1. Field of Invention
The present invention relates to a method and apparatus for generating energy using solar cells. More particularly, the present invention relates to a method and apparatus for generating energy using solar cells in a concentrating photovoltaic system.
2. Background Description
One type of solar energy involves the use of solar cells to generate electricity. This type of solar power technology is also referred to as photovoltaics. The solar cells used are semiconductor devices that convert photons into electricity. Individual solar cells may be grouped together to form modules, which in turn, may be arranged into groupings called solar arrays. Concentrating photovoltaics are widely regarded as a key in making solar energy cost competitive with respect to other energy sources, such as fossil fuels.
With concentrating photovoltaics, sunlight is collected from a large area and concentrated on a relatively small receiver area through the use of some combination of reflective and/or refractive optics. The receiver area is covered with one or more solar cells that convert the sunlight into electricity. Concentrating the sunlight on the receiver area increases the efficiency of the solar cells. Additionally, by concentrating the sunlight, the number of solar cells required to produce a given power output is reduced.
In this manner, the cost in generating electricity is reduced because the component cost for the relatively expensive solar cells is decreased. In concentrating photovoltaic systems, a tracking system is used to follow the sun through the sky to maintain a focus of the sunlight on the solar cells in the receiver area. In order for a concentrating photovoltaic system to function properly, the sunlight should be focused precisely and uniformly on the solar cell. Currently, this focusing has been accomplished through the design of the shape of the concentrating optical elements that direct light onto the receiver area.
The optical elements in the reflective and/or refractive optics are designed to produce uniform, high-intensity illumination on the typically flat focal plane of the receiver area. Achieving uniform high-intensity illumination on a flat focal plane of a receiver is difficult and requires high precision optics. The reflective systems use elements, such as mirrors, to reflect and concentrate the sunlight onto the solar cells. The refractive systems use lenses to concentrate the sunlight onto the solar cells. In either case, a homogenizer may be used to uniformly distribute the reflected/refracted light on the cell surfaces.
In many cases, a complex combination of mirrors, lenses, and homogenizers are required to maximize the efficiency of the solar cells in the receiver area. In practice, a compromise is often made between achieving the ultimate optical efficiency and producing optical elements at a reasonable cost.
Further, this type of system requires a high precision tracking system. Typically, a tracking system that has less than 0.5 degrees tracking error with respect to the sun is often used in order to obtain high concentration, such as greater than 500×.
In addition, uniform high-intensity illumination should be produced over the receiver area that is covered with solar cells. These high-intensity illumination powered densities may be, for example, 50-100 W/cm2. These types of power densities can deliver very high system efficiencies, but also can create large potential differences within a solar cell and between solar cells connected in a circuit. If the illumination is not uniform, differences in current output develops in the solar cells. These differences may lead to resistive power loss and unpredictable electric fields within the solar cells, causing degradation and leading to a solar cell failure.
A compromise is typically made between the expense of the concentrating optics, the performance, and/or the reliability level that is deemed acceptable for a concentrating photovoltaic system. In this type of system, light falls on the cells in the receiver area at an angle that is off-normal (less than 90 degrees). For off-normal illumination, the cell presents a smaller cross-section to the incident light. As a result, the effective illumination is often reduced. For example, for typical systems using around 500 times concentrating, the off-normal angle is often as much as 30 degrees. With this type of angle, the illumination intensity may be reduced by more than 15 percent. With such off-angle illumination, slight deviations in the optical path of the concentrated illumination beam can cause portions of the beam to miss the cell receiver area. These deviations may be caused by tracking errors, imperfections in the optics, deformation of the optics due to thermal expansion, or wind loading, or the like.
A secondary effect is caused by the anti-reflection coating on the solar cells that is optimized for normal incident illumination. As a result, the off-normal illumination tends to be reflected off the solar cell rather than being absorbed and converted to power by the solar cell. Homogenizers may be used to mitigate this effect. This type of element, however, contributes to optical losses and adds to the cost of a concentrating photovoltaic system.
Thus, creating concentrating photovoltaic systems at a reasonable cost to produce energy is difficult. Therefore, it would be advantageous to have an improved method and apparatus for concentrating light on solar cells.
An embodiment of the present invention provides an apparatus having a concentrating optic member, wherein the concentrating optic member redirects light to form concentrated illumination. The apparatus also has a structure with a curved surface positioned to receive the redirected light and a set of solar cells connected to curved surface of the structure, wherein the curved surface is shaped such that all of the set of solar cells receive the redirected light at substantially the same intensity.
Another advantageous embodiment includes an apparatus that has a concentrating optic member, wherein the concentrating optic member redirects light to form concentrated illumination. The apparatus also includes a structure having a curved surface positioned to receive the redirected light and a set of solar cells connected to the curved surface of the structure. The curved surface is curved such that all of the set of solar cells receive the redirected light at angle that is around normal to a surface of all of the set of solar cells.
Yet another advantageous embodiment has a concentrating photovoltaic system that includes a concentrating optic unit, wherein the concentrating optic unit has a curved surface and wherein the curved surface reflects light rays. The system includes a curved receiver positioned to receive reflected light rays reflected by the concentrating optic unit and a set of solar cells attached to a surface of the curved receiver. The curved receiver has a shape that such that the reflected light rays hit the surfaces of the set of solar cells at an angle that is substantially perpendicular to the surfaces.
