Like reference symbols in the various drawings indicate like elements.
A method and a system are described that provide a curved endoscopic medical device. Certain areas of the human body that require visualization before or during the performance of a medical procedure can be difficult to access using a conventional straight and rigid endoscope. Flexible endoscopes generally make use of fiber optics, with a narrower field of view than a conventional endoscope and poorer quality resolution. A curved endoscopic medical device is provided that includes both endoscope functionality as well as functionality to perform a medical procedure. The medical device is rigidly formed with a curve to facilitate access to certain areas of the human body. In one implementation, the curved endoscopic medical device includes a rigid, curved endoscope with a working channel configured to house a tool for performing a medical procedure. In another implementation, a curved, rigid tool for performing a medical procedure includes a working channel configured to receive an endoscope, where the endoscope is either rigid and curved similarly to the tool, or is a flexible and can adapt to the curve of the tool.
In one implementation, the medical procedure to be performed by the tool is tissue ablation. In a particular implementation, the tissue ablation is adapted for the purpose of occluding a female's tubal ostium leading from the uterine cavity to the fallopian tubes, thereby sterilizing the female. For illustrative purposes the curved endoscopic device shall be described in the context of an embodiment that can be configured for use within a uterine cavity to occlude one or more fallopian tubes. However, it should be noted that other implementations are possible, and that the curved endoscopic device is not limited to the particular application described. For example, the curved endoscopic device can be used in the area of the nasal passages to remove polyps. In an alternative application, the curved endoscopic device can be used in the area of the trachea during an intubation procedure. For example, a flexible endotracheal tube can be placed over a curved rigid endoscope to facilitate an intubation procedure.
Referring to
The RF applicator head 115 is positioned at the distal end 125 of the curved shaft 110 and includes an electrode carrier having one or more bipolar electrodes. One or more electrical conductors extend from the RF applicator head 115 to the proximal end 130 of the curved shaft 110 and electrically couple the RF applicator head 115 to a controller. The controller can be operated so as to control the delivery of RF energy to the one or more bipolar electrodes.
Referring to
The RF applicator head 115 is introduced transcervically into the uterine cavity and positioned at a tubal ostium 230. Transmitting RF energy through the RF applicator head 115 ablates the uterine tissue 210, 215 and the tissue within the tubal ostium 230. Following the destruction of the tissue at the tubal ostium 230, the healing response occludes the tubal ostium 230 and the adjacent portion of the fallopian tube 220 resulting in sterilization. Referring to
In reference to
Referring to
Referring particularly to
The vacuum feedback/saline supply line 378 fluidly couples to an outer lumen 322 formed in the curved shaft 110, shown in the cutaway view in
Referring to
Referring to
During use, the protective sheath 305 is retracted from the RF applicator head 115, for example, by grasping the collar 346 and moving the protective sheath 305 toward the proximal end of the curved shaft 110. Alternatively, moving the handle 105 toward the collar 346 can also advance the curved shaft 110 relative to the sheath 305, thereby exposing the RF applicator head 115.
Referring to
In another implementation, the electrode carrier 324 can be formed from a metallic mesh insert molded into a support member formed from a plastic material. The metallic mesh insert forms the electrically conductive regions (i.e., electrodes 340a-d) and the plastic material forms the non-conductive regions (i.e., insulator 344) thereby creating the one or more bipolar electrodes (i.e., bi-polar electrodes 342a and 342b). The metallic mesh insert can be formed from an electrically conductive material such as a stainless steel material, a platinum material, or other electrically conductive materials.
Referring again to the embodiment of the electrode carrier 324 formed from a fabric sheath 336 stretched over a support member, in one implementation, the fabric sheath 336 is formed from a nylon mesh, and the conductive metallized regions are formed by coating the nylon mesh with gold. In one embodiment, the fabric sheath 336 is formed from a composite yarn with a thermoplastic elastomer (TPE) core and multiple polyfilament nylon bundles wound around the TPE as a cover. The nylon bundles are plated with thin conductive metal layers. Preferably, the nylon is metallized, but not the TPE core. In another embodiment, nylon filaments are coated with a silver and/or gold coating. The filaments are sewn or knitted together with a non-conductive nylon or spandex filament to form the bipolar fabric sheath.
