1. Field of the Invention
The present invention relates to a curtain airbag that reduces the probability of ejection of a vehicle occupant during rollover (overturning) of a vehicle.
2. Related Technology
In recent years, high levels of safety performance have been required of vehicles. This trend is shared across countries around the world, where most vehicles are currently standard-equipped with airbags as vehicle safety devices. Firms involved in vehicle development have adopted ongoing safety improvements as a major development guideline. In keeping with this, new airbags are continually being developed.
Standards for evaluating vehicle safety differ from country to country, and firms approach product development such that products can meet evaluation standards in multiple countries. In the United States, for instance, which has the largest automobile fleet in the world, Federal Motor Vehicle Safety Standards (FMVSS) are issued by the National Highway Traffic Safety Administration (NHTSA). In a Notice of Proposed Rulemaking (NPRM, Docket Number: NHTSA-2009-0183) for FMVSS, scheduled to be issued by the NHTSA, a requirement is proposed that aims at “reducing the probability of occupant ejection from a vehicle through a side window using an ejection mitigation system in the event of a side impact crash or rollover (overturning)”. The requirement can be met by providing a curtain airbag as a device intended to reduce ejection from a vehicle, such that the curtain airbag constitutes herein the ejection mitigation system.
A curtain airbag is an airbag disposed above a door and that inflates and deploys along vehicle side windows, upon occurrence of an impact, to protect an occupant thereby. An ordinary curtain airbag is designed to have a pressure duration, when inflated and deployed, longer than that of a front airbag or the like. That is because the time during which an impact unfolds is lengthened if, for instance, rollover follows the lateral collision. Thus, the curtain airbag is intended to maintain the inflated state until and during rollover, to restrain thereby the occupant, and prevent the occupant from being ejected from the vehicle.
For instance, a curtain airbag that deploys along a vehicle side face comprises a series of chambers, as disclosed in Japanese Patent Application Publication No. 2002-302005. These chambers mitigate the impact that an occupant receives upon lateral collision of the vehicle, and prevents the occupant from being ejected out of the vehicle during vehicle rollover.
Upon collision of an impactor against an impact point prescribed in FMVSS 226, tension lines form radially from that impact point up to a respective tab that fixes the curtain airbag to the vehicle body. Herein, a tension line denotes a taut line that joins the center of impact, occurring upon impact against a given impact point, with a respective fixed point. Tension lines that are subject to the highest possible tension are formed in order to enhance the ejection mitigation function of the curtain airbag. That is because the higher the tension that is applied to the curtain airbag upon collision, the greater are the forces that oppose ejection of the occupant.
In the light of the above issues, the present invention to provide a curtain airbag having an enhanced ejection mitigation function with regards to a vehicle occupant.
In order to solve the above problems, a curtain airbag embodying the principles of the present invention includes, in a typical configuration: a serial main chamber that is capable of being inflated and deployed along a vehicle cabin side face; a delay chamber that is positioned at a front end section of the serial main chamber and that is inflated and deployed so as to overlap an A1 impact point below an A-pillar of the vehicle; and a first tab that fixes an upper edge of the delay chamber to the A-pillar, wherein the first tab is provided at a position overlapping a straight line that is provided on the shortest way from the A1 impact point to the A-pillar, as viewed from inside the vehicle cabin.
The impact point referred to as the A1 impact point in the present application is defined in NPRM (Docket Number: NHTSA-2009-0183; published Dec. 2, 2009). The determination method of the A1 impact point is prescribed in V. “Proposed Ejection Mitigation Requirements and Test Procedures”, d. “Locations Where the Device Would Impact the Ejection Mitigation Countermeasure To Assess Efficacy”, and “4. Method for Determining Impactor Target Locations” of NPRM. The specific impact points are defined as impact points positioned on the vehicle front side of a primary target position (primary target) in a front window. The Notice of Proposed Rulemaking (NPRM: Docket Number: NHTSA-2009-0183) in the description of the present application is based on FMVSS 226 as officially enacted.
