Absorbent sanitary products, such as disposable diapers, are typically equipped with elastic composite structures that include one or more elastic threads. These elastic composite structures are positioned at various locations throughout the product, including in the waistbands, leg cuff regions, and throughout all or portions of the front or back panels of the product. During the typical manufacturing process of an elastic composite structure, the elastic threads are held in a tensioned state and an adhesive is used to secure the elastic threads between the two facing layers of non-woven materials or webs. The tension in the elastic threads is subsequently released, causing the web material to pucker or fold in the areas that contain the adhered elastic threads.
The use of adhesives to bond the elastic threads within elastic composite structures presents a number of disadvantages in both the end product and manufacturing method, including costs associated with the consumable material and undesirable tactile properties of the end product (e.g., stiffness). While thermal or ultrasonic welding techniques have been proposed as alternatives for bonding elastic threads within an elastic composite structure, movement or shifting of the elastic threads between or outside of notches on the anvil during the manufacturing process may result in a given elastic thread breaking or being unanchored over one or more portions of its length.
Accordingly, there is a need for an improved apparatus and method for fabricating an elastic composite structure of an absorbent sanitary product that reduces thread breakage and improves the reliability of bonds that anchor elastic threads in position within an elastic composite structure.
Embodiments of the invention relate generally to absorbent sanitary products and, more particularly, to an improved apparatus and method for manufacturing an elastic composite structure including curved elastic entrapment for use in an absorbent sanitary product.
In accordance with one aspect of the invention, an apparatus for manufacturing an elastic composite structure includes a first roller configured to transport a web layer in a machine direction and a laydown guide configured to guide a laydown pattern of a plurality of elastic threads. A rotary anvil comprises a first weld line having a first notch formed in a contact surface of the first weld line, the first notch having a first interior configured to receive a portion of a first elastic thread of the plurality of elastic threads and a portion of the web layer therein. The first notch comprises a facing surface defining at least a portion of the first interior. A smallest orientation angle of a first face axis normal to the facing surface with respect to a contact surface axis normal to the contact surface is a first angle that is less than 90 degrees.
In accordance with another aspect of the invention, a bonding apparatus assembly for manufacturing an elastic composite structure comprises a first rotary anvil comprising a first weld line and comprises a second rotary anvil comprising a second weld line. The first weld line includes a first notch formed in a first contact surface of the first weld line, the first notch having a first interior configured to receive a first elastic thread and a first portion of a web layer therein. The first notch comprises a first facing surface defining a portion of the first interior, and a smallest orientation angle of a first face axis normal to the first facing surface with respect to a first contact surface axis normal to a plane of the first contact surface is a first angle that is less than 90 degrees. The second weld line comprises a second notch formed in a second contact surface of the second weld line, the second notch having a second interior configured to receive a second elastic thread and a second portion of the web layer therein. The second notch comprises a second facing surface defining a portion of the second interior, and an orientation angle of a second face axis normal to the second facing surface with respect to a second contact surface axis normal to a plane of the second contact surface is distinct from the smallest orientation angle of the first face axis.
In accordance with another aspect of the invention, a method for manufacturing an elastic composite structure comprises guiding, in a machine direction, a first web layer adjacently to a rotary anvil via a first roller and guiding an elastic thread adjacently to the rotary anvil via a laydown guide. The rotary anvil comprises a weld line having a notch formed in a contact surface of the weld line, the notch having an interior configured to receive a portion of the elastic thread and a portion of the first web layer therein. The notch comprises a facing surface defining at least a portion of the interior, and a smallest orientation angle of a first face axis normal to the facing surface with respect to a contact surface axis normal to the contact surface is a first angle that is less than 90 degrees.
The drawings illustrate embodiments presently contemplated for carrying out the invention.
In the drawings:
Embodiments of the present invention provide for a method and apparatus for manufacturing an elastic composite structure usable in an absorbent sanitary product such as, for example, a diaper, disposable adult pant, or feminine care product.
During the manufacture of absorbent sanitary products, it is often desirable to secure elastic threads between facing layers of non-woven material to form contoured or elasticized regions within the product. Such products are typically manufactured on an assembly or manufacturing line in which the product moves substantially continually longitudinally in what is referred to as the “machine direction.”
Referring now to
One or more elastic threads 18 are positioned between the first and second web layers 12, 16. While the below description refers to elastic threads in the plural form, it is to be understood that the methods described herein may be used to manufacture an elastic composite structure that includes a single elastic thread or any number of multiple elastic threads. The elastic threads 18 travel in the machine direction 14 under tension from a creel assembly (not shown) or similar device. The elastic threads 18 may be composed of any suitable elastic material including, for example, sheets, strands or ribbons of thermoplastic elastomers, natural or synthetic rubber, or elastic strands such as LYCRA, as non-limiting examples. Each elastic thread 18 may be provided in the form of an individual elastomeric strand or be a manufactured multifilament product that includes many individual elastomeric filaments joined together, such as by a dry-spinning manufacturing process, to form a single, coalesced elastic thread 18.
Elastic threads 18 may have any suitable cross-sectional shape that facilitates formation of an elastic composite structure having desired elasticity, visual aesthetic, and manufacturability. As non-limiting examples, elastic threads 18 may have a cross-sectional shape that is round, rectangular, square, or irregular as may be the case where each elastic thread 18 is a multifilament product.