The features, functions, and advantages can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an advantageous embodiment of the present invention when read in conjunction with the accompanying drawings, wherein:
With reference now to the figures and in particular with reference to
Solar-powered generation system 100 includes a concentrating photovoltaic unit 102, charge regulator 104, storage 106, and inverter 108. Concentrating photovoltaic unit 102 contains concentrating optics with a receiver area containing one or more solar cells to generate energy from sunlight. Charge regulator 104 is used to direct electricity generated by concentrating photovoltaic unit 102 to storage 106 or to inverter 108. Charge regulator 104 ensures that batteries in storage 106 are charged and protects those batteries from discharging. Storage 106 is an optional component for these examples. Inverter 108 is used to convert DC voltage to AC voltage for use by power grid 110. The particular configuration and components shown are for purposes of illustration and not meant to limit the architecture in which the different embodiments may be implemented.
In these illustrative embodiments, the receiver in concentrating photovoltaic unit 102 is modified from the substantially flat receiver area currently used in these types of systems. A curved receiver matching the curved focal plane produced by the concentrating optics is used in concentrating photovoltaic unit 102 in accordance with an advantageous embodiment of the present invention.
With reference next to
As depicted, curved receiver 204 takes a convex form such that surface 206 is curved in a manner that allows for concentrated illumination from concentrating reflective optic unit 202 to be normally incident on solar cells located on curved receiver 204. In other words, light rays 208, 210, 212, 214, 216, and 218 hitting concentrating reflective optic unit 202 are reflected in a manner to hit surface 206 at an angle that is around 90 degrees. The angle at which the different light rays reach surface 206 of curved receiver 204 are all around the same angle.
As a result, the illumination of solar cells on surface 206 is substantially the same for all of the solar cells. In this manner, the angle of incidence across surface 206 may all be around 90 degrees as desired to maximize the power output of solar cells for curved receiver 204. Further, problems associated with light hitting a single solar cell at different angles or solar cells connected in a circuit at different angles are reduced. In this manner, the current output developed in the cells remain more uniform leading to less resistive power loss and less unpredictable electrical fields to reduce degradation of these cells.
These advantages are provided in this particular embodiment by curving surface 206 in a manner that allows light rays, such as light rays 208, 210, 212, 214, 216, and 218 to hit surface 206 at around the same angle. In these examples, the desired angle is around 90 degrees or around perpendicular to surface 206.
Turning now to
Surface 306 is curved in a manner such that these light rays hit surface 306 as incident light. In other words, these light rays hit curved surface 306 at an angle of around 90 degrees. Surface 306 is curved in a manner such that these light rays all hit at around the same angle such that the portions of a cell or different cells in a same circuit all generate around the same amount of energy. This uniform current output leads to longer cell life as compared to currently used systems.
Turning now to
Turning next to
Turning now to
The solar cells illustrated in these examples may be implemented using any available rigid or flexible solar cell. For example, the rigid solar cells may be implemented using 1-cm2 CITJ or CUTJ cells, which are available from Spectrolab, Inc. The receivers depicted in
Turning now to
With reference now to
Thus, the different embodiments of the present invention provide a method and apparatus for concentrating light on a receiver. In these examples, the apparatus includes a concentrating optic unit in which the concentrating optic unit has a curved surface and wherein the curved surface reflects light rays to perform reflective light rays. A curved receiver is positioned to receive the reflective light rays. A set of solar cells are attached to the surface of the curved receiver. The curved receiver has a shape such that the reflective light rays hit the surfaces of the set of solar cells at an angle that is substantially perpendicular to the surfaces in these examples.
As a result, the different advantageous embodiments of the present invention allow for reduced costs in creating concentrating photovoltaic systems. With the use of a curved receiver, the different embodiments use curves such that the light hits at a nearly normal incident angle, around 90 degrees. With this type of design, with the slight changes in this angle, the light is less likely to miss hitting the receiver area as opposed to the light hitting a flat receiver at an oblique angle. In the current designs, slight changes in these angles, such as poor tracking of the sun, may cause the light to entirely miss the receiver.
Further, by providing more uniform intensity, potential differences are reduced within a solar cell and between cells connected in a circuit, cell life is increased in these types of systems. In addition, each solar cell is able to generate more electricity with the more uniform striking of light rays close to a desired angle, such as 90 degrees. With the solar cells creating more electricity per solar cell or module, fewer solar cells are needed to generate a desired amount of electricity. Further, in the advantageous embodiments, a costly high precision tracking system is no longer required because tracking requirements may be relaxed. As a result, this relaxation in tracking requirements also reduces the cost of a concentrating photovoltaic system.
Further, although the depicted examples illustrate the use of a photovoltaic system for generating energy for a power grid, the concentrating photovoltaic system illustrated may be implemented for other uses, such as in spacecraft, ships, or powering individual devices or small groups of buildings.
Although in the depicted examples, the angle desired is around 90 degrees, other angels may be used depending on the particular implementation. For example, larger angles may be used and grazing angles may allow for total internal reflection and trapping effects in the solar cells. A “cupped”, or concave receiver, for example, would increase the trapping of light initially reflected off the cells. The anti-reflective coating used to minimize loss of light by external reflection is usually designed assuming 90-degree incidence. This angle, however, may be a different angle. In that case, the angle at which the light ray is hit should match as closely as possible that other angle in these examples.
Although the depicted examples are a simple curve, other curves with more complex shapes may be used depending on the particular implementation. For example, the receiver may have a shape of two curves with the ends of the curves joined to each other.
One application of this would be to re-distribute excess illumination to compensate for a hot spot caused by the concentrating optics. Optics such as Fresnel lenses can often cause a hot spot of excess intensity at the center of a receiver. A bulge in the shape of the center of the receiver would allow more of the incident illumination in the hot spot to be reflected and absorbed by adjacent cells outside the hot spot area, improving the illumination uniformity. In general, the particular shapes used are ones to match the shapes or the manner in which concentrating optics focus light to the receiver area.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different advantageous embodiments may provide different advantages as compared to other advantageous embodiments. The embodiment or embodiments selected are chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.