In the above configuration, the first tab is a tab that comes maximally close to the A1 impact point. Upon collision of an impactor against the various impact points, tension lines form radially from that impact point up to a respective tab that fixes the curtain airbag to the vehicle body. The tab that contributes the most against collision, from among the tabs at the tip of the tension lines, i.e. the tab that receives the greatest load in preventing ejection of the occupant that is simulated by the impactor, is herein the tab that is immediate to the impact point. Therefore, the curtain airbag according to the present invention has a tab with maximally enhanced degree of contribution against ejection, namely has the first tab.
The curtain airbag may further comprise a second tab that fixes the upper edge of the delay chamber to the A-pillar at an area between the first tab and a boundary between the delay chamber and the serial main chamber.
The second tab elicits the effect of preventing the airbag from shifting upward during inflation and deployment, and affording inflation and deployment at a proper position. The second tab is conferred with a clearly different function from that of the first tab, i.e. imparting tension to the airbag. Therefore, the respective function of each of the two tabs can thus be distinctively brought out.
A lower end of the delay chamber when inflated and deployed may be positioned below a door beltline of the vehicle. The position of the curtain airbag is adjusted so as not to rise in a case where the second tab is present. However, if the delay chamber is long enough, the lower end of the inflated and deployed delay chamber becomes positioned below a door beltline of the vehicle, regardless of the presence or absence of the second tab. Such a delay chamber elicits the effect of reducing the extent of ejection, by virtue of a reaction force off a door trim by interfering with the latter, also when the delay chamber is pushed out of the vehicle when struck by the head of an occupant. Accordingly, the occupant can be prevented, yet more reliably, from being ejected through a window.
The present invention succeeds in providing a curtain airbag having an enhanced ejection mitigation function of a vehicle occupant.
a) and
a) and
Preferred embodiments of the present invention will be explained next in detail with reference to accompanying drawings. Dimensions, materials, other specific numerical values and the like given in the embodiments are only illustrative in character, for the sake of easier understanding of the invention, and, unless particularly stated otherwise, are not meant to limit the present invention in any way. In the description and the drawings, elements having substantially the same function and configuration are denoted by identical reference numerals, and a recurrent explanation thereof will be omitted. Elements that are not directly related to the present invention are omitted in the drawings.
As illustrated in
Although not shown, the curtain airbag 100 is housed by being attached, in a rolled-up state or in a folded state, to a roof side rail 106 at an upper portion of a side face section in a vehicle cabin. Ordinarily, the roof side rail 106 is covered with a roof trim, and is invisible from inside the vehicle cabin.
The curtain airbag 100 is formed into a bag-like shape through sewing of the front and back sides of a base fabric, which constitutes the surface of the curtain airbag 100, or by weaving using One-Piece Woven (OPW).
In the present embodiment, a vehicle 102 having three seats in a row (front seat 108, rear seat 110, and rearmost seat 112, in order from the vehicle front side) is exemplified as a vehicle in which the curtain airbag 100 is provided. Side windows 114, 116 and 118, in order from the front of the vehicle, are disposed on the side face section of the vehicle 102. In the vehicle cabin, the side window 118 is positioned to the side of the rearmost seat 112.
In the front-rear direction of each side window there is connected a plurality of pillars (posts) that support a roof (top). These pillars are referred to as an A-pillar 120, a B-pillar 122, a C-pillar 124 and a D-pillar (not shown), in order from the front of the vehicle 102.
The upper edge of the airbag 100 is provided with a plurality of tabs (tab 136 and so forth) as attachment members. The tab 136 is a belt-like member used to attach the airbag 100 to the vehicle 102.