While first web layer 12 and second web layer 16 are depicted in
Manufacturing line 10 includes one or more feeding assemblies 20 such as guide rollers that are employed to accurately position and (optionally) tension the elastic threads 18 as they travel in the machine direction 14 toward a bonding apparatus 22. Immediately upstream of the bonding apparatus 22 are one or more assemblies that feed and guide the first and second web layers 12, 16 and the elastic threads 18 into the bonding apparatus 22. In the illustrated embodiment, these feeding assemblies 20 include an upper roller 24, a lower roller 26, and a strand guide roller 28 that guide a combined assembly 30 that includes the first web layer 12, the second web layer 16, and the elastic threads 18 into the bonding apparatus 22. It is contemplated that rollers 24, 26, 28 may be replaced with other known types of feeding assemblies and/or replaced by a single roller unit or other known type of feeding assembly in an alternative embodiment.
Bonding apparatus 22 may be any known ultrasonic welding system in alternative embodiments, including, as non-limiting examples, a rotary ultrasonic welding system or a blade ultrasonic welding system. In the illustrated embodiment, bonding apparatus 22 includes a rotary anvil 32 and an ultrasonic fixed blade horn 34, also known as a sonotrode, which cooperate with each other to bond (i.e., fuse) the first web layer 12 to the second web layer 16. Alternative embodiments may include multiple fixed blade horns or one or more rotary horns. During the bonding process the elastic threads 18 are secured or anchored in position relative to the first and second web layers 12, 16 as described in detail below.
Bonding apparatus 22 also includes one or more frames 36 that support and/or house a motor (not shown) that drives the ultrasonic horn 34, a vibration control unit (not shown) that ultrasonically energizes the horn 34 and causes the horn 34 to vibrate, and a second motor (not shown) that drives the anvil 32. The horn 34 and anvil 32 are positioned in a spaced relationship relative to one another to facilitate ultrasonically bonding the first and second web layers 12, 16 to one another while the elastic threads 18 are held in tension in the space between the horn 34 and anvil 32. During the bonding process, the first and second web layers 12, 16 are exposed to an ultrasonic emission from the horn 34 that increases the vibration of the particles in the first and second web layers 12, 16. The ultrasonic emission or energy is concentrated at specific bond points where frictional heat fuses the first and second web layers 12, 16 together without the need for consumable adhesives. While bonding apparatus 22 is described herein as an ultrasonic bonding assembly that ultrasonically fuses first web layer 12 to second web layer 16, it is contemplated that the techniques described herein may be extended to any other known welding or bonding techniques that fuse together two or more material layers without the use of adhesive, including sonic, thermal, or pressure bonding techniques and various other forms of welding known in the industry.
A portion of the elastic threads 18 is fed outward from respective guiding sections 38 in the feeding assembly 20 and toward strand guide roller 28. In the illustrated embodiment, strand guide roller 28 includes an array of notches 40 that aid in aligning and guiding the elastic threads as they are received between the horn 34 and anvil 32. These notches 40 may be evenly spaced across all of the strand guide roller 28 in the manner shown or may span only a portion thereof in an alternative embodiment. In yet other embodiments, the notches 40 may be positioned at uneven intervals along the length of strand guide roller 28 depending upon design specifications and the desired placement and spacing of the elastic threads 18 in the resulting elastic composite structure. Placement of the elastic threads 18 by the notches 40 allows for linear positioning of the elastic threads 18 along the anvil 32 for elastic sections such as waist or belly elastic portions.
Also shown in
Referring to
As illustrated in
The particular size, shape, and general arrangement of anchoring projections 46 as well as the total number of projections 46 illustrated in
In a preferred embodiment the anchoring projections 46 are formed on anvil 32 using a machining process that removes bulk material from the anvil 32 to create the desired raised pattern of projections 46 relative to the face 48 of the anvil 32. Alternatively, anchoring projections 46 may be provided on one or more inserts that are mechanically coupled to the face 48 of the anvil 32.
Still referring to
During the manufacturing process, the first and second web layers 12, 16 are positioned between the face 48 of the anvil 32 and the working surface 52 of the horn 34 as shown in
Anchoring projections 46 may have a planar working surface, planar side surfaces, or some mixture of curved and straight working and side surfaces in alternative embodiments. In the embodiment illustrated in
As shown more specifically in the detailed view provided in
Anvil 32 may in addition or alternatively include one or more projections that are referred to herein as laminating or non-anchoring projections 78. As illustrated in
Referring again to
Referring now to
During the manufacturing process, the first and second web layers 12, 16 are positioned between the face 48 of the anvil 32 and the face 96 of the horn 34. An elastic thread 18 is positioned between the first and second web layers 12, 16 in a tensioned state and aligned above notch 74. As shown in
Accordingly, an improved notch geometry is illustrated in
The side-to-side excursions of the elastic laydown guide 42 can pull the elastic thread 18 to one side of the notch 74 or the other. As illustrated in
As illustrated in
It is contemplated that the orientation of the facing surfaces 86, 88 of each notch 74 in the anchoring weld line 62 can vary and be independent of one another. Furthermore, the orientation of the facing surfaces 86, 88 of each notch 74 in adjacent anchoring weld lines 62 can be different along the circumference of the rotary anvil 32. For instance, in one section of the rotary anvil 32 where the elastic forces of the elastic threads 18 will tend to pull the threads 18 to the right due to their placement via the elastic laydown guide 42, the orientation of the facing surfaces 86, 88 of the notches 74 can be as illustrated in any of
The waist cap elastic portion 104 and the belly elastic portion 106 may have a corresponding waist cap anvil portion 110 and belly anvil portion 112 on the rotary anvil 32, respectively. Since the elastic threads 18 laid down in the waist cap anvil portion 110 and the belly anvil portion 112 are substantially straight, it is not necessary to use a pivoting elastic laydown guide 42 in these areas but to use the notches 74 in the strand guide roller 28; however, a pivoting elastic laydown guide 42 may be used and held in a static position according to an embodiment. Furthermore, the notches 74 in the waist cap anvil portion 110 and the belly anvil portion 112 may be oriented in a vertical orientation as shown in
A leg anvil portion 114 of the rotary anvil 32 corresponding to the leg elastic portion 108 may have the notches 74 of the anchoring weld lines 62 angled and varying as disclosed herein. For example, the notches 74 may be formed as shown in any of
The portion of the anchoring weld lines 62 corresponding with the first leg portion 120 may have their notches 74 angled oppositely to those corresponding with the second leg portion 122 to account for a change in the direction of the elastic force as the elastic threads 18 are positioned by the elastic laydown guide(s) 42. Furthermore, the angles of the notches 74 may change or vary within a leg portion 120, 122 to become more or less acute as needed. For example, as an elastic force becomes stronger as the rotary anvil 32 rotates, the angles/orientations of the corresponding notches 74 may become increasingly acute.
