The present invention relates to a curvature regulating member for regulating curvature of a wire harness and to a power supply device applied with the curvature regulating member.
One example of the conventional curvature regulating member as described above is shown for example in Patent Literature 1 mentioned below.
In the above-described conventional curvature regulating member 10, when the curvature regulating member 10 is curved, the adjacent curved parts 11 abut on each other, as shown in
In view of the above-described background, it is an object of the present invention to provide a curvature regulating member which can reduce damage to a connecting part, and a power supply device including the curvature regulating member.
To achieve the above-mentioned object, the present invention according to a first aspect provides a curvature regulating member including a plurality of member pieces to be arranged along a wire harness, and a flexible connecting part connecting adjacent member pieces, wherein the adjacent member pieces are configured to contact each other and thereby regulate curvature of the wire harness on a predetermined plane, wherein each of the member pieces includes a recessed part and a projected part, the recessed part being recessed in a direction away from an adjacent member piece located on one side in a longitudinal direction of the wire harness, the projected part being configured to be inserted in the recessed part provided to an adjacent member piece located on another side in the longitudinal direction of the wire harness, wherein the recessed part includes a slanted face extending away from the adjacent member piece located on the one side in the longitudinal direction as leaving from both ends of the recessed part in a widthwise direction, the widthwise direction being perpendicular to both of the longitudinal direction and a height direction perpendicular to the plane, and wherein the projected part includes a slanted face extending toward the adjacent member piece located on the another side in the longitudinal direction as leaving from both ends of the projected part in the widthwise direction.
A distance in the widthwise direction between the connecting part and a bottom point of the recessed part may be equal to a distance in the widthwise direction between the connecting part and an apex of the projected part.
The present invention according to another aspect provides a power supply device configured to electrically connect a vehicle body and a sliding member that are included in a vehicle, including a wire harness to be wired between the vehicle body and the sliding member, and the curvature regulating member as described above arranged along the wire harness.
According to the present invention described above, each of the adjacent member pieces includes the recessed part and the projected part. Thus, when the adjacent member pieces are displaced in the widthwise direction with respect to each other, the recessed part and the projected part abut on each other, thus the displacement of the adjacent member pieces in the widthwise direction with respect to each other can be suppressed. Further, at this time, the slanted faces of the recessed part and the projected part that are slanted with respect to the widthwise direction abut on each other, thus a slight displacement is allowed. Consequently, the connecting part can bend and tensile stress can be reduced, thereby preventing damage to the connecting part.
The following will explain a curvature regulating member and a power supply device according to one embodiment of the present invention in reference to the drawings.
The power supply device 1 includes the wire harness 110, a corrugated tube 120, a curvature regulating member 130, a door-side holding part 140 and a vehicle-body-side holding part 150. The wire harness 110 is constituted of a plurality of electric wires 111 bundled together. The corrugated tube 120 is a flexible tube made of resin. A portion of the wire harness 110 between the vehicle body 60 and the sliding door 50 is passed through the corrugated tube 120.
In addition to a power supply line for supplying power, the electric wires 111 may include a signal line for transferring electrical signal between a control unit (not shown) provided to the vehicle body 60 and the electronic devices (not shown) provided to the sliding door 50. The curvature regulating member 130 is arranged between an inner face of the corrugated tube 120 and the wire harness 110 and arranged along the wire harness 110 so as to surround the wire harness 110 in a circumferential direction. The curvature regulating member 130 will be explained later in more detail.
One end of the corrugated tube 120 on the sliding door 50 side is held by the door-side holding part 140 so as to be swingable on the X-Y plane around a door-side swing axis 141 arranged in the Z direction. The door-side holding part 140 is fixed to the sliding door 50. The door-side swing axis 141 provided to the door-side holding part 140 is parallel to the sliding door 50 and orthogonal to an opening and closing direction D11 of the sliding door 50 (i.e., the Y direction, which is the front-rear direction of the vehicle 5).
Through the holding of the corrugated tube 120 by the door-side holding part 140, a portion of the wire harness 110 on the sliding door 50 side is held so as to be swingable on the X-Y plane around the door-side swing axis 141. The sliding door 50 side of the wire harness 110 exits from the one end of the corrugated tube 120 on the sliding door 50 side. The wire harness 110 is further passed through a passage (not shown) inside the door-side holding part 140 and exits from this door-side holding part 140, and then extends to the electronic device on the sliding door 50.
