Methods for producing three-dimensional cold formed objects include adhering a glass component to a rigid frame using an adhesive interlayer to form a glass construction. In such methods, a significant portion of the glass component is mechanically stressed to form the shape, thereby placing shear or tensile stress on the adhesive interlayer for the lifetime of the glass construction, including while the interlayer cures. As soon as the glass component is mechanically stressed or formed, the interface between the glass component and the adhesive interlayer is under tension, shear or a combination of shear and tension. The presence of this tension and/or shear requires that the glass construction be clamped or mechanically restrained for a time sufficient for the adhesive interlayer to provide sufficient tack and substantial creep resistance, adding complexity to a manufacturing process. This time period can range from about five minutes to hours or more, depending on, among other things, the adhesive type and the application. In short, an adhesive that develops tack rapidly and cures quickly is generally required, which can add complexity to manufacturing. And the constant tension may eliminate use of adhesive (e.g., VHB) tapes due to creep. Further still, mechanical restraint of the glass from the edge for the life of the glass construction to keep it from delaminating is generally undesirable from an aesthetic standpoint. Another alternative is to use a combination of VHB tape for initial tack and liquid adhesive for long term adhesion. But such methods may not be scalable to small frame widths, since VHB tape can only be made in strips of 2-3 mm, which would consume a significant portion of the bonding area. Addition of VHB tape also adds complexity in manufacturing.
Accordingly, there is a need for methods for forming glass constructions that do not succumb to the aforementioned shortcomings of known methods. To that end, the disclosure provides, among other things, a frame construction comprising: a glass substrate having first and second major surfaces and at least one curvature; at least one connector layer including a plurality of mechanical restrains, the connector layer having third and fourth major surfaces; at least one adhesive layer located between the glass substrate second major surface and the connector layer third major surface; and a frame comprising a plurality of mechanical restrain receptacles engaging the plurality of mechanical restrains;
The disclosure also relates to a frame construction comprising: a glass substrate having first and second major surfaces and at least one curvature; a segmented frame having first and second opposing major surfaces and including at least one curved segment engaged with at least one substantially flat segment; and at least one adhesive layer located between at least a portion of the glass substrate second major surface and at least a portion of the segmented frame first major surface; wherein the at least one curved segment defines the at least one curvature, the at least one curvature having a bend radius of about 60 mm or greater; wherein the engagement of the at least one curved segment with the at least one substantially flat segment maintains the at least one curvature of the glass substrate.
The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed herein.
Repeated use of reference characters in the specification and drawings is intended to represent the same or analogous features or elements of the disclosure, even when the numbers increase by 100 from figure-to-figure. It should be understood that numerous other modifications and examples can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the disclosure.
Reference will now be made in detail to certain embodiments of the disclosed subject matter, examples of which are illustrated in part in the accompanying drawings. While the disclosed subject matter will be described in conjunction with the enumerated claims, it will be understood that the exemplified subject matter is not intended to limit the claims to the disclosed subject matter.
This disclosure is generally directed to three-dimensional (3D) cold formed glass displays and methods for making the same. The methods described herein significantly simplify the manufacturing process for glass constructions for automobile interiors, among other applications, because they do not require adhesives that develop tack rapidly and cure quickly. Further, the methods described herein do not require clamping or mechanically restraining a glass construction for a time sufficient for the adhesive interlayer to provide sufficient tack and substantial creep resistance (e.g., partial or complete cure/curing of the adhesive layer/interlayer). The methods described herein not only simply the manufacturing process for glass construction, but also increase reliability of the glass construction because tension and/or shear are not introduced until after the adhesive interlayer is substantially cured.
The disclosure also generally relates to a frame construction comprising:
The disclosure also relates to a frame construction comprising:
The disclosure also relates to a frame construction comprising:
The methods described herein include first adhering a substantially flat glass component (e.g., a substantially flat sheet glass component) to a substantially flat, connector layer comprising a plurality of mechanical restraints located on a back side of the connector layer, on the side that faces away from and would be substantially invisible to a user. The connector layer can be flexible or un-flexible. For example, the connector layer can have a Young's modulus of from about less than 0.01 GPa to about 400 GPa, such as from less than about 0.01 GPa to about 1 GPa, about 0.1 GPa to about 5 GPa, about 5 GPa to about 100 GPa or about 50 GPa to about 200 GPa.
