2001 B1
6330973 Bridgelall et al. Dec 2001 B1
6335685 Schrott et al. Jan 2002 B1
6542083 Richley et al. Apr 2003 B1
6545670 Pryor Apr 2003 B1
6708885 Reiffel Mar 2004 B1
6720949 Pryor et al. Apr 2004 B1
6750848 Pryor Jun 2004 B1
6766036 Pryor Jul 2004 B1
20020036617 Pryor Mar 2002 A1
20020183961 French et al. Dec 2002 A1
20030222145 Reiffel Dec 2003 A1
20040027455 Reiffel Feb 2004 A1
20040041027 Reiffel Mar 2004 A1
20040125224 Reiffel Jul 2004 A1
20040135766 Reiffel Jul 2004 A1
20040188525 Reiffel Sep 2004 A1
20040195327 Reiffel Oct 2004 A1
Foreign Referenced Citations (18)
Number Date Country
0 062 473 Oct 1982 EP
0 840 248 May 1998 EP
1 020 810 Jul 2000 EP
2 694 827 Feb 1994 FR
11-143629 May 1999 JP
WO 8707106 Nov 1987 WO
WO 9318478 Sep 1993 WO
WO 9632690 Oct 1996 WO
WO 9936836 Jul 1999 WO
WO 9966441 Dec 1999 WO
WO 0171397 Sep 2001 WO
WO 0184475 Nov 2001 WO
WO 0217037 Feb 2002 WO
WO 0217293 Feb 2002 WO
WO 0248947 Jun 2002 WO
WO 0249340 Jun 2002 WO
WO 0249344 Jun 2002 WO
WO 02086807 Oct 2002 WO
Provisional Applications (1)
Number Date Country
60226183 Aug 2000 US