In another embodiment, the electrode carrier can be placed over an expandable or self-expandable support member. Referring to
The support member included in the electrode carrier 324 can be formed from any suitable material, one example being Ultem®, a thermoplastic PolyEtherImide (PEI) that combines high strength and rigidity at elevated temperatures with long term heat resistance (Ultem is a registered trademark of General Electric Company Corporation of New York, N.Y.).
In an alternative embodiment, the electrode carrier 324 can be a sack formed of a material that is non-conductive, and that is permeable to moisture. Examples of materials for the electrode carrier 324 include foam, cotton, fabric, or cotton-like material, or any other material having the desired characteristics. The electrodes 340a-d can be attached to the outer surface of the electrode carrier 324, e.g., by deposition or another attachment mechanism. The electrodes 340a-d can be made of lengths of silver, gold, platinum, or any other conductive material. The electrodes 340a-d can be formed on the electrode carrier 324 by electron beam deposition, or they can be formed into coiled wires and bonded to the electrode carrier 324 using a flexible adhesive. Other means of attaching the electrodes 340a-d, such as sewing them onto the surface of the electrode carrier 324, may alternatively be used.
The depth of destruction of the target tissue can be controlled to achieve repeatable, predetermined depths. Variables such as the electrode construction, power applied to the electrodes 340a-d (power density or power per unit surface area of the electrode), and the tissue impedance at which power is terminated can be used to affect the depth of tissue destruction, as discussed further below.
Still referring to
By way of illustration, using 3-6 mm spacing, an electrode width of approximately 0.5-2.5 mm and a delivery of approximately 20-40 watts over a 9-16 cm2 target tissue area, will cause ablation to a depth of approximately 5-7 millimeters when the active electrode surface covers more than 10% of the target tissue area. After reaching this ablation depth, the impedance of the tissue will become so great that ablation will self-terminate. By contrast, using the same power, spacing, electrode width, and RF frequency will produce an ablation depth of only 2-3 mm when the active electrode surfaces covers less than 1% of the target tissue area.
Referring again to
The coupling assembly 252 further includes a saline supply line 352 and a vacuum feedback line 356 that merge proximal to a fluid control switch 362 to form the vacuum feedback/saline supply line 378. The vacuum feedback/saline supply line 378 is coupled to the outer lumen 322 included in the curved shaft 110 of the ablation device 100. The controller 256 is in communication with and receives a vacuum feedback signal from the vacuum feedback line 356. The vacuum feedback line 356 allows the controller 256 to monitor the vacuum level at the ablation site. The saline supply line 352 includes a connector 360 (e.g., female luer, threaded connection, or other) located on the distal end of the saline supply line 352. The connector 360 can be removably coupled to a saline supply source (i.e., intravenous bag, or other). The fluid control switch 362 can control the flow of fluid (i.e., saline) to the ablation site and, in one embodiment, includes a roller clamp body top half 364, a roller clamp body bottom half 366, and a roller wheel 368.
The coupling assembly 252 further includes a waste line 358 and suction line 354. The suction line 354 and the waste line 358 merge proximal to the fluid control switch 362 to form the suction/waste line 380. The suction/waste line 380 is coupled to the inner lumen 330 included in the curved shaft 110 of the ablation device 100.
The suction/waste line 380 couples to a vacuum source 260 (
The suction line 354 can include a suction canister 370, a desiccant 372, and a filter 374. The suction canister 370 can operate as a reserve and be used to smooth out the level of vacuum applied to the ablation site. The desiccant 372 can serve to substantially dry out or absorb at least a portion of the moisture that can be contained in the fluid evacuated from the ablation site by the vacuum source 260. The filter 374 can serve to prevent any particulate matter evacuated from the ablation site by the vacuum source 260 from being communicated to the controller 256, the vacuum source 260, or both.
Referring again to
In yet another embodiment, the hysteroscope 254 is flexible and can flex to accommodate the curve of the curved shaft 110. In this configuration, the scope has an objective lens coupled to an image guide, e.g., a coherent bundle of fibers. The objective lens images the object to the distal end of the image guide. The individual fibers transfer the image to the proximal surface of the image guide. Additional optics are used to transfer the image to either the user's eye or the camera focal plane. The advantage of this type of scope is the scope's flexibility and ability to fabricate small diameter devices.