The glass component is adhered to the connector layer using any suitable adhesive, thereby producing a glass construction comprising a plurality of mechanical restraints. Once the adhesive develops sufficient tack and substantial creep resistance, the plurality of mechanical restrains on the glass construction can then be inserted into a corresponding plurality of mechanical restraint receptables located, e.g., on a curved surface of an automobile interior, thereby bending the glass construction to substantially match the shape of, e.g., a portion of an automobile interior. Alternatively, the plurality of mechanical restrains on the glass construction can be inserted into a corresponding plurality of mechanical restraint receptables located on a flexible frame that can then be fastened, e.g., on a curved surface of an automobile interior.
The methods described herein also include first adhering a substantially flat glass component (e.g., a substantially flat sheet glass component) to a substantially flat, connector layer comprising a plurality of mechanical restraint receptables on a back side of the connector layer, on the side that faces away from and would be substantially invisible to a user. The glass component is adhered to the connector layer using any suitable adhesive, thereby producing a glass construction comprising a plurality of mechanical restraint receptables. Once the adhesive develops sufficient tack and substantial creep resistance, the plurality of mechanical restraint receptables on the glass construction can be engaged with a corresponding plurality of mechanical restraints located, e.g., on a curved surface of an automobile interior, thereby bending the glass construction to substantially match the shape of, e.g., a portion of an automobile interior.
An example of a glass construction 100 is shown in
Although glass construction 100/200 can include a connector layer that extends substantially the entire length of glass substrate 110 and adhesive interlayer 120, segmented connector layers are contemplated herein (see
In other examples, connector layer 130, 130′, 130″, or 130″ can comprise features to make it anisotropically bend to drive dimensional bending and minimize warp in glass substrate 110. Features that can allow the connector layer to anisotropically bend to drive dimensional bending and minimize warm in glass substrate 110 include various patterns (e.g., linear patterns) 101 in the connector layer, wherein the patterns have an axis that is orthogonal to a bend axis 102 in the glass construction 100. See
The pattern shown in
In the example provided in
Although the shape provided in
In any of the constructions shown herein (e.g.,
Frame 150′″ is configured such that, when glass substrate 110 is curved, the plurality of holes 133 can line up with the plurality of holes 132 and the plurality of holes 133′ can line up with the plurality of holes 132′. Frame 150″′ can then be fastened to frames 150′ and 150″ by inserting, e.g., pins, rods or bolts into the plurality holes 132 and 132′, such that the pins, rods or bolts would extend through or into the plurality of holes 133 and the plurality of holes 133′, thereby maintaining the shape, in this example a curve shaped, of glass substrate 110 in frame construction 400. Frame construction 400 can optionally have an adhesive 134 such that the entire construction is adhesive backed.
Frames 150, 150′, 150″, and 150″′ can have any suitable thickness. In some examples, the thickness of a frame can vary within the same frame. In other examples, such as the example shown in
Frames 150, 150′, 150″, and 150′″ can be made of any suitable material, including any material that is sufficiently rigid to impose its shape on glass construction 100. That is not to say, however, that frame 150 or 150′ cannot deform slightly from its shape once glass construction 110 is mounted or fastened thereon. In some examples, frames 150, 150′, 150″, and 150″′ can be metal, made of aluminum, magnesium alloy, stainless steel or combinations thereof, and forms a curved metal frame. But other materials are contemplated herein for frames 150, 150′, 150″, and 150″′, including carbon fiber and plastics that would be sufficiently rigid to impose its shape on glass construction 100 and 300.
