This application claims priority to and the benefit of Korean Patent Application No. 10-2012-0109719 filed in the Korean Intellectual Property Office on Oct. 2, 2012, the entire contents of which application are incorporated herein by reference.
(a) Field of Disclosure
The present disclosure of invention relates to curved display devices.
(b) Description of Related Technology
A liquid crystal display (LCD) is one of the most common types of flat panel displays currently in use. It typically includes two flat display panels provided with field generating electrodes such as a pixel electrode and a common electrode, and a liquid crystal layer interposed therebetween. The liquid crystal display generates an electric field extending through the liquid crystal layer by applying a corresponding voltage across the field generating electrodes. This determines the orientation direction of liquid crystal molecules of the liquid crystal layer and controls polarization of incident light passing through the liquid crystal, thus displaying a desired image.
The liquid crystal display is often used as a display device of a television receiver. Market trends have led to the size of the TV monitor increasing over time. As the size of the flat panel liquid crystal display is increased, there is a growing problem in that a difference in views is experienced between the case where a viewer is disposed head on with the center of a monitor and the case where the viewer is disposed to watch from a left or right end side of the monitor.
One solution is to use curved rather than flat panel liquid crystal displays (LCDs). A curved display device may be formed by curving the display device in a concave type or convex type in order to compensate the difference between views. The display device may be a portrait type where a vertical height is larger than a horizontal width length and a monitor is bent about a vertical axis, or a landscape type where a vertical height is smaller than a horizontal width and a monitor is bent about a horizontal axis.
However, in the case where the curved type is formed by curving the spaced apart panels (or substrates) of the liquid crystal display, a compressive force may be applied to at least one of the substrates positioned in the curvature by a sealant surrounding edges of the two substrates of the liquid crystal display. This may strain at least one of the substrates so that the two substrates are not identically curved about a common central axis. When it happens that the two spaced apart substrates are not identically curved relative to a common center of curvature, a gap between the two substrates, that is, a cell gap, may not be constant. In that case; where the cell gap of the liquid crystal display device is not constant over the display area, a display quality may be deteriorated.
It is to be understood that this background of the technology section is intended to provide useful background for understanding the here disclosed technology and as such, the technology background section may include ideas, concepts or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to corresponding invention dates of subject matter disclosed herein.
The present disclosure of invention provides a curved display device that is configured to prevent deterioration of a display quality due to nonuniformity of a cell gap between bent first and second substrates of the device, where the nonuniformity can occur if one of the first and second substrates buckles while being bent into its respective bent shape.
An exemplary embodiment includes: a bent first substrate and a bent second substrate spaced apart from and facing each other, a sealant positioned at edges of the first substrate and the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate and contained by the sealant, wherein the first substrate and the second substrate are bent to have almost the same curvature radius, and a modulus of elasticity (MoE) of the sealant is about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa at least during the bending process where the first and second substrates are bent to acquire their respective bent states.
The sealant may be shear deformed and may have a non-rectangular cross section.
A cell gap between the first substrate and the second substrate may be almost constant.
The second substrate may be positioned on an inside based on a center of the curvature radius, and the second substrate may not be compressed in a horizontal direction as compared to the first substrate.
The curved display device may further include a curved and rigid fixing member configured for positionally fixing ends of the first substrate and the second substrate.
The first substrate and the second substrate may include a first display region and a second display region, and the curvature radius of the first display region and the curvature radius of the second display region may be different from each other.
The curvature radius of the first display region may be larger than the curvature radius of the second display region, and the first display region may be positioned at edges of the first substrate and the second substrate.
The second display region may be positioned at central portions of the first substrate and the second substrate, the first substrate and the second substrate may further include a third display region positioned between the first display region and the second display region, and the third display region may have a curvature radius that is different from the curvature radius of the first display region and the curvature radius of the second display region.
The curvature radius of the third display region may be smaller than the curvature radius of the first region and may be larger than the curvature radius of the second display region.
According to an exemplary embodiment, a curved display device can include a shear deformed sealant having a modulus of elasticity (MoE) of a predetermined value or less, such that a sealant can be easily shear deformed by stress when a liquid crystal display in which the sealant is formed is bent to thereby become a curved liquid crystal display, whereby the easy shear deformability of the sealant allows the performing of the bending such that a cell gap between two substrates sealed by the sealant is substantially constant across display areas of the device. Accordingly, it is possible to prevent deterioration of a display quality due to nonuniformity of the cell gap, which may occur if there is buckling in the curved surfaces of the display device.