Upon occurrence of a lateral collision or rollover (overturning) in the vehicle 102, firstly a sensor (not shown) that is provided in the vehicle 102 senses the impact, and an ignition signal is accordingly transmitted to the inflator 104. The gas generator in the inflator 104 burns thereupon, and the generated gas is supplied to the curtain airbag 100. Upon receiving the gas from the inflator 104, the curtain airbag 100 inflates and deploys downward along the side face section of the vehicle cabin (side window 114 and so forth), as illustrated in
The curtain airbag 100 comprises a serial main chamber 140 capable of inflation and deployment along the vehicle cabin side face, and delay chambers 142, 144 that are positioned at the front and rear end sections of the serial main chamber 140. In the drawings of the present application, non-inflation regions into which no gas flows are denoted as hatched portions. The delay chambers 142, 144 are cambers that start inflating with some delay with respect to the main chamber 140. The main chamber 140 deploys several tens of milliseconds after a collision, whereas the delay chambers 142, 144 deploy several hundreds of milliseconds after the collision. Therefore, the emphasis in the delay chambers 142, 144 is laid on ejection mitigation of a vehicle occupant during rollover rather than on fast impact protection during lateral collision of the vehicle 102.
A substantially triangular wide portion 146 is further provided on the rear edge section of the delay chamber 144 at the rear end section. The wide portion 146 prevents the occupant of the rearmost seat 112 from being ejected through the rearmost window 118. The wide portion 146, which is shaped in the form of a wide cloth, does not inflate, but becomes tensioned into a substantially planar shape, to restrain thereby the occupant.
As illustrated in
a) and
As illustrated in
In the configuration of the curtain airbag 100 of the present embodiment, the ace tab 150 is a tab that comes maximally close to the A1 impact point, and hence no tab can be provided at a position closer to the A1 impact point than the ace tab 150. For instance, segment A1T2, which is the distance between a support tab 200 other than the ace tab 150 and the A1 impact point, is longer than segment A1T1, which is the distance between the ace tab 150 and the A1 impact point. When the impactor 170 strikes against the various impact points, such as the A1 impact point, tension lines form radially from each impact point up to a respective tab that fixes the curtain airbag 100 to the vehicle body. Segment A1T1 and segment A1T2 are tension lines in
In the present embodiment, the ace tab 150 is provided at an optimal position with respect to the A1 impact point, but tabs that are positioned at a shortest distance from a respective impact point may be provided, in the same way as the ace tab 150, at other impact points. The ejection mitigation effect may thus be enhanced.
Next, the vertical line 164 and a horizontal line 166 that run through the geometrical center (barycenter) of the window 114 are drawn, to divide the window 114 in four quadrants. A visible outline 168 of the impactor head of the impactor 170, as prescribed in FMVSS 226, is disposed so as to come into contact, at two sites, with the offset line 162 at the upper and lower front quadrants. This position, referred to as the A1 impact point, is the frontmost impact point in the ejection mitigation performance evaluation test conditions as prescribed in FMVSS 226.
a) and
In the comparative example of
Returning to
The support tab 200 has the role of preventing the curtain airbag 100 from shifting upward during inflation and deployment, so that inflation and deployment take place at a proper position. Ordinarily, curtain airbags behave so as to move upward on account of reaction when inflating and deploying. By providing the support tab 200 separately from the ace tab 150, as in the present embodiment, the support tab 200 is conferred with a clearly different function from that of the ace tab 150, which has the role of preventing ejection out of the vehicle body, by imparting tension to the curtain airbag 100. The respective function of each of the two tabs 150, 200 can thus be distinctively brought out.
The curtain airbag 10 of the comparative example illustrated in
In the curtain airbag 100 of the present embodiment illustrated in
Preferred embodiments of the present invention have been explained above with reference to accompanying drawings, but the described embodiments are exemplary, and the invention may be embodied and implemented in other ways, in accordance with various methods. Unless specifically indicated in the description of the present application, the invention is not restricted by the shape, size, configurational arrangement and so forth of the detailed parts depicted in the drawings. The expressions and terms used in the description of the present application are explanatory in purpose, and are not meant to be limiting in any way, unless restricting subject matter to that effect is specifically set forth in the description.