Another end of the corrugated tube 120 on the vehicle body 60 side is held by the vehicle-body-side holding part 150 so as to be swingable on the X-Y plane around a vehicle-body-side swing axis 151 arranged in the Z direction. The vehicle-body-side holding part 150 is fixed to the vehicle body 60. The vehicle-body-side swing axis 151 provided to the vehicle-body-side holding part 150 is parallel to the sliding door 50 and orthogonal to the opening and closing direction D11 of the sliding door 50.
Through the holding of the corrugated tube 120 by the vehicle-body-side holding part 150, a portion of the wire harness 110 on the vehicle body 60 side is held so as to be swingable on the X-Y plane around the vehicle-body-side swing axis 151. The vehicle body 60 side of the wire harness 110 exits from the another end of the corrugated tube 120 on the vehicle body 60 side, is passed through a passage (not shown) inside the vehicle-body-side holding part 150, exits from this vehicle-body-side holding part 150, and then extends to the power source and the control unit on the vehicle body 60.
As shown in
When the sliding door 50 is being opened in an opening direction D111 heading to the rear side of the vehicle 5, the one end of the corrugated tube 120 on the sliding door 50 side swings as described below at an initial stage of the opening of the sliding door 50. That is, when the sliding door 50 is fully closed, the one end of the corrugated tube 120 on the sliding door 50 is positioned on the vehicle-body-side holding part 150 side (i.e., positioned toward the rear side) with respect to the door-side swing axis 141. When the sliding door 50 opens, the one end of the corrugated tube 120 swings on the X-Y plane around the door-side swing axis 141 toward the front side, and when the sliding door 50 is half opened, the one end of the corrugated tube 120 is positioned on the side more distant from the vehicle-body-side holding part 150 than the door-side swing axis 141 (i.e., positioned nearer the front side than the door-side swing axis 141). The door-side holding part 140 is provided with a coil spring to enhance this swinging motion. This coil spring biases the one end of the corrugated tube 120 on the sliding door 50 side toward a bias direction D12.
Due to the above-described swinging motion at the initial stage of the opening of the sliding door 50, the wire harness 110 located inside the corrugated tube 120 is curved as described below during the subsequent movement of the sliding door 50 toward the opening direction D111, i.e., when the sliding door 50 is half opened. That is, as shown in
In the following, the wire harness 110 located inside the corrugated tube 120 may simply be called the wire harness 110.
During the movement of the sliding door 50 to the opening direction D111, an arm of the U-like shape of the wire harness 110 on the sliding door 50 side is brought to linearly extend to the front side of the vehicle 5 by the bias force in the bias direction D12 produced at the door-side holding part 140. Due to the behavior of these respective parts and the later-described function of the curvature regulating member 130, the U-like shape of the wire harness 110 on the X-Y plane is arranged.
As the sliding door 50 moves to the opening direction D111, the arm of the U-like shape of the wire harness 110 on the sliding door 50 becomes elongated, and the arm of the U-like shape of the wire harness 110 on the vehicle body 60 side becomes shortened. When the arm on the vehicle body 60 side has become short for a certain degree, one end of the wire harness 110 on the vehicle body 60 side swings in a swing direction D15 toward the rear side of the vehicle 5. Then, in this condition, the sliding door 50 moves to the opening direction D111 and reaches to the fully opened state.
When the sliding door 50 is being closed in a closing direction D112 from this fully opened state, the wire harness 110 undergoes reverse behavior of the above-described behavior in the opening of the sliding door 50, as described below. Firstly, at an initial stage of the closing operation of the sliding door 50, the one end of the wire harness 110 on the vehicle body 60 side swings in a reverse direction of the swing direction D15, thereby the wire harness 110 forms the U-like shape on the X-Y plane. After that, the sliding door 50 continues to move to the closing direction D112, and when the arm of the U-like shape on the sliding door 50 side has become short for a certain degree, an another end of the wire harness 110 on the sliding door 50 side swings in a manner as described below. That is, at this stage, the another end of the wire harness 110 on the sliding door 50 side swings toward the rear side of the vehicle 5 in the reverse direction of the bias direction D12, against the bias force at the door-side holding portion 140. Then, in this condition, the sliding door 50 moves to the closing direction D112 and reaches to the fully closed state with the wire harness 110 extended in a linear fashion.