The present disclosure of invention will be provided more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments in accordance with the present teachings are shown. As those skilled in the art would realize in view of this disclosure, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present teachings.
In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
First, referring to
Referring to
Although not shown in the drawings, the curved display device may further include one or more fixing members configured for fixing the shapes of the first substrate 110 and of the second substrate 210 to have a predetermined curvature relative to a predetermined common axis of curvature. This will be described in more detail for another exemplary embodiment discussed later below.
As shown in
The first substrate 110 and the second substrate 210 are bent to have respective predetermined radii of curvature sharing a common center point or central axis. In this case, the center of the curvature radius in the horizontal direction is positioned below the second substrate 210 in
The curved display device according to the present exemplary embodiment includes the sealant 310 positioned at the edges of the first substrate 110 and of the second substrate 210 so as to bond the first substrate 110 and the second substrate 210 to each other, where; at least at the time a bending process is performed, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa (MegaPascals or N/mm2). In one subclass, the sealant 310 has a modulus of elasticity (MoE) of about 1 MPa to about 50 MPa. When configured like this (where the sealant 310 has a MoE of about 1 MPa to about 100 MPa and more preferably about 1 MPa to about 50 MPa), the sealant 310 can be easily shear deformed while a panel bending processing is performed so that the first substrate 110 and the second substrate 210 can have a common axis of curvature for their curved surfaces. The MoE may be increased (e.g., via photo-curing) after the bending process is performed.
Referring to
Accordingly, the first substrate 110 is positioned as a segment of an outer cylindrical shell (not shown) having a center corresponding to the center of the curvature radius and the second substrate 210 is positioned as a segment of an inner and coaxial cylindrical shell (not shown) also having a centeral axis corresponding to the desired curvature radius, thus maintaining the constant cell gap. Accordingly, because the material of the sealant ring 310 can shear into a non-rectangular parallelogram shaped cross section in accordance with the deformation shown in
Although not shown in the drawings, it is to be understood that signal lines such as display substrate gate lines and crossing therewith data lines are provided, and also that switching elements such as thin film transistors are provided and are connected to the signal lines, and then respective first field generating electrodes (a.k.a. pixel electrodes) are connected to the switching elements and that these may be formed on the first substrate 110. A light blocking member, a color filter, and a second field generating electrode may be formed on the second substrate 210. However, both the first field generating electrodes and one or more second field generating electrodes (e.g., common electrodes) may be both formed on the first substrate 110. Further, at least one of the color filter and the light blocking member may be formed on the first substrate 110.
The liquid crystal layer 3 which is injected between the first substrate 110 and the second substrate 210 may include any one of or all types of liquid crystal materials known in the art, such as a TN (twisted nematic) mode, a VA (vertical aligned) mode, an IPS (in plane switching) mode, and a BP (blue phase) mode.
Further, although not shown in the drawings, an initial LC aligning, alignment layer may be included in at least one of the first substrate 110 and the second substrate 210, and the alignment layer may be rubbed in a predetermined direction or optically aligned so that the LC molecules have an initial alignment when an electric field is not present. Alternatively, at least one of the liquid crystal layer 3 and the alignment layer may include a photopolymerization material.
The width of the cross section of the sealant 310 may be about 2.00 mm or less.
The materials of the sealant 310 may include a resin, an initiator, and a filler. The resin may include at least one of an acryl resin, an epoxy resin, and a urethane resin, and the initiator may include at least one of a photoinitiator absorbing light of a visible light region or light of an ultraviolet ray region or a thermal initiator performing a reaction by heat. In one embodiment, activation of the initiator is controlled so that at least during the bending process the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa (MegaPascals or N/mm2) rather than substantially more. For example, the photoinitiator may be an initiator absorbing light of the visible light region of 400 nm or more, and may be composed of one or more oximes. The filler may include a core shell particle, an inorganic-based panel type filler, and the like. The sealant composition is selectively adjusted and controllably cured so that, at least during the bending process, the sealant 310 has the aforementioned MoE of about 1 MPa to about 100 MPa and more preferably about 1 MPa to about 50 MPa. More generally, when batches of display devices are sealed and bent, samples of the batch sealant composition can be pre-subjected to different curing and/or compositional constraints and empirically tested for their responsive MoE's developed under the respective different curing and/or compositional constraints and then the one or more constraints that produce the desired MoE or range of MoE's is used for the corresponding manufacturing line batch of display devices so as to obtain the desired MoE or range of MoE's.