Therefore, a person skilled in the art can devise various alterations or modifications within the scope as set forth in the claims, and it is to be understood that these alterations and modifications belong, as a matter of course, to the technical scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-178158 | Aug 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/067608 | 8/1/2011 | WO | 00 | 2/5/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/017987 | 2/9/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6095551 | O'Docherty | Aug 2000 | A |
6394487 | Heudorfer et al. | May 2002 | B1 |
6428037 | Bakhsh et al. | Aug 2002 | B1 |
6527296 | Bakhsh et al. | Mar 2003 | B2 |
6616178 | Nanbu | Sep 2003 | B1 |
6644687 | Saito et al. | Nov 2003 | B2 |
6705639 | Masuda | Mar 2004 | B2 |
6736422 | Nakanishi | May 2004 | B2 |
6843502 | Aoki et al. | Jan 2005 | B2 |
6932386 | Ikeda et al. | Aug 2005 | B2 |
6971665 | Tanaka | Dec 2005 | B2 |
6991255 | Henderson et al. | Jan 2006 | B2 |
7159895 | Aoki et al. | Jan 2007 | B2 |
7172212 | Aoki et al. | Feb 2007 | B2 |
7213835 | Totsuka et al. | May 2007 | B2 |
7219921 | Noguchi | May 2007 | B2 |
7264269 | Gu et al. | Sep 2007 | B2 |
7267364 | Noguchi et al. | Sep 2007 | B2 |
7325826 | Noguchi et al. | Feb 2008 | B2 |
7357413 | Noguchi et al. | Apr 2008 | B2 |
7441796 | Noguchi et al. | Oct 2008 | B2 |
7699342 | Goto | Apr 2010 | B2 |
7740270 | Imamura | Jun 2010 | B2 |
7744121 | Ishikawa et al. | Jun 2010 | B2 |
7758068 | Noguchi et al. | Jul 2010 | B2 |
7775553 | Takemura et al. | Aug 2010 | B2 |
7789418 | Wipasuramonton et al. | Sep 2010 | B2 |
7810838 | Iwayama et al. | Oct 2010 | B2 |
7896387 | Ideue | Mar 2011 | B2 |
7922192 | Fukuda et al. | Apr 2011 | B2 |
8408591 | Walston | Apr 2013 | B2 |
8414020 | Beppu et al. | Apr 2013 | B2 |
20050167957 | Kumagai et al. | Aug 2005 | A1 |
20050206140 | Bakhsh et al. | Sep 2005 | A1 |
20060043706 | Kosugi et al. | Mar 2006 | A1 |
20060186652 | Sunabashiri | Aug 2006 | A1 |
20060202456 | Bernat | Sep 2006 | A1 |
20060208466 | Kirby | Sep 2006 | A1 |
20070001433 | Gu et al. | Jan 2007 | A1 |
20070102907 | Bowers | May 2007 | A1 |
20070164543 | Fukuda et al. | Jul 2007 | A1 |
20080290634 | Sugimori et al. | Nov 2008 | A1 |
20090127836 | Umeda et al. | May 2009 | A1 |
20090283992 | Sugimori et al. | Nov 2009 | A1 |
20110291393 | Nakamura et al. | Dec 2011 | A1 |
20120025502 | Matsushita et al. | Feb 2012 | A1 |
20120119476 | Saiki et al. | May 2012 | A1 |
20120139215 | Heuschmid et al. | Jun 2012 | A1 |
20120256402 | Kato et al. | Oct 2012 | A1 |
20120299275 | Saimura et al. | Nov 2012 | A1 |
20120313356 | Saimura et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
2002-302005 | Oct 2002 | JP |
2006-008039 | Jan 2006 | JP |
2007-022279 | Feb 2007 | JP |
2009-286300 | Dec 2009 | JP |
Entry |
---|
International Search Report of PCT/JP2011/067608 Mailed on Nov. 1, 2011 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20130134694 A1 | May 2013 | US |