An end of a floor of the vehicle body 60 on the sliding door 50 side is lowered for one step to provide a step 61 to allow a passenger to step on it when getting into the vehicle. During the opening and closing of the sliding door 50, the arm of the U-like shape of the wire harness 110 on the vehicle body 60 side as described above passes in vicinity of the step 61 on the X-Y plane.
Generally speaking, in the field of a power supply device to be mounted to a sliding door of a vehicle, there is a demand for reduction of a swelling part of a wire harness swelled toward the vehicle body side when the wire harness is curved during the opening and closing of the sliding door. Thus, in order to regulate curvature that causes such swelling of the wire harness 110 toward the vehicle-body 60 side, the present embodiment provides the curvature regulating member 130 configured to be arranged along the wire harness 110. This curvature regulating member 130 limits the curvature on the X-Y plane of the wire harness 110. Specifically, the curvature regulating member 130 allows curvature with one side in a widthwise direction D13 (i.e., the rear side of the vehicle 5, in this embodiment) being arranged inside. The curvature regulating member 130 on the other hand regulates (limits) curvature with another side in the widthwise direction D13 (i.e., the front side of the vehicle 5, in this embodiment) being arranged inside, so as not to curve more than a predetermined limit state. Herein, the widthwise direction D13 is orthogonal to both of a longitudinal direction D14 of the wire harness 110 and the Z direction, i.e., a height direction perpendicular to the X-Y direction.
As shown in
The curvature regulating member 130 includes the plurality of member pieces 131 aligned along the wire harness 110 and a flexible connecting part 132 connecting adjacent member pieces 131 to each other. In this embodiment, the plurality of member pieces 131 and the connecting part 132 are integrally molded from a resin. The plurality of member pieces 131 is provided in line along the longitudinal direction D14 of the wire harness 110. The plurality of connecting parts 132 is flexible members arranged along the wire harness 110 so as to be positioned inside the curved shape of the plurality of member pieces 131. The adjacent member pieces 131 are connected only by the connecting part 132. This allows one of the adjacent member pieces 131 to be swingable around the connecting part 132 with respect to another one of the adjacent member pieces 131.
As shown in
The pair of opposed walls 1311 is provided in a manner opposed to each other in the Z direction. Each of the pair of opposed walls 1311 has a substantially T-like shape in a planar view, as shown in
Each of the pair of opposed walls 1311 includes a first protrusion 1311A protruding toward an adjacent member piece 131 located on one side in the longitudinal direction D14 and a second protrusion 1311B (projected part) protruding toward an adjacent member piece 131 on the other side in the longitudinal direction D14. The first protrusion 1311A is provided with a recessed part 1311C recessed toward a direction away from the adjacent member piece 131 located on the one side. The recessed part 1311C includes a planar slanted face extending away from the adjacent member piece 131 located on the one side in the longitudinal direction D14 as leaving from both ends of the recessed part 1311C in the widthwise direction D13 that is perpendicular to both of the longitudinal direction D14 and the Z direction, i.e., the height direction perpendicular to the X-Y plane.
A distal end of the second protrusion 1311B is provided with a planar slanted face extending toward the adjacent member piece 131 located on the other side in the longitudinal direction D14 as leaving from both ends of the second protrusion 1311B in the widthwise direction D13.
As shown in
On the other hand, as shown in
In addition, at this time, the second protrusion 1311B of one of the adjacent member pieces 131 is inserted into the recessed part 1311C of the other one of the adjacent member pieces 131, and the slanted face of the recessed part 1311C formed at the first protrusion 1311A abuts on the slanted face of the second protrusion 1311B. The slanted faces of the recessed part 1311C and the second protrusion 1311B are slated with respect to both of the longitudinal direction D14 and the widthwise direction D13.
Consequently, as shown in
Furthermore, it is configured such that the abutment of the slanted faces of the recessed part 1311C and the second protrusion 1311B with respect to each other allows for a slight displacement. Thus, the connecting part 132 can bend to reduce tensile stress, thereby preventing damage to the connecting part 132.