Next, referring to
First, referring to
As described above, in the comparative display device whose sealant 31 is substantially rigid, the initially planar first substrate 110′ and the initially planar second substrate 210′ are bonded to each other as such by the relatively rigid first sealant 31 having the high modulus of elasticity (MoE>>100 MPa). Accordingly, the first substrate 110′ and the second substrate 210′ are firmly fixed at their surface points that interface with the relatively rigid first sealant 31 so as not to be changed in terms of relative positions thereof based on the first sealant 31. Like this, in the case where the first substrate 110′ and the second substrate 210′ are subjected to a bending process, so as to respectively become the illustrated first substrate 110″ and second substrate 210″ of
Like this, according to the compressive force applied to the second substrate 210″, in the gap between the first substrate 110″ and the second substrate 210″, that is, in the cell gap, a portion having a second cell gap C2 that is wider than a first cell gap C1 at the center thereof is formed.
A difference between the cell gaps causes deterioration of a display quality.
Then, referring to
As shown in
In the case where the first substrate 110 and the second substrate 210 bonded to each other by the sealant 310 having the relatively low modulus of elasticity, for example, the modulus of elasticity of about 1 MPa to about 100 MPa are subjected to the being processing, the sealant 310 can elastically (or plastically) deform without losing its sealing properties according to the bending forces applied to the first substrate 110 positioned in the outside based on the center of the curvature radius and the corresponding compression forces applied to the second substrate 210 positioned in the inside based on the center of the curvature radius. Specifically, the sealant is shear deformed (without losing its sealing properties) in a direction of force applied to a lower portion and an upper portion of the sealant 310 to have a central line C that is parallel to the imaginary vertical line L. Accordingly, the sealant 310, as shown in
Therefore, the cell gap between the first substrate 110 and the second substrate 210 may be constantly maintained, and deterioration of the display quality according to nonuniformity of the cell gaps, which may occur in the curved display device may be prevented.
Next, referring to the here-included Table 1, the bending experiment result of the curved display device according to the modulus of elasticity (MoE) of the sealant of the display device according to one Experimental Example of the present disclosure will be described. In the present Experimental Example, two substrates that were the same as each other were bonded by respective sealants having, at the time of bending, different moduli of elasticity (MoE's), and then subjected to bending processing to have the curvature radius of about 3.7 m (meters). The cell gap measured before the bending processing was about 3 μm, and conditions other than the modulus of elasticity of the sealant were the same. After the curved display device was manufactured by performing bending processing of each display device, an angle (θ) between the aforementioned imaginary vertical line L and an imaginary second line through which the edges of the two substrate are connected was measured, and described in the following Table. Furthermore, a change according to the position of the cell gap of the curved display device was measured, a maximum value thereof is described in the following Table, and a maximum value of a misalignment difference between two substrates facing each other in the curved display device was measured and described in the following Table.
Referring to Table 1, in the case where the modulus of elasticity of the sealant bonding the two substrates at the time of bending is about 1 MPa to about 100 MPa (and more specifically, at around 50 Mpa) like the curved display device according to the exemplary embodiment of the present disclosure, it can be seen from the Table that the angle (θ) between the imaginary vertical line L and the imaginary second line through which the edges of the two substrates are connected is significantly reduced relative to the case where the MoE is around 1000 MPa. Theoretically speaking, a near zero angle should be findable (with further experimentation) somewhere between the tested 50 MPa run and the tested 100 MPa run. This means that a difference between positions of the edge of the substrate positioned in the outside based on the center of the curvature radius and the edge of the substrate positioned in the inside based on the center of the curvature radius is reduced in the case where the modulus of elasticity of the sealant is about 50 MPa to about 100 MPa. For example, in the case where the modulus of elasticity of the sealant is about 200 MPa or more, like an example shown in
Referring to Table 1, in the case where the modulus of elasticity of the sealant bonding the two substrates is about 1 MPa to about 100 MPa like the curved display device according to the exemplary embodiment of the present disclosure, it can be seen that the maximum difference value between the cell gaps is reduced and a misalignment difference between the two substrates is not largely different from the case where the modulus of elasticity of the sealant is high.