The hysteroscope 254 generally has an optical system that is typically connected to a video system and a light delivery system. The light delivery system is used to illuminate the target site under inspection. Referring again to the system 250 shown in
In one implementation, the ablation device 100 shown in
Referring to
The hysteroscope 254, which is advanced into the inner lumen 330 of the ablation device 100, is used to visualize the target tubal ostium 230 (step 625). In the system shown in
Insufflation is ceased and the uterine cavity 225 is allowed to collapse onto the RF applicator head 115 (step 635). The fluid control switch is switched to allow for suction/aspiration and waste management. Vacuum can be applied to the RF applicator head 115 via the suction/waste line 380 to draw the surrounding tissue into contact with the electrodes 340a-d (step 640). The RF generator 258 is turned on to provide RF energy to the electrodes 340a-d (step 645). The RF energy is ceased once the desired amount of tissue has been ablated (step 650). In one implementation, 5 watts of RF power is supplied per square centimeter of electrode surface area until the predetermined impedance threshold is reached, at which point power is terminated.
In one implementation, to achieve the desired depth of ablation, the controller 256 is configured to monitor the impedance of the tissue at the distal end of the RF applicator head 115, for example, using an impedance monitoring device 262 (
Once the threshold impedance is detected, the controller 256 shuts off the RF energy, preventing excess destruction of tissue. For example, when transmitting RF energy of 5 watts per square centimeter to tissue, an impedance of the tissue of 50 ohms can indicate a depth of destruction of approximately 3 to 4 millimeters at the proximal end and approximately 2.5 millimeters at the distal end. In an alternative embodiment, the RF generator 258 can be configured such that above the threshold impedance level the RF generator's ability to deliver RF power is greatly reduced, which in effect automatically terminates energy delivery. The uterine cavity 225 can be insufflated a second time, and the ablation device 100 rotated approximately 180° to position the RF applicator head 115 at the other tubal ostium 230 and the above procedure repeated to ablate tissue at the other tubal ostium 230. The hysteroscope 254 is reinserted to guide repositioning of the head 115 to the second tubal ostium. The ablation device 100 is then withdrawn from the patient's body. After ablation, healing and scarring responses of the tissue at the tubal ostia 230 permanently occlude the fallopian tubes 220, without requiring any foreign objects to remain in the female's body and without any incisions into the female's abdomen. The procedure is quick, minimally invasive and is highly effective at tubal occlusion.
Optionally, a constant rate of RF power can be supplied for a first time period following which the RF power can be increased, either gradually or abruptly, for a second time period. Although the system 250 includes a vacuum source to transport moisture away from the tissue site during ablation, after the first time period, the impedance at the RF applicator head may decrease due to fluid migration into the site. Increasing the RF power at this point for the second time period can help to vaporize the excess fluid and increase the impedance. The RF power can be increased as described in U.S. patent application Ser. No. ______, entitled “Power Ramping During RF Ablation”, filed ______, by Kotmel et al, the entire contents of which are hereby incorporated by reference herein.
In one embodiment, ramping up the RF power density includes steadily or gradually increasing the current over a second time period after an initial time period. Determining when to begin the power ramp-up, i.e., determining the value of the initial time period, and the amount by which to ramp-up, in one implementation is according to a time-based function and in another implementation is according to an impedance-based function.
In one implementation, the RF power density applied to the tissue ablation site is substantially constant at value PD1 for the duration of a first time period of n seconds. At the end of the first time period, the RF power density is ramped up at a substantially constant and gradual rate to a value PD2 for the duration of a second time period. The power ramping rate can be linear, however, in other implementations, the power can be ramped at a non-linear rate.
The duration of the first time period, i.e., n seconds, is a time after which the impedance level at the electrode/tissue interface decreases to a threshold impedance of Z1 or by a threshold percentage level to Z1. The value of “n” can be determined either empirically, e.g., by experimentation, or by monitoring the impedance at the electrode/tissue interface, for example, using the impedance monitoring device 262. In either case, once the threshold impedance Z1 has been reached, the power density is ramped up to vaporize excess fluid that has likely migrated to the electrode/tissue interface and caused the decrease in impedance. The RF power density applied for the duration of the second time period is ramped up at a constant rate from PD1 to PD2. As fluid at the tissue ablation site is substantially vaporized by the increased power density and the tissue continues to undergo ablation, the impedance level increases. At a point in time t2, the RF power is terminated, either based on an empirically determined time period, or based on the impedance level substantially flattening out at that point, indicating the tissue ablation process is complete.