Following will explain the above-described advantageous effects in more detail in comparison with a comparative example shown in
Similar to the present embodiment, in the comparative example, even if the curvature regulating member 130 is applied with load in the widthwise direction D13, the third protrusion 1311D and the fourth protrusion 1311E of the adjacent member pieces 131 contact each other in the widthwise direction D13, thereby suppressing the displacement of the member pieces 131 with respect to each other in the widthwise direction D13. However, in the comparative example, the contact faces of the third protrusion 1311D and the fourth protrusion 1311E are perpendicular to the widthwise direction D13. Thus, the member pieces 131 cannot be displaced with respect to each other from the position in which the third protrusion 1311D and the fourth protrusion 1311E are contacted. Thus, stress may be applied on the connecting part 132.
In contrast, in the present invention, the contact faces of the recessed part 1311C and the second protrusion 1311B are the slanted faces slanted with respect to the widthwise direction D13. Thus, when the recessed part 1311C and the second protrusion 1311B are contacted, a slight displacement in the widthwise direction D13 is allowed, as described above. Consequently, the connecting part 132 can bend and the tensile stress can be reduced, thereby preventing the damage to the connecting part 132.
Furthermore, as shown in
In the above-described embodiment, the curvature regulating member 130 is arranged such that the distances L1 and L2 are equal, as shown in
Furthermore, in the above-described embodiment, the connecting part 132 is arranged so as to connect one ends in the widthwise direction D13 of the adjacent member pieces 131. However, the present invention is not limited to this. That is, the connecting part 132 may be arranged so as to connect central portions in the widthwise direction D13 of the adjacent member pieces 131.
Furthermore, in the above-described embodiment, the sliding door 50 is considered as an example of the sliding member. However, the present invention is not limited to this. That is, the sliding member may be a sliding seat.
Furthermore, in the above-described embodiment, single recessed part 1311C is provided to single member piece 131. However, the present invention is not limited to this. That is, two or more recessed parts 1311C may be provided to single member piece 131. In this case, the distal end of the second protrusion 1311B may be provided with two or more projected parts which are configured to be inserted into the two or more recessed parts 1311C respectively.
The present invention is not limited to the embodiments described herein. That is, various changes and modifications can be made and implemented without departing from the scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2018-027866 | Feb 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2684512 | Beman | Jul 1954 | A |
3060972 | Sheldon | Oct 1962 | A |
3082984 | Larsson | Mar 1963 | A |
3318429 | Burns | May 1967 | A |
3321571 | Lynch | May 1967 | A |
3330105 | Weber | Jul 1967 | A |
3363050 | Martin | Jan 1968 | A |
3485937 | Caveney | Dec 1969 | A |
3664619 | Heidrich et al. | May 1972 | A |
3772875 | Viano | Nov 1973 | A |
4228825 | Moritz | Oct 1980 | A |
4840023 | Borsani | Jun 1989 | A |
5038556 | Moritz | Aug 1991 | A |
5134251 | Martin | Jul 1992 | A |
5197767 | Kimura | Mar 1993 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5836148 | Fukao | Nov 1998 | A |
5900586 | Carr | May 1999 | A |
5918837 | Vicain | Jul 1999 | A |
6433282 | Traversa | Aug 2002 | B1 |
6470129 | Wentworth | Oct 2002 | B1 |
6695014 | Blase | Feb 2004 | B2 |
6708480 | Wehler | Mar 2004 | B1 |
7082720 | Kobayashi | Aug 2006 | B2 |
7240477 | Dunfee | Jul 2007 | B1 |
7310937 | Kim | Dec 2007 | B2 |
7428808 | Utaki | Sep 2008 | B2 |
7513097 | Utaki | Apr 2009 | B2 |
7610744 | Hart | Nov 2009 | B2 |
7637092 | Utaki | Dec 2009 | B2 |
8505272 | Komiya | Aug 2013 | B1 |
8882052 | Komiya | Nov 2014 | B2 |
9570895 | Lu | Feb 2017 | B2 |
9573536 | Katou | Feb 2017 | B2 |
20010025715 | Muller | Oct 2001 | A1 |
20040112625 | Sheikholeslami | Jun 2004 | A1 |
20070158092 | Ogawa | Jul 2007 | A1 |
20150102182 | Sekino | Apr 2015 | A1 |
20150360629 | Sekino | Dec 2015 | A1 |
20160218496 | Terada | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2016-136809 | Jul 2016 | JP |