Then, referring to Table 2, the bending experiment result of the curved display device according to the modulus of elasticity of the sealant of the display device according to one Experimental Example of the present invention will be described. In the present Experimental Example, two substrates that were the same as each other were bonded by the sealants having the different moduli of elasticity, and then subjected to bending processing to have the curvature radius of about 4.0 m, about 3.7 m, about 3.4 m, about 3.1 m, about 2.8 m, and about 2.5 m. The relatively constant cell gap measured before the bending processing was about 3 μm, and conditions other than the modulus of elasticity of the sealant were the same. For each case, after the curved display device was manufactured by performing the bending process of each display device, an angle (θ) between the aforementioned imaginary vertical line L and an imaginary second line through which the edges of the two substrate are connected was measured, and described in the following Table 2. Furthermore, a change between the cell gaps at random positions of the curved display device was measured and a maximum value of the change between the cell gaps at random positions is described in the following Table 3. In this case, the change between the cell gaps is represented by a nm unit.
Referring to Table 2, in the case where the modulus of elasticity of the sealant bonding the two substrates is about 1 MPa to 100 MPa like the curved display device according to the exemplary embodiment of the present invention, it can be seen that even though the curvature radius is changed, the angle (θ) between the imaginary vertical line L and the imaginary second line through which the edges of the two substrates are connected is significantly reduced (as compared for example to the case of MoE being around 1000 MPa). This means that a difference between positions of the edge of the substrate positioned in the outside based on the center of the curvature radius and the edge of the substrate positioned in the inside based on the center of the curvature radius is small even though the curvature radius is changed in the case where the modulus of elasticity of the sealant is about 1 MPa to 100 MPa. On the other hand, in the case where the modulus of elasticity of the sealant is about 200 MPa or more, like an example shown in
Referring to Table 3, in the case where the modulus of elasticity of the sealant bonding the two substrates is about 1 MPa to 100 MPa like the curved display device according to the exemplary embodiment of the present invention, it can be seen that the maximum difference value between the cell gaps is reduced as compared to the case where the modulus of elasticity of the sealant is higher than about 200 MPa even though the curvature radius is changed.
Like this, in the case of the curved display device where the modulus of elasticity of the sealant positioned at the edges of the two substrates facing each other to bond two substrates is about 1 MPa to about 100 MPa like the curved display device according to the exemplary embodiment of the present invention, it can be seen that the two substrates may be constantly (smoothly) bent to have substantially the same curvature radius, the cell gap between the two substrates may be constantly maintained, and deterioration of the display quality according to nonuniformity of the cell gaps, which may occur in the curved display device, may be prevented.
Next, referring to
Referring to
However, unlike the curved display device according to the exemplary embodiment described with reference to
The fixing members 41 serve to fix the positional relations of both sides of the concavely curved display device in a horizontal direction after bending in a manner that allows the first substrate 110 and the second substrate 210 to have substantially the same curvature such that the cell gap dimension is substantially constant and uniform across the areas of the bent substrates 110 and 210.
It is possible to prevent misalignment between the two substrates 110 and 210 after they are bent inot the desired positional state by fixing the ends of both sides of the two substrates 110 and 210 by the relatively rigid fixing members 41 so that the relative positions of the two substrates 110 and 210 are not changed after bending and despite the relatively low modulus of elasticity of the sealant 310 that may be maintained after bending.
Like the curved display device according to the exemplary embodiment described with reference to
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly and smoothly bent to have the substantially same curvature radius so that cell gap is uniform across the display area. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The curved display device according to the present exemplary embodiment includes the sealant 310 positioned at the edges of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210 to each other, and the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be shear deformed at least while the bending processing is performed so that the first substrate 110 and the second substrate 210 will have smoothly curved surfaces and not buckled surfaces. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap over the display area. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
All characteristics of the curved display device according to the exemplary embodiment and Experimental Example described with reference to
Next, referring to
Referring to
However, unlike the curved display device according to the exemplary embodiment described with reference to
Like this, if the curvature radius is formed to be larger at the edge of the curved display device and the curvature radius is formed to be smaller at the central portion, the deformation force applied to the edge of the display device while the bending process is performed will be smaller than the force applied to the more greatly bent central portion of the display device. Generally, the central portion of the display device can be made relatively stronger to thermal stress and to mechanical stress, while the edge portion of the display device tends to be relatively weak to thermal stress and mechanical stress. Accordingly, the edge portion of the display device which is relatively weak to thermal stress and mechanical stress may be bent to have the larger curvature radius, thus reducing a change amount of the cell gap according to thermal stress and mechanical stress. Accordingly, it is possible to prevent deterioration of the display quality according to a change in cell gap of the curved display device by using different radii of curvature for different portions of the display area.