While
As indicated herein, the curved elastic threads 18 such as those illustrated in the leg elastic portion 108 are held in place via ultrasonic bonding, and no adhesive is necessary. Subsequent processing of the elastic web 102 can include cutting the elastic web 102 into discrete sections and also cutting along lines 124 (
Therefore, according to one embodiment of the invention, an apparatus for manufacturing an elastic composite structure includes a first roller configured to transport a web layer in a machine direction and a laydown guide configured to guide a laydown pattern of a plurality of elastic threads. A rotary anvil comprises a first weld line having a first notch formed in a contact surface of the first weld line, the first notch having a first interior configured to receive a portion of a first elastic thread of the plurality of elastic threads and a portion of the web layer therein. The first notch comprises a facing surface defining at least a portion of the first interior. A smallest orientation angle of a first face axis normal to the facing surface with respect to a contact surface axis normal to the contact surface is a first angle that is less than 90 degrees.
In accordance with another embodiment of the invention, a bonding apparatus assembly for manufacturing an elastic composite structure comprises a first rotary anvil comprising a first weld line and comprises a second rotary anvil comprising a second weld line. The first weld line includes a first notch formed in a first contact surface of the first weld line, the first notch having a first interior configured to receive a first elastic thread and a first portion of a web layer therein. The first notch comprises a first facing surface defining a portion of the first interior, and a smallest orientation angle of a first face axis normal to the first facing surface with respect to a first contact surface axis normal to a plane of the first contact surface is a first angle that is less than 90 degrees. The second weld line comprises a second notch formed in a second contact surface of the second weld line, the second notch having a second interior configured to receive a second elastic thread and a second portion of the web layer therein. The second notch comprises a second facing surface defining a portion of the second interior, and an orientation angle of a second face axis normal to the second facing surface with respect to a second contact surface axis normal to a plane of the second contact surface is distinct from the smallest orientation angle of the first face axis.
In accordance with another embodiment of the invention, a method for manufacturing an elastic composite structure comprises guiding, in a machine direction, a first web layer adjacently to a rotary anvil via a first roller and guiding an elastic thread adjacently to the rotary anvil via a laydown guide. The rotary anvil comprises a weld line having a notch formed in a contact surface of the weld line, the notch having an interior configured to receive a portion of the elastic thread and a portion of the first web layer therein. The notch comprises a facing surface defining at least a portion of the interior, and a smallest orientation angle of a first face axis normal to the facing surface with respect to a contact surface axis normal to the contact surface is a first angle that is less than 90 degrees.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description but is only limited by the scope of the appended claims.
The present application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/947,779, filed Aug. 17, 2020, which claims the benefit of U.S. Patent Application Ser. No. 62/896,063, filed Sep. 5, 2019, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3580783 | Glaze | May 1971 | A |
3622434 | Newman | Nov 1971 | A |
3658064 | Pociluyko | Apr 1972 | A |
3668054 | Stumpf | Jun 1972 | A |
3844869 | Rust, Jr. | Oct 1974 | A |
3884227 | Lutz et al. | May 1975 | A |
3982988 | Heimberger | Sep 1976 | A |
3993532 | McDonald et al. | Nov 1976 | A |
