(a) Field of the Invention
The present invention relates to a curtain blind power conversion device with reverse brake effect, and more particularly to the conversion device that provides a power terminal that achieves torsional conversion and the reverse brake effect for horizontal or vertical curtain blinds. The conversion device primarily utilizes two annular gears, wherein number of teeth and module of the two annular gears are unequal. The two annular gears synchronously engage with a single planetary gear set, and utilization is made of the unequal circular pitch and module of the two annular gears to produce an angular speed difference, thereby realizing a deceleration output motive force, and with the planetary gear set being subject to a fixed restriction of a first annular gear, the reverse brake effect is thereby achieved.
(b) Description of the Prior Art
Primary application of the present invention is in usage as a reverse brake for curtain blinds. Referring to
The drive unit 12 is actuated by means of a worm gear 124 (see
The drive unit 12 synchronously drives two take-up tubes 123 through an angle-shaped transmission rod 122 (see
However, because the aforementioned curtain blind 1 is fitted on a window, force of wind blowing from outside causes the curtain blind 1 to move, and thereby results in the slats 14 sliding down. After the slats 14 have slid down, motive force of the wind consequently effectuates a reverse direction transmission to the drive unit 12 through the take-up tubes 123, and indirectly through the transmission rod 122, subsequently the drive unit 12 is subject to a relatively large external force feedback, which produces slippage thereat.
Furthermore, the aforementioned drive unit 12, in similar fashion, can actuate taking up and letting down of cloth curtains, and similarly, because of effect of the force of wind pressure and own weight of the cloth curtains, the cloth curtains also require the drive unit 12 to provide an effective reverse brake.
Referring to
Because the horizontal type slats 14 are generally fitted at a maximum elevation of approximately 30 feet. Because, firstly, dimensions of packaging is restrictive, and secondly, if the slat tilt rod 120 is utilized to regulate angle of incoming light, then length of the slat tilt rod 120 must also be close on 30 feet in length, thus the long slat tilt rod 120 is unsuitable for usage. Hence, a sprocket drive method is adopted in replacement of the slat tilt rod 120.
Referring to
The principle of the constraint reacting force is such that one end of the brake spring 192 is peripherally fixed, thereby enabling diameter of the brake spring 192 to be variated through an axial torsion, for instance, when the diameter of the brake spring 192 is reduced, the constraint reacting force effect is thereupon generated. Design of the brake spring 192 is that of a mechanical design of a general brake spring for a curtain rail, and thus is not described in further detail herein.
Referring to configuration of
Although utilizing the beaded chain 121 enables achieving the various aforementioned functions, wherein the brake effect utilizes the constraint of reaction force or letting down operation or opening operation of the brake spring 192. However, upon the constraint reaction force and circumferential surface of the shaft 190 surpassing a critical limit, slippage still occurs and thus loss of locking functionality thereof.
Referring to
Referring to
Utilizing actuation of the drive unit 12 thereby enables the umbrella gear set 17 to transfer drive to the hanging shafts 15, which thereon connectively actuate the slats 14, and thus realizes regulating angle of incident light hitting the slats thereof. However, surface pressure from force of natural wind effectuates producing a twisting phenomenon on the slats 14, which thereby blows the slats 14 into disorder, and thus the originally appropriately angled slats 14 become disorientated. Hence, a requirement for a braking method fitted on the drive unit 12 is necessary to effectively brake the angle-shaped transmission rod 171.
In order to prevent the transmission rod 171 from being subject to a reverse force from the hanging shafts 15, which is thereby indirectly transmitted to the drive unit 12, configuration of the drive unit 12 generally follows a structural principle depicted in
Recently, the brake effect utilizes a configuration embodying a magnetic-type mechanical control switch or other automatic devices having electrical components. However, electrical power is necessary in order to utilize such devices, and, moreover, configuration comprises complicated components.
In order to effectively accomplish a reverse brake effect, and simultaneously achieve deceleration conversion, the present invention utilizes a first annular gear and a second annular gear coaxially configured face to face. Module and circular pitch of the two annular gears are unequal, however, measure of pitch diameter is such that synchronous engagement with a single planetary gear set is realized.
Wherein the module of the planetary gear set is equal to that of the first annular gear, moreover, because the first annular gear is fixedly configured to a housing, thus after a sun gear has engaged with the planetary gear set, the second annular gear is thereupon engaged, and because periphery of the second annular gear set is not fixed, thus, after the planetary gear set has been actuated, the planetary gear set rotates with an angular speed difference, and rotational transmission is realized to an output shaft terminal thereof.