The values of power density relative to the monitored impedance level, can be as set forth in the table below. These values are only illustrative of one implementation, and differing values can be appropriate. The depth of tissue destruction is dependent on factors other than power density, for example, electrode spacing, and thus if other factors are varied, the power density levels indicated below may change as well.
In an implementation where the values of time period and power densities are determined empirically, i.e., rather than by monitoring impedance levels, the values of time and power density in an application of tubal occlusion can be as follows. The initial RF power density can be approximately 5 watts/cm2 and the initial time period “n” can be between approximately 10 and 60 seconds. After the first time period, and for the duration of the second time period, the RF power density can be increased at a rate of approximately 0.5 to 2.5 watts/cm2 per second. The duration of the second time period can be between approximately 5 and 10 seconds.
In a more specific example, the initial RF power density is approximately 5 watts/cm2 and the initial time period is between approximately 45 and 60 seconds. After the first time period, and for the duration of the second time period, the RF power density is increased at a rate of approximately 1 watt/cm2 per second. The duration of the second time period is between approximately 5 and 10 seconds.
In another implementation, the RF power density applied to the tissue ablation site is substantially constant at PD1 for a first time period. At time t1, in response to a sudden and significant decrease in impedance from Z0 to Z1, the RF power density is abruptly ramped up to a level PD2. The level PD2 can be empirically determined in advance or can be a function of the percentage in decrease of the impedance level.
In one implementation, the RF power density is held at the level PD2 until the impedance increases to the level it was at prior to the sudden and significant decrease, i.e., Z0. The RF power density is then returned to the initial level PD1. Optionally, the RF power density can then be gradually ramped up for another time period from PD2 to PD3. The gradual ramp up in RF power density can start immediately, or can start after some time has passed. Once the impedance reaches a threshold high at Z3 (and/or flattens out), the tissue ablation is complete and the RF power is terminated.
In yet another implementation, the RF power density can be applied to the tissue ablation site at a substantially constant value (i.e., PD1) for the duration of a first time period until a time t1. At time t1, in response to the impedance level being detected as suddenly and significantly decreasing from Z0 to Z1, the RF power density is abruptly ramped up to a level PD2. In this implementation, the RF power density is maintained at the level PD2 until the impedance reaches a threshold high and/or flattens out at Z2. At this point, the tissue ablation is complete and the delivery of RF power is terminated.
By way of illustration, in one implementation, the initial power density PD1 is approximately 5 watts/cm2. Upon detecting a decrease in the impedance level by approximately 50% or more, the power density is ramped up to PD2 which is in the range of approximately 10-15 watts/cm2. After the impedance level has returned to approximately the initial pre-drop level of Z0, the power density is returned to PD1 of approximately 5 watts/cm2. Optionally, the power density can then be ramped up, either immediately or after a duration of time, at a rate of approximately 1 watt/cm2 per second. These values are only illustrative of one implementation, and differing values can be appropriate. The depth of tissue destruction is dependent on factors other than power density, for example, electrode spacing, and thus if other factors are varied, the power density levels indicated below may change as well.
As discussed above, in an alternative embodiment the curved endoscopic device can be configured as a curved endoscope that includes a working channel to receive a tool for performing a medical procedure. For illustrative purposes, referring to the ablation device 100, an alternative configuration would include a curved hysteroscope with a working channel configured to receive an ablation device similar to the ablation device 100, i.e., the reverse of the ablation device 100, which includes an inner lumen 330 to receive a hysteroscope. In other implementations, the curved endoscopic device can be configured as a curved endoscope adapted to be received by a body cavity other than a uterus, for example, by a nasal passage. The working channel can be adapted to receive a tool other than an ablation device, depending on the medical procedure to be performed within the nasal passage.
Referring to
The distal end of the endoscope includes optics (e.g., lens, fiber optics, or other) to provide visualization when positioning the electrode carrier 708 at an ablation side. The side-by-side configuration of the endoscope optics and the electrode carrier 708 can provide the user with off-axis viewing. For example, the endoscope can have off-axis viewing in the range of ten degrees to ninety degrees, and such off-axis viewing can help the user to align the electrode carrier 708 with an ablation sight, for example, the tubal ostium of a fallopian tube.
The ablation device 700 can be configured to mate with a coupling assembly similar to the coupling assembly described in reference to
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.