4088731 | Groome | May 1978 | A |
4305988 | Kocher | Dec 1981 | A |
4305998 | Manty | Dec 1981 | A |
4333978 | Kocher | Jun 1982 | A |
4336203 | Zucker et al. | Jun 1982 | A |
4485819 | Igl | Dec 1984 | A |
4662005 | Grier-Idris | May 1987 | A |
4770656 | Proxmire et al. | Sep 1988 | A |
4808176 | Kielpikowski | Feb 1989 | A |
4833734 | Der Estephanian | May 1989 | A |
4834738 | Kielpikowski et al. | May 1989 | A |
4842596 | Kielpikowski et al. | Jun 1989 | A |
4863542 | Oshefsky et al. | Sep 1989 | A |
4919738 | Ball et al. | Apr 1990 | A |
5094717 | Manning et al. | Mar 1992 | A |
5163932 | Nomura et al. | Nov 1992 | A |
5353798 | Sieben | Oct 1994 | A |
5468320 | Zafiroglu | Nov 1995 | A |
5530979 | Whitley | Jul 1996 | A |
5561863 | Carlson, II | Oct 1996 | A |
5618378 | Cahill | Apr 1997 | A |
5624420 | Bridges et al. | Apr 1997 | A |
5643396 | Rajala et al. | Jul 1997 | A |
5660657 | Rajala et al. | Aug 1997 | A |
5694925 | Reese et al. | Dec 1997 | A |
5699791 | Sukiennik et al. | Dec 1997 | A |
5707470 | Rajala et al. | Jan 1998 | A |
5711847 | Rajala et al. | Jan 1998 | A |
5745922 | Rajala et al. | May 1998 | A |
5769993 | Baldauf | Jun 1998 | A |
5789065 | Haffner et al. | Aug 1998 | A |
5797895 | Widlund et al. | Aug 1998 | A |
5803075 | Yavitz | Sep 1998 | A |
5813398 | Baird et al. | Sep 1998 | A |
5817584 | Singer et al. | Oct 1998 | A |
5883026 | Reader et al. | Mar 1999 | A |
5934275 | Gazzara | Aug 1999 | A |
5954055 | Miyake | Sep 1999 | A |
D424688 | Bryant et al. | May 2000 | S |
6055982 | Brunson et al. | May 2000 | A |
6057024 | Mleziva et al. | May 2000 | A |
6062220 | Whitaker et al. | May 2000 | A |
6123077 | Bostock et al. | Sep 2000 | A |
6125849 | Williams et al. | Oct 2000 | A |
6165298 | Samida et al. | Dec 2000 | A |
6173712 | Brunson | Jan 2001 | B1 |
6197404 | Varona | Mar 2001 | B1 |
6213125 | Reese et al. | Apr 2001 | B1 |
6217889 | Lorenzi et al. | Apr 2001 | B1 |
6235137 | Eperen et al. | May 2001 | B1 |
6257235 | Bowen | Jul 2001 | B1 |
6279570 | Mittelstadt et al. | Aug 2001 | B1 |
6291039 | Combe et al. | Sep 2001 | B1 |
6295714 | Roychowdhury et al. | Oct 2001 | B1 |
6332465 | Xue et al. | Dec 2001 | B1 |
6340782 | Kling et al. | Jan 2002 | B1 |
6354296 | Baumann et al. | Mar 2002 | B1 |
6394090 | Chen et al. | May 2002 | B1 |
6427693 | Blackstock et al. | Aug 2002 | B1 |
6460539 | Japuntich et al. | Oct 2002 | B1 |
6482278 | McCabe et al. | Nov 2002 | B1 |
6484722 | Bostock et al. | Nov 2002 | B2 |
6506474 | Tsuji | Jan 2003 | B2 |
6534694 | Kling et al. | Mar 2003 | B2 |
6536434 | Bostock et al. | Mar 2003 | B1 |
6541679 | Betrabet et al. | Apr 2003 | B2 |
6568392 | Bostock et al. | May 2003 | B1 |
6584976 | Japuntich et al. | Jul 2003 | B2 |
6604524 | Curran et al. | Aug 2003 | B1 |
6613955 | Lindsay et al. | Sep 2003 | B1 |
6623837 | Morman et al. | Sep 2003 | B2 |
6644314 | Elsberg | Nov 2003 | B1 |
6652693 | Burriss et al. | Nov 2003 | B2 |
6673980 | Varona et al. | Jan 2004 | B1 |
6712922 | Sorenson et al. | Mar 2004 | B2 |
6715489 | Bostock et al. | Apr 2004 | B2 |
6722366 | Bostock et al. | Apr 2004 | B2 |
6730188 | Sanders | May 2004 | B2 |
6761710 | D'Acchioli et al. | Jul 2004 | B2 |
6780263 | Delisle | Aug 2004 | B2 |
6843872 | Morman | Jan 2005 | B2 |
6886563 | Bostock et al. | May 2005 | B2 |
6889622 | Marcangelo | May 2005 | B2 |
6914018 | Uitenbroek et al. | Jul 2005 | B1 |
6928657 | Bell et al. | Aug 2005 | B2 |
6953452 | Popp et al. | Oct 2005 | B2 |
7008496 | Morman | Mar 2006 | B2 |
7021227 | Marcangelo | Apr 2006 | B2 |
7025841 | Owen | Apr 2006 | B2 |
7044131 | Griesbach et al. | May 2006 | B2 |
7069930 | Bostock et al. | Jul 2006 | B2 |
7118558 | Wu et al. | Oct 2006 | B2 |
7198688 | Mortell et al. | Apr 2007 | B2 |
7211531 | Schneider et al. | May 2007 | B2 |
7217261 | Otsubo et al. | May 2007 | B2 |
7290545 | Kleman et al. | Nov 2007 | B2 |
7316840 | Neculescu et al. | Jan 2008 | B2 |
7361241 | Barth et al. | Apr 2008 | B2 |
7378566 | Soerens et al. | May 2008 | B2 |
7469427 | Yang et al. | Dec 2008 | B2 |
7507680 | Middlesworth et al. | Mar 2009 | B2 |