Like the curved display device described with reference to
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are smoothly bent to have substantially the same curvature radii in respective facing portion of the first and second substrates 110 and 210. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The curved display device according to the present exemplary embodiment includes the sealant 310 positioned at the edges of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210 to each other, and the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa at least at the time the bending process is carried out. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus the sealant 310 can be shear deformed while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces rather than buckled surfaces. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have substantially the same curvature radius for facing portion thereof, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
All characteristics of the curved display device according to the exemplary embodiment and Experimental Example described with reference to
For sake of simplified explanation, the curved display device according to the 8 present exemplary embodiment of FIG. 7—is shown to have just two different curvature radii at the edge portion R1 and the central portion R2, but the regions having different curvature radii may be various rather than just two. An example of this will be described with reference to
Referring to
Like this, if the curvature radius is formed to be largest at the edge of the curved display device and the curvature radius is minutely formed as going toward the central portion, the deformation force applied to the edge of the display device while bending process is performed will be smaller than the force applied to the central portion of the display device. Accordingly, the edge portion of the display device which tends to be relatively weak to thermal stress and mechanical stress may be bent to have the largest curvature radius, thus reducing a change amount of the cell gap there according to thermal stress and mechanical stress. Accordingly, it is possible to prevent deterioration of the display quality according to a change in cell gap of the curved display device.
Like the curved display device described with reference to
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly bent to have the same curvature radius. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The curved display device according to the present exemplary embodiment includes the sealant 310 positioned at the edges of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210 to each other, and the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa at least during the bending process. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be shear deformed while the bending processing is performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces rather than buckled ones. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have substantially the same curvature radius in respective facing portion thereof, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
All characteristics of the curved display device according to the exemplary embodiment and Experimental Example described with reference to
Next, referring to
Referring to
More specifically, the curved display device according to the present exemplary embodiment includes the curved display unit 100 according to the exemplary embodiment shown in
In other words, the curved display unit 100 includes the first substrate 110 and the second substrate 210 facing each other, and the sealant 310 (having a MoE<about 100 MPa at least during bending) positioned along the edge of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210. The first substrate 110 and the second substrate 210 are bent to have one or more predetermined curvatures and a relatively constant cell gap.
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly bent to have the same curvature radius. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be shear deformed while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
Like the display unit of the curved display device according to the exemplary embodiment described with reference to
Referring to
The light source reinforcement member 200a increases efficiency of light emitted from the light source module 200b.
The light source module 200b may include a curved light guide plate (cLGP) 232, a first printed circuit board (PCB) 234 supporting a corresponding plurality of first light sources (e.g., LED's not shown), a second printed circuit board (PCB) 236 supporting a corresponding plurality of second light sources 236a (e.g., LED's, shown).
The curved light guide plate 232 (hereafter also the cLGP 232) is bent to have the same one or more curvatures as that of the display unit 100. First grooves 232a are formed at positions corresponding to the first light sources on one side of the light guide (cLPGP) 232, and second grooves (not shown) are formed at positions corresponding to the second light sources 236a on another side of the light guide 232. However, at least one of the first grooves 232a or the second grooves may be omitted.
As mentioned, appropriate first light sources such as LED's are mounted on the first printed circuit board (PCB) 234. The first light sources are mounted on the first printed circuit board (PCB) 234 to emit desired intensities of white or differently colored lights at desired times when backlighting is to be provided (e.g., during respective frame or subframe periods).
Second light sources 236a are mounted on the second printed circuit board (PCB) 236. The second light sources are mounted on the second printed circuit board (PCB) 236 to emit light.
However, any one of the first light source and the second light source may be omitted. In this case, the light source is positioned along one surface of the light guide 232.
The diffuser sheet 224 is disposed on the light guide 232 to diffuse light by the light guide 232, thus emitting diffused light to the optical sheets 222.