The mechanical restraints described herein can have any suitable shape that would allow them to engage the plurality of mechanical restraint receptacles. In other words, even though arrow-shaped mechanical restraints are shown in
Glass construction 100 is shown in
Other configurations for connector layers 130 and 131′ are contemplated herein. For example, the mechanical restraint receptacles 131 and 131′ can comprise threads to each accept a screw that would insert through a hole in frame 150. In sum, any of the mechanical restraint receptacle/mechanical restraint configurations described herein apply equally to
Another glass construction 100 is shown in
Other configurations for connector layers 130 and 131′ are contemplated herein. For example, the mechanical restraint receptacles 131 and 131′ can comprise threads to each accept a screw that would insert through a hole in uncurved surface 152. In sum, any of the mechanical restraint receptacle/mechanical restraint configurations described herein apply equally to
As used herein, the term “glass substrate” is used in its broadest sense to include any object made wholly or partly of glass. Glass substrates include laminates of glass and non-glass materials, laminates of glass and crystalline materials, and glass-ceramics (including an amorphous phase and a crystalline phase). The glass substrates may be transparent or opaque and can optionally include a colorant that provides a specific color. The glass substrates described herein can be cold formed.
As used herein, the terms “cold-formed,” “cold-bent,” or “cold-bending” refers to curving the glass substrates described herein at a cold-forming temperature which is less than the softening point of the glass substrate. The term “cold-bendable” refers to the capability of a glass substrate to be cold-bent to any given radius of curvature.
Suitable glass substrates for use herein include, but are not limited to, soda lime silicate, aluminosilicate, borosilicate, boroaluminosilicate, alkali-containing aluminosilicate, alkali-containing borosilicate, and alkali-containing boroaluminosilicate. Also included are laminates.
The glass substrates can be strengthened using any suitable method known in the art, including by including compressive stress (CS) into the glass substrate, that extends from a surface to a depth of compression (DOC); by utilizing a mismatch of the coefficient of thermal expansion between portions of the glass substrate to create a compressive stress region and a central region exhibiting a tensile stress; thermally by heating the glass substrate to a temperature above the glass transition point and then rapidly quenching; and chemically by ion exchange, where, e.g., ions at or near the surface of the glass substrate are replaced by, or exchanged with, larger ions having the same valence or oxidation state.
The thickness of the glass substrates can be tailored to allow the glass substrate to be more flexible to achieve the desired radius of curvature. The thickness of the glass substrate can be substantially constant along its length. The glass substrate can have any suitable thickness, of about 0.2 mm to about 3 mm (e.g., about 0.2 mm to about 2 mm and about 0.4 mm to about 1.1 mm). Further, the glass substrate, once incorporated into, e.g., glass constructions 200 and 400, can have any suitable bending radius, or radius of curvature. The radius of curvature can be, for example, about 20 mm or greater, 40 mm or greater, 50 mm or greater, 60 mm or greater, 100 mm or greater, 250 mm or greater or 500 mm or greater. For example, the radius of curvature can be in a range from about 60 mm to about 1200 mm. Further still, the glass substrate can have any suitable width, e.g., in a range from about 5 cm to about 250 cm; and any suitable length, e.g., in a range from about 5 cm to about 250 cm.
The adhesive layer 120 can have any suitable bond line, which is defined by at least one of the adhesive's thickness and bezel width. For example, the adhesive can have a thickness of about 5 mm or less, such as from about 200 μm to about 1 mm. The adhesive layer 120 can also have any suitable bezel width. For example, can have a bezel width of about 50 mm or less, such as 25 mm or less, such as in a range from about 1 mm to about 15 mm.