7582348 | Ando et al. | Sep 2009 | B2 |
7617787 | Marcangelo | Nov 2009 | B2 |
7619167 | Lee et al. | Nov 2009 | B2 |
7638014 | Coose et al. | Dec 2009 | B2 |
7642398 | Jarpenberg et al. | Jan 2010 | B2 |
7691138 | Stenzel et al. | Apr 2010 | B2 |
7708849 | McCabe | May 2010 | B2 |
7722734 | Otsubo | May 2010 | B2 |
7725948 | Steindorf | Jun 2010 | B2 |
7799967 | Ranganathan et al. | Sep 2010 | B2 |
7833369 | Zhou et al. | Nov 2010 | B2 |
7845351 | Mathis et al. | Dec 2010 | B2 |
7861756 | Jenquin et al. | Jan 2011 | B2 |
7901392 | Kline et al. | Mar 2011 | B2 |
7955418 | Claussen et al. | Jun 2011 | B2 |
7981231 | Schneider et al. | Jul 2011 | B2 |
8007484 | McCabe et al. | Aug 2011 | B2 |
8074660 | Duffy | Dec 2011 | B2 |
8075543 | Okuda | Dec 2011 | B2 |
8091550 | Steindorf | Jan 2012 | B2 |
8109916 | Wennerback | Feb 2012 | B2 |
8142411 | Kline et al. | Mar 2012 | B2 |
8146594 | Bostock et al. | Apr 2012 | B2 |
8182624 | Handziak | May 2012 | B2 |
8207395 | Soerens et al. | Jun 2012 | B2 |
8268444 | Okaya | Sep 2012 | B2 |
8282617 | Kaneda | Oct 2012 | B2 |
8298205 | Norrby et al. | Oct 2012 | B2 |
8308706 | Fukae | Nov 2012 | B2 |
8323257 | Melik et al. | Dec 2012 | B2 |
8328820 | Diamant et al. | Dec 2012 | B2 |
8360067 | Duffy | Jan 2013 | B2 |
8375950 | Bostock et al. | Feb 2013 | B2 |
8435223 | Roe et al. | May 2013 | B2 |
8440043 | Schneider et al. | May 2013 | B1 |
8470946 | Carlson | Jun 2013 | B1 |
8528560 | Duffy | Sep 2013 | B2 |
8562777 | Drake | Oct 2013 | B2 |
8585667 | Roe et al. | Nov 2013 | B2 |
8622059 | Kleman | Jan 2014 | B2 |
8640704 | Spoo et al. | Feb 2014 | B2 |
8647319 | Een et al. | Feb 2014 | B2 |
8652114 | Roe et al. | Feb 2014 | B2 |
8652115 | Roe et al. | Feb 2014 | B2 |
8669409 | Roe | Mar 2014 | B2 |
8741083 | Wennerback et al. | Jun 2014 | B2 |
8758786 | Hassler | Jun 2014 | B2 |
8771449 | Takino et al. | Jul 2014 | B2 |
8784395 | Roe et al. | Jul 2014 | B2 |
8784397 | Chang et al. | Jul 2014 | B2 |
8808263 | Roe et al. | Aug 2014 | B2 |
8881729 | Duffy | Nov 2014 | B2 |
8926579 | Wang et al. | Jan 2015 | B2 |
8932273 | Roe et al. | Jan 2015 | B2 |
8936586 | Roe | Jan 2015 | B2 |
8992497 | Roe et al. | Mar 2015 | B2 |
8998870 | Roe | Apr 2015 | B2 |
9011402 | Roe et al. | Apr 2015 | B2 |
9011404 | Kobayashi et al. | Apr 2015 | B2 |
9012013 | Duffy | Apr 2015 | B2 |
9028462 | Poole et al. | May 2015 | B2 |
9056033 | Fenske | Jun 2015 | B2 |
9060905 | Wang et al. | Jun 2015 | B2 |
9078789 | Wang et al. | Jul 2015 | B2 |
9078792 | Ruiz | Jul 2015 | B2 |
9089456 | Roe et al. | Jul 2015 | B2 |
9095478 | Roe | Aug 2015 | B2 |
9180059 | Roe et al. | Nov 2015 | B2 |
9301881 | Ando et al. | Apr 2016 | B2 |
9387138 | Roe | Jul 2016 | B2 |
9539735 | Ferguson et al. | Jan 2017 | B2 |
9603395 | Duffy | Mar 2017 | B2 |
9603396 | Duffy | Mar 2017 | B2 |
9615612 | Duffy | Apr 2017 | B2 |
9770057 | Duffy | Sep 2017 | B2 |
9770058 | Angadjivand et al. | Sep 2017 | B2 |
9770611 | Facer et al. | Sep 2017 | B2 |
9809414 | Fritz et al. | Nov 2017 | B2 |
9868002 | Duffy | Jan 2018 | B2 |
9913764 | Thomas et al. | Mar 2018 | B2 |
10040621 | Duffy et al. | Aug 2018 | B2 |
10130833 | Angadjivand et al. | Nov 2018 | B2 |
10137321 | Martin | Nov 2018 | B2 |
10143246 | Houde et al. | Dec 2018 | B2 |
D837970 | Henderson et al. | Jan 2019 | S |
10182603 | Duffy | Jan 2019 | B2 |
10213348 | Gualtieri et al. | Feb 2019 | B2 |
10227202 | Pamperin et al. | Mar 2019 | B2 |
10259165 | Ehlert et al. | Apr 2019 | B2 |
D848678 | Andrews | May 2019 | S |
10314346 | Potnis et al. | Jun 2019 | B2 |
10457436 | Spencer et al. | Oct 2019 | B2 |
10492547 | Weber et al. | Dec 2019 | B2 |
10494221 | Harris et al. | Dec 2019 | B2 |
10537479 | Schuette et al. | Jan 2020 | B2 |
10596045 | Koshijima et al. | Mar 2020 | B2 |
10596047 | Coenen et al. | Mar 2020 | B2 |
10751228 | Kurohara et al. | Aug 2020 | B2 |
10758428 | Nakamura et al. | Sep 2020 | B2 |
10786398 | Koshijima et al. | Sep 2020 | B2 |
10792194 | Hohm et al. | Oct 2020 | B2 |
10889066 | Begrow et al. | Jan 2021 | B2 |