The optical sheets 222 (e.g., prism sheets) are positioned on the diffuser sheet 224 to increase efficiency of light that is incident from the diffuser sheet 224.
An appropriately curved reflector 226 is disposed on a lower portion of the curved light guide 232 to reflect light that is incident from the light source module 200b, thus increasing efficiency of light.
The fixing member includes a curved bottom chassis 250a, a curved top chassis 250b, and a curved mold frame 260, and fixes the display unit 100 so that the display unit 100 is bent to have a predetermined one or more curvature radii as described above. Specifically, the bottom chassis 250a, the top chassis 250b, and the mold frame 260 that are the fixing members are bent to have the predetermined one or more curvature radii in correspondence to those of the respective display subareas of the display unit 100.
Next, referring to
Referring to
Specifically, the curved display device according to the present exemplary embodiment includes the curved display unit 100 according to the exemplary embodiment shown in
The curved display unit 100 includes the bent first substrate 110 and the bent second substrate 210 facing each other, and the sealant 310 positioned along the edge of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210. The first substrate 110 and the second substrate 210 are bent to have a predetermined one or more curvatures.
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly bent to have the same curvature radius. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa at least during the substrate bending process. Like this, the sealant 310 has the modulus of elasticity of about 100 MPa or less, and thus, the sealant 310 can be shear deformed while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces rather than buckled ones. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
Like the display unit of the curved display device according to the exemplary embodiment described with reference to
Referring to
Constituent elements other than the backlight assembly are the same as those of the curved display device according to the exemplary embodiment described with reference to
Next, referring to
Referring to
Specifically, the curved display device according to the present exemplary embodiment includes the curved display unit 100 according to the exemplary embodiment shown in
The curved display unit 100 includes the bent first substrate 110 and the bent second substrate 210 facing each other, and the shear deformed sealant 310 positioned along the edge of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210. The first substrate 110 and the second substrate 210 are bent to have a predetermined curvature.
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly bent to have the same curvature radius. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be easily shear deformed at least while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces rather than buckled ones. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
Like the display unit of the curved display device according to the exemplary embodiment described with reference to
Still referring to
Constituent elements other than the backlight assembly are the same as those of the curved display device according to the exemplary embodiment described with reference to
Next, referring to
Referring to
Specifically, the curved display device according to the present exemplary embodiment includes the curved display unit 100 according to the exemplary embodiment shown in
The curved display unit 100 includes the bent first substrate 110 and the bent second substrate 210 facing each other, and the shear deformed sealant 310 positioned along the edge of the first substrate 110 and the second substrate 210 to bond the first substrate 110 and the second substrate 210. The first substrate 110 and the second substrate 210 are bent to have a predetermined curvature.
The first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius are constantly bent to have the same curvature radius. In this case, the center of the curvature radius in the horizontal direction is positioned outside the second substrate 210, that is, at the side at which the observer is positioned.
The sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be shear deformed while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces rather than buckled ones. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
Like the display unit of the curved display device according to the exemplary embodiment described with reference to
Referring to
A bottom chassis 1150 of
Constituent elements other than the backlight assembly are the same as those of the curved display device according to the exemplary embodiment described with reference to
As described above, the curved display device according to the exemplary embodiment of the present invention includes the shear deformed sealant 310 positioned at the edges of the bent first substrate 110 and the bent second substrate 210 facing each other to bond the first substrate 110 and the second substrate 210 to each other, and the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa. Like this, the sealant 310 has the modulus of elasticity of about 1 MPa to about 100 MPa, and thus, the sealant 310 can be easily shear deformed at least while the bending processing is being performed so that the first substrate 110 and the second substrate 210 have smoothly curved surfaces. Accordingly, the first substrate 110 positioned in the outside based on the center of the curvature radius and the second substrate 210 positioned in the inside based on the center of the curvature radius may be constantly bent to have the same curvature radius, thus maintaining the constant cell gap. Accordingly, it is possible to prevent deterioration of a display quality according to nonuniformity of the cell gap, may occur in the curved display device.
While this disclosure of invention has been described in connection with what are presently considered to be practical exemplary embodiments, it is to be understood that the present teachings are not limited to the disclosed embodiments, but, on the contrary, the disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the present teachings.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0109719 | Oct 2012 | KR | national |