Suitable adhesives include 2-part Toughened Epoxy (for example, Master Bond EP21TDCHT-LO, 3M Scotch Weld Epoxy DP460 Off-white); Flexible Epoxy (for example, Master Bond EP21TDC-2LO, 3M Scotch Weld Epoxy 2216, 3M Scotch Weld Epoxy DP125, DP105, DP100+, Epoxy 2216 available from 3M®, Saint Paul, MN); Toughened Acrylics (for example, LORD Adhesive 403, 406 or 410 Acrylic adhesives with LORD Accelerator 19 or 19 GB w/LORD AP 134 primer, LORD Adhesive 850 or 852/LORD Accelerator 25 GB, Loctite HF8000, Loctite AA4800); polyurethanes such as 3M Scotch Weld DP640, DP604NS, DP620NS available from 3M®, Saint Paul, MN, Loctite HHD 3542, Betamate 73100/002, 73100/005, 73100/010, Betaseal X2500, and Betalink K2, from Dupont®, Wilmington, DE; silane modified polymers such as TEROSON RB IX, also known as TEROSTAT MS 9399, Teroson MS 930/Teroson MS 9371 and TEROSON MS 647, available from Loctite® and VIASeal XB; silicones or siloxanes, such as Dow Corning 7091, 995 Silicone, Dow Corning HM-2600 Assembly sealant, Dow Corning HM-2500 Assembly sealant, 121 Structural Glazing Sealant as well as other organo-functional siloxanes.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range were explicitly recited. For example, a range of “about to about 5%” or “about 0.1% to 5%” should be interpreted to include not just about 0.1% to about 5%, but also the individual values (e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “about X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “about X, Y, or about Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
In this document, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. In addition, it is to be understood that the phraseology or terminology employed herein, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
In the methods described herein, the steps can be carried out in any order without departing from the principles of the invention, except when a temporal or operational sequence is explicitly recited. Furthermore, specified steps can be carried out concurrently unless explicit claim language recites that they be carried out separately. For example, a claimed step of doing X and a claimed step of doing Y can be conducted simultaneously within a single operation, and the resulting process will fall within the literal scope of the claimed process.
The term “about” as used herein can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
The term “substantially” as used herein refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.
The present disclosure provides for the following embodiments, the numbering of which is not to be construed as designating levels of importance:
Embodiment 1 relates to a frame construction comprising:
Embodiment 2 relates to the construction of Embodiment 1, wherein the connector layer is flexible.
Embodiment 3 relates to the construction of Embodiment 1 or Embodiment 2, further comprising a second adhesive layer located between the glass substrate second major surface and the curved surface of the frame.
Embodiment 4 relates to the construction of any one of Embodiments 1 through 3, wherein the connector layer is segmented.
Embodiment 5 relates to the construction of any one of Embodiments 1 through 4, wherein the connector layer is bonded to the glass substrate in a minimum number of locations on the glass substrate sufficient to at least initially maintain the at least one curvature of the glass substrate.
Embodiment 6 relates to the construction of Embodiment 5, wherein the connector layer is segmented to such an extent that the connector layer comprises substantially only a plurality of mechanical restrains adhered to the glass substrate.
Embodiment 7 relates to the construction of any one of Embodiments 1 through 6, wherein the radius of curvature of the curved surface is from about 60 mm to about 10,000 mm.
Embodiment 8 relates to the construction of any one of Embodiments 1 through 7, wherein the glass substrate comprises a composition selected from the group consisting of soda lime silicate, aluminosilicate, borosilicate, boroaluminosilicate, alkali-containing aluminosilicate, alkali-containing borosilicate, and alkali-containing boroaluminosilicate.
Embodiment 9 relates to the construction of any one of Embodiments 1 through 8, wherein the glass substrate has a thickness measured from the first major surface to the second major surface of about 0.2 mm to about 2 mm.
Embodiment 10 relates to the construction of any one of Embodiments 1 through 9, wherein the curved surface is a metal curved surface.
Embodiment 11 relates to the construction of Embodiment 10, wherein the curved metal frame is formed of aluminum, magnesium alloy, stainless steel or combinations thereof.
Embodiment 12 relates to the construction of any one of Embodiments 1 through 11, wherein the at least one adhesive layer comprises an epoxy, a polyurethane, an acrylate, a silane modified polymer or a silicone.
Embodiment 13 relates to the construction of Embodiment 1, wherein the adhesive layer has a thickness in a range from about 200 μm to about 5 mm.
Embodiment 14 relates to a frame construction comprising:
Embodiment 15 relates to the construction of Embodiment 14, wherein the at least one curved segment comprises a first end a second end, wherein the first end engages with a first substantially flat segment and the second end engaged with a second substantially flat segment.