10893986 | Manabe et al. | Jan 2021 | B2 |
10973703 | Coenen et al. | Apr 2021 | B2 |
11020281 | Ishikawa | Jun 2021 | B2 |
11020286 | Kaufman et al. | Jun 2021 | B2 |
11129753 | Schneider et al. | Sep 2021 | B2 |
11141321 | Schneider et al. | Oct 2021 | B2 |
11147717 | Schneider et al. | Oct 2021 | B2 |
11173072 | Fritz | Nov 2021 | B2 |
11191676 | Koshijima et al. | Dec 2021 | B2 |
11219555 | Schneider et al. | Jan 2022 | B2 |
11254062 | Ehlert et al. | Feb 2022 | B2 |
11254066 | Begrow et al. | Feb 2022 | B2 |
11399989 | Polidori et al. | Aug 2022 | B2 |
11433620 | Ehlert et al. | Sep 2022 | B2 |
20010025683 | Burriss et al. | Oct 2001 | A1 |
20010034508 | Betrabet et al. | Oct 2001 | A1 |
20010044250 | Tsuji | Nov 2001 | A1 |
20020092604 | McCabe et al. | Jul 2002 | A1 |
20020116027 | Egan et al. | Aug 2002 | A1 |
20020119288 | Morman et al. | Aug 2002 | A1 |
20020157778 | Sorenson et al. | Oct 2002 | A1 |
20030051803 | Sanders | Mar 2003 | A1 |
20030120250 | Betrabet et al. | Jun 2003 | A1 |
20030124306 | Morman | Jul 2003 | A1 |
20030125706 | Popp et al. | Jul 2003 | A1 |
20030125707 | Popp et al. | Jul 2003 | A1 |
20030135185 | Crowther | Jul 2003 | A1 |
20030144643 | Jarpenberg et al. | Jul 2003 | A1 |
20040005832 | Neculescu et al. | Jan 2004 | A1 |
20040059280 | Makower et al. | Mar 2004 | A1 |
20040112509 | Morman | Jun 2004 | A1 |
20040116885 | Soerens et al. | Jun 2004 | A1 |
20040127614 | Jiang et al. | Jul 2004 | A1 |
20040138635 | Sorenson et al. | Jul 2004 | A1 |
20040158217 | Wu et al. | Aug 2004 | A1 |
20040192140 | Schneider et al. | Sep 2004 | A1 |
20040219854 | Groitzsch et al. | Nov 2004 | A1 |
20040226645 | Owen | Nov 2004 | A1 |
20040243085 | Veith et al. | Dec 2004 | A1 |
20040261230 | Neeb et al. | Dec 2004 | A1 |
20050095942 | Mueller et al. | May 2005 | A1 |
20050101216 | Middlesworth et al. | May 2005 | A1 |
20050131374 | Otsubo et al. | Jun 2005 | A1 |
20050142331 | Anderson et al. | Jun 2005 | A1 |
20050148261 | Close et al. | Jul 2005 | A1 |
20050176029 | Heller et al. | Aug 2005 | A1 |
20050183646 | Marcangelo | Aug 2005 | A1 |
20050216058 | Egan et al. | Sep 2005 | A1 |
20050228350 | Ranganathan et al. | Oct 2005 | A1 |
20060009104 | Schneider et al. | Jan 2006 | A1 |
20060069373 | Schlinz et al. | Mar 2006 | A1 |
20060099871 | Poruthoor et al. | May 2006 | A1 |
20060130964 | McCabe | Jun 2006 | A1 |
20060135923 | Boggs et al. | Jun 2006 | A1 |
20060135932 | Abuto et al. | Jun 2006 | A1 |
20060138693 | Tuman et al. | Jun 2006 | A1 |
20060149208 | Carr | Jul 2006 | A1 |
20060180068 | Marcangelo | Aug 2006 | A1 |
20060224137 | McCabe et al. | Oct 2006 | A1 |
20060228969 | Erdman | Oct 2006 | A1 |
20060238757 | Silcott | Oct 2006 | A1 |
20060270302 | Ando et al. | Nov 2006 | A1 |
20070000021 | Yang et al. | Jan 2007 | A1 |
20070068529 | Kalatoor et al. | Mar 2007 | A1 |
20070131335 | Zhou et al. | Jun 2007 | A1 |
20070175477 | Baggett | Aug 2007 | A1 |
20070218245 | Schneider et al. | Sep 2007 | A1 |
20070286987 | Anderson et al. | Dec 2007 | A1 |
20080103460 | Close et al. | May 2008 | A1 |
20080110554 | Otsubo | May 2008 | A1 |
20080262455 | Soerens et al. | Oct 2008 | A1 |
20090134049 | Melik et al. | May 2009 | A1 |
20090163940 | Sliwa | Jun 2009 | A1 |
20090208703 | Wennerback et al. | Aug 2009 | A1 |
20090242098 | Handziak | Oct 2009 | A1 |
20090306616 | Wennerback | Dec 2009 | A1 |
20090326503 | Lakso et al. | Dec 2009 | A1 |
20090326504 | Kaneda | Dec 2009 | A1 |
20100015190 | Hassler | Jan 2010 | A1 |
20100076390 | Norrby et al. | Mar 2010 | A1 |
20100076394 | Hayase et al. | Mar 2010 | A1 |
20100087352 | Mason | Apr 2010 | A1 |
20100286709 | Diamant et al. | Nov 2010 | A1 |
20100298798 | Lakso et al. | Nov 2010 | A1 |
20100324513 | Wennerback | Dec 2010 | A1 |
20110055998 | Tai et al. | Mar 2011 | A1 |
20110061786 | Mason | Mar 2011 | A1 |
20110067797 | Schneider et al. | Mar 2011 | A1 |
20110118689 | Een et al. | May 2011 | A1 |
20110152811 | Bing-Wo et al. | Jun 2011 | A1 |
20110184372 | Esping Ostlin et al. | Jul 2011 | A1 |
20110192888 | Tai et al. | Aug 2011 | A1 |