An external end of the second annular gear is connected to an output shaft, which connectively actuates an angle-shaped transmission rod. Upon the angle-shaped transmission rod being subject to an external force and thus a feedback counterforce being generated, which will be first transmitted to the second annular gear, whereupon the second annular gear will first engage with the planetary gear set. However, gear rack of another end of the planetary gear set engages with the fixed first annular gear, and is thus subject to limiting lock of the first annular gear, thereby achieving the reverse brake effect.
To enable a further understanding of the said objectives and the technological methods of the invention herein, the brief description of the drawings below is followed by the detailed description of the preferred embodiments.
With regard to an embodiment of the present invention, referring to
The first annular gear 2 is externally fixed to a housing 4 by means fixing members 21 (see
A limiting disc 32 is further configured on a body of the output shaft 30, and apart from the limiting disc 32 having functionality that allows the annular gear 3 to be radial movable fixed, the limiting disc 32 is also subject to containment in a holding groove 410 of a slide support 41 (see
With further reference to
The sun gear 22 engaging with the planetary gear set 230 actualizes transmission to entire motive power input terminal. Width of each of the satellite gears 23 is sufficient to synchronously engage with the first annular gear 2 and the second annular gear 3, thus the two annular gears 2 and 3 are subject to synchronous meshing by the single planetary gear set 230. The satellite gears 23 are movably fixed to one triangular support 5.
Circular pitch (cp) of the first and second annular gears 2 and 3 are unequal, wherein the circular pitch of the second annular gear 3 is relatively smaller than that of the first annular gear 2, whereas, in contrast, number of teeth (t) of the second annular gear 3 is relatively greater than number of teeth of the first annular gear 2, and the additionally configured number of teeth on the second annular gear 3 are in accordance with number of satellite gears 23, wherein three satellite gears 23 are configured in the embodiment of the present invention, and, accordingly, an additional three teeth are configured on the second annular gear 3. Employing the formula module=pitch diameter/number of teeth (m=d/t), under condition whereby the pitch diameter (d) is fixed, and the number of teeth t are altered, thus the module m similarly undergoes change as a result.
Furthermore, the circular pitch (cp) equals π (pi: ratio of a circumference of a circle to diameter) multiplied by the pitch diameter, and subsequently divided by the number of teeth (cp=πd/t). Under the previous conditions of the pitch diameter d being a constant factor, and the number of teeth t being altered, the circular pitch cp similarly changes as a result.
Referring to
The satellite gears 23 outwardly extend to engage with and thereby rotate the second annular gear 3. Upon the sun gear 22 rotating in a clockwise direction, the satellite gears 23 are actuated to rotate in a counterclockwise direction, and the triangular support 5 is simultaneously made to corotate in the same clockwise direction as the sun gear 22. Rotational speed of the triangular support 5 multiplied by rotational speed of the satellite gears 23 therewith drives the second annular gear 3, and forms a rotation in the same clockwise direction. Furthermore, the output shaft 30 extends outward from the second annular gear 3 (see
An external force feedback can also effectuate a brake effect. Referring to
Referring to
Radius of the sun gear 22 is R1, and radius of each of the satellite gears 23 is R2, thus, radius of the first annular gear 2 R=R1+R2. As depicted in
Another end of the satellite gears 23 engage with the second annular gear 3, whereby pitch diameter of the second annular gear 3 is larger d1 or smaller d2 than pitch diameter of the first annular gear 2, and pitch circle of the second annular gear 3 is configured to be relatively larger 3a or relatively smaller 3b. On the basis that the circular pitch (cp) of mutual engaging of the gears is necessarily equal, otherwise interference will occur, and from the formula cp=πd/t, the present invention can by keeping m (where m=d/t) constant, and altering the number of teeth t, thereby cause the pitch diameter d to correspondingly change accordingly. Therefore, under condition of a fixed engaging axial rotational speed output by the satellite gears 23, the second annular gear 3 having a relatively larger pitch diameter d is thereby abled to produce an even larger deceleration ratio, moreover, rotation of the second annular gear 3 and the sun gear 22 are decelerated in same direction. Furthermore, because the pitch diameter d of the second annular gear 3 is smaller, and with radius of the satellite gears 23 being fixed, a relatively high-speed rotational engagement is realized. Hence, size of pitch circumference (π×d) of the second annular gear 3 will affect varied alterations in rotational speed thereof.
It is of course to be understood that the embodiments described herein is merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3130606 | Kreis | Apr 1964 | A |
5179989 | Schon | Jan 1993 | A |
6116323 | Huang | Sep 2000 | A |
6379276 | Cheng | Apr 2002 | B1 |
6794778 | Walker et al. | Sep 2004 | B1 |
6910516 | Huang | Jun 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20060073932 A1 | Apr 2006 | US |