20110251576 | Ando et al. | Oct 2011 | A1 |
20110257616 | Lakso et al. | Oct 2011 | A1 |
20120088103 | Sugiura et al. | Apr 2012 | A1 |
20120095429 | Kobayashi et al. | Apr 2012 | A1 |
20120123367 | Melik et al. | May 2012 | A1 |
20120123368 | Melik et al. | May 2012 | A1 |
20120123369 | Melik et al. | May 2012 | A1 |
20120123370 | Melik et al. | May 2012 | A1 |
20120123371 | Melik et al. | May 2012 | A1 |
20120123372 | Melik et al. | May 2012 | A1 |
20120123373 | Melik et al. | May 2012 | A1 |
20120175064 | Yamamoto | Jul 2012 | A1 |
20120228988 | Cutsforth | Sep 2012 | A1 |
20120321856 | Afshari | Dec 2012 | A1 |
20120328841 | Afshari | Dec 2012 | A1 |
20120328842 | Afshari | Dec 2012 | A1 |
20130011601 | Fenske | Jan 2013 | A1 |
20130042411 | Vitale | Feb 2013 | A1 |
20130048191 | Durrance et al. | Feb 2013 | A1 |
20130079797 | Diamant et al. | Mar 2013 | A1 |
20130157012 | Qin et al. | Jun 2013 | A1 |
20130165896 | Carbonari | Jun 2013 | A1 |
20130255865 | Brown et al. | Oct 2013 | A1 |
20140093687 | Humiston et al. | Apr 2014 | A1 |
20140099469 | Abuto et al. | Apr 2014 | A1 |
20140102650 | Qin et al. | Apr 2014 | A1 |
20140180126 | Millett et al. | Jun 2014 | A1 |
20150164705 | Thomas et al. | Jun 2015 | A1 |
20160058624 | Hohm et al. | Mar 2016 | A1 |
20160228305 | Gualtieri et al. | Aug 2016 | A1 |
20160288407 | Ehlert et al. | Oct 2016 | A1 |
20160331600 | Polidori et al. | Nov 2016 | A1 |
20170113366 | Ferguson et al. | Apr 2017 | A1 |
20170281417 | Ishikawa | Oct 2017 | A1 |
20180027899 | Facer et al. | Feb 2018 | A1 |
20180042788 | Kurohara et al. | Feb 2018 | A1 |
20180093444 | Begrow et al. | Apr 2018 | A1 |
20180140473 | Koshijima et al. | May 2018 | A1 |
20180147095 | Koshijima et al. | May 2018 | A1 |
20180168880 | Schneider et al. | Jun 2018 | A1 |
20180169964 | Schneider et al. | Jun 2018 | A1 |
20180170027 | Schneider et al. | Jun 2018 | A1 |
20180280209 | Manabe et al. | Oct 2018 | A1 |
20190000162 | Houde | Jan 2019 | A1 |
20190021916 | Ishikawa | Jan 2019 | A1 |
20190070041 | Schneider et al. | Mar 2019 | A1 |
20190209396 | Nakamura et al. | Jul 2019 | A1 |
20190224053 | Nakamura et al. | Jul 2019 | A1 |
20190231606 | Andrews et al. | Aug 2019 | A1 |
20190274895 | Chen et al. | Sep 2019 | A1 |
20190358093 | Kaufman et al. | Nov 2019 | A1 |
20190374398 | Coenen et al. | Dec 2019 | A1 |
20190374404 | Ninomiya et al. | Dec 2019 | A1 |
20200039152 | Ehlert et al. | Feb 2020 | A1 |
20200179180 | Koshijima et al. | Jun 2020 | A1 |
20200197230 | Ohtsubo | Jun 2020 | A1 |
20200206040 | Andrews et al. | Jul 2020 | A1 |
20200206043 | Coenen et al. | Jul 2020 | A1 |
20200214901 | Andrews et al. | Jul 2020 | A1 |
20200268567 | Coenen et al. | Aug 2020 | A1 |
20200297551 | Andrews et al. | Sep 2020 | A1 |
20200298545 | Andrews et al. | Sep 2020 | A1 |
20200299883 | Begrow et al. | Sep 2020 | A1 |
20200360191 | Nakamura et al. | Nov 2020 | A1 |
20200361158 | Sugiura et al. | Nov 2020 | A1 |
20210000657 | Hohm et al. | Jan 2021 | A1 |
20210059866 | Fritz et al. | Mar 2021 | A1 |
20210100695 | Ishibashi et al. | Apr 2021 | A1 |
20210205152 | Polidori et al. | Jul 2021 | A1 |
20210252796 | Ehlert et al. | Aug 2021 | A1 |
20210267818 | Kaufman et al. | Sep 2021 | A1 |
20220000676 | Schneider et al. | Jan 2022 | A1 |
20220071809 | Fritz | Mar 2022 | A1 |
20220151840 | Mueller et al. | May 2022 | A1 |
20220211553 | Manabe | Jul 2022 | A1 |
20220218534 | Minami et al. | Jul 2022 | A1 |
20220250331 | Weiler et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
101868210 | Sep 2014 | CN |
0274752 | May 1990 | EP |
0168225 | Mar 1991 | EP |
0330716 | Jul 1991 | EP |
0307871 | Dec 1992 | EP |
0386324 | Jun 1993 | EP |
685586 | Dec 1995 | EP |
886480 | Dec 2001 | EP |
1166721 | Dec 2003 | EP |
1035808 | Mar 2004 | EP |
1024721 | Sep 2004 | EP |
1351815 | Jun 2005 | EP |
677284 | Aug 2005 | EP |
1388410 | Oct 2005 | EP |
1448824 | Oct 2005 | EP |
1029521 | Apr 2006 | EP |
1138471 | Jun 2006 | EP |
1159942 | Jul 2006 | EP |
1641417 | Jun 2007 | EP |
1236827 | Jan 2008 | EP |
1547558 | Oct 2008 | EP |
1555000 | Nov 2008 | EP |
1290289 | Dec 2008 | EP |
1330355 | Mar 2009 | EP |
1263989 | May 2009 | EP |
1458553 | Sep 2009 | EP |
1330322 | Oct 2009 | EP |
1610950 | Oct 2009 | EP |
1715994 | Mar 2010 | EP |
1520569 | Jul 2010 | EP |
1586252 | Aug 2010 | EP |
1959907 | Sep 2010 | EP |
1525345 | Apr 2011 | EP |
1882177 | Jun 2011 | EP |
1707168 | Aug 2011 | EP |
1716831 | Sep 2011 | EP |
2083100 | Sep 2011 | EP |
2207926 | Sep 2011 | EP |
2219534 | Sep 2011 | EP |
2027841 | Jul 2012 | EP |
1595017 | Aug 2012 | EP |
1891256 | Aug 2012 | EP |
2020972 | Nov 2012 | EP |
2020974 | Dec 2012 | EP |
1685816 | Jan 2013 | EP |
2024178 | Jan 2013 | EP |
2088980 | Jan 2013 | EP |
2103427 | Mar 2013 | EP |
1272347 | Apr 2013 | EP |
1458565 | Mar 2014 | EP |
1575470 | Jun 2014 | EP |
2088981 | Jun 2014 | EP |
2431013 | Sep 2014 | EP |
2441866 | Feb 2015 | EP |
2727521 | Mar 2015 | EP |
1806117 | Jun 2016 | EP |
3028687 | Mar 2017 | EP |
1666178 | May 2017 | EP |
2214614 | Aug 2017 | EP |
3092997 | Aug 2017 | EP |
2450015 | Nov 2017 | EP |
2105115 | Mar 2018 | EP |
2116367 | Apr 2018 | EP |
2142261 | May 2018 | EP |
2454957 | Nov 2018 | EP |
3277480 | Mar 2019 | EP |
3117810 | Jul 2019 | EP |
3199132 | Sep 2019 | EP |
3056176 | Oct 2019 | EP |
3296100 | Jan 2020 | EP |
3527181 | Jun 2020 | EP |
3675784 | Jul 2020 | EP |
3677231 | Jul 2020 | EP |
3558192 | Jan 2021 | EP |
3589251 | Jan 2021 | EP |
3589252 | Jan 2021 | EP |
3646830 | Mar 2021 | EP |
3558664 | Apr 2021 | EP |
3519162 | Jul 2021 | EP |
3572052 | Jul 2021 | EP |
3558193 | Aug 2021 | EP |
3727254 | Aug 2021 | EP |
3865103 | Aug 2021 | EP |
3558191 | Sep 2021 | EP |
3275413 | Oct 2021 | EP |
3342385 | Oct 2021 | EP |
3527182 | Oct 2021 | EP |
3675785 | Nov 2021 | EP |
3904057 | Nov 2021 | EP |
3747636 | Dec 2021 | EP |
3941738 | Jan 2022 | EP |
3299167 | Mar 2022 | EP |
3981371 | Apr 2022 | EP |
3960439 | Jun 2022 | EP |
3960140 | Jul 2022 | EP |
4025412 | Jul 2022 | EP |
2532337 | Mar 1984 | FR |
2005095574 | Apr 2005 | JP |
2008154998 | Jul 2008 | JP |
2009056156 | Mar 2009 | JP |
2009106667 | May 2009 | JP |
5085239 | Nov 2012 | JP |
05106990 | Dec 2012 | JP |
05124188 | Jan 2013 | JP |
2014198179 | Oct 2014 | JP |
2017064130 | Apr 2017 | JP |
06192003 | Sep 2017 | JP |
WO2018118573 | Jun 2018 | JP |
1982464 | May 2019 | KR |
20136008 | Aug 2019 | KR |
2022211 | Sep 2019 | KR |
2304047 | Aug 2007 | RU |
2010125133 | Dec 2011 | RU |
WO1993021788 | Nov 1993 | WO |
WO0192013 | Dec 2001 | WO |
WO2009067055 | May 2009 | WO |
WO2011087502 | Jul 2011 | WO |
WO2014109924 | Jul 2014 | WO |
WO2016033226 | Mar 2016 | WO |
WO2016109514 | Jul 2016 | WO |
WO2016160752 | Oct 2016 | WO |
WO2016208513 | Apr 2018 | WO |
WO2018097771 | May 2018 | WO |
WO2019070248 | Apr 2019 | WO |
WO2019125415 | Jun 2019 | WO |
Entry |
---|
Machine Translation for JP2014198179 (A). |
Machine Translation for JP0516990 (B2). |
Machine Translation for JP05124188 (B2). |
Machine Translation for JP06192003 (B2). |
Machine Translation for JP2008154998 (A). |
Machine Translation for JP2009106667 (A). |
Machine Translation for CN101868210 (B). |
Machine Translation for EP0307871 (B1). |
Machine Translation for EP0330716 (A3). |
Machine Translation for EP0386324 (B1). |
Machine Translation for EP1029521 (B1). |
Machine Translation for EP1586252 (B1). |
Machine Translation for EP2027841 (B1). |
Presentation by Thomas Elhert, VP of RD&E, Aurizon Ultrasonics, LLC, entitled “Adhesive-free, Ultrasonic Elastic Attachment”, date at least as early as Nov. 17, 2014, 57 pages. |
Machine Translation for EP2207926 (B1). |
Machine Translation for EP2431013 (B1). |
Machine Translation for RU2010125133 (A). |
Machine Translation for CN2304047 (C2). |
PCT International Search Report and Written Opinion(1800.182_PCT), dated Jun. 4, 2021. |
Japanese Office Action for Application No. JP2020-541440 dated Feb. 7, 2023. |
Number | Date | Country | |
---|---|---|---|
20220071809 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62896063 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16947779 | Aug 2020 | US |
Child | 17454855 | US |