Embodiment 16 relates to the construction of Embodiment 14 or Embodiment 15, further comprising a second adhesive layer located between the glass substrate second major surface and the curved surface of the frame.
Embodiment 17 relates to the construction of any one of Embodiments 14 through 16, wherein the radius of curvature of the curved surface is from about 60 mm to about 10,000 mm.
Embodiment 18 relates to the construction of any one of Embodiments 14 through 17, wherein the glass substrate comprises a composition selected from the group consisting of soda lime silicate, aluminosilicate, borosilicate, boroaluminosilicate, alkali-containing aluminosilicate, alkali-containing borosilicate, and alkali-containing boroaluminosilicate.
Embodiment 19 relates to the construction of any one of Embodiments 14 through 18, wherein the glass substrate has a thickness measured from the first major surface to the second major surface of about 0.2 mm to about 2 mm.
Embodiment 20 relates to the construction of any one of Embodiments 14 through 19, wherein the curved surface is a metal curved surface.
Embodiment 21 relates to the construction of Embodiment 20, wherein the curved metal frame is formed of aluminum, magnesium alloy, stainless steel or combinations thereof.
Embodiment 22 relates to the construction of any one of Embodiments 14 through 21, wherein the at least one adhesive layer comprises an epoxy, a polyurethane, an acrylate, a silane modified polymer or a silicone.
Embodiment 23 relates to the construction of any one of Embodiments 14 through 22, wherein the adhesive layer has a thickness in a range from about 200 μm to about 5 mm.
This application is a continuation of U.S. patent application Ser. No. 17/214,124 filed on Mar. 26, 2021, and claims the benefit of priority under 35 U.S.C § 119 of U.S. Provisional Application Ser. No. 63/004,131 filed on Apr. 2, 2020, the contents of which are relied upon and incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Lieser | Jan 1937 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4400419 | Laczynski | Aug 1983 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4606159 | Kunert | Aug 1986 | A |
4723386 | Sandow | Feb 1988 | A |
4802903 | Kuster et al. | Feb 1989 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5300184 | Masunaga | Apr 1994 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8619021 | Hayton | Dec 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Okahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee et al. | May 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9582098 | Rosenberg et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey et al. | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10191199 | Nichol et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10288973 | Gupta et al. | May 2019 | B1 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
10649267 | Tuan et al. | May 2020 | B2 |
10712850 | Brandao et al. | Jul 2020 | B2 |
10732753 | Boggs et al. | Aug 2020 | B2 |
10788707 | Ai et al. | Sep 2020 | B2 |
10976607 | Huang et al. | Apr 2021 | B2 |
11006533 | Floch et al. | May 2021 | B2 |
11016590 | Brandao et al. | May 2021 | B2 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040154227 | Yoshimura | Aug 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050091890 | Snyder | May 2005 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck et al. | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090046240 | Bolton | Feb 2009 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka et al. | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20100247977 | Tsuchiya et al. | Sep 2010 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110078832 | Koecher et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh et al. | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130194749 | Choi et al. | Aug 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury et al. | Jan 2014 | A1 |
20140036428 | Seng et al. | Feb 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140234581 | Immerman et al. | Aug 2014 | A1 |
20140308464 | Levasseur et al. | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150175478 | Ravichandran et al. | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang et al. | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150258750 | Kang et al. | Sep 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150322270 | Amin et al. | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner et al. | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160207290 | Cleary et al. | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder et al. | Dec 2016 | A1 |
20160355091 | Lee et al. | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher et al. | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux et al. | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170327402 | Fujii et al. | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik et al. | Feb 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik et al. | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Helot | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar et al. | Jul 2018 | A1 |
20180188869 | Boggs et al. | Jul 2018 | A1 |
20180188870 | Boggs | Jul 2018 | A1 |
20180208131 | Mattelet et al. | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180290438 | Notsu et al. | Oct 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180314368 | Isaacson et al. | Nov 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180373913 | Panchawagh et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190039935 | Couillard et al. | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190247124 | Sankaran et al. | Aug 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar et al. | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20200062632 | Brennan et al. | Feb 2020 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200301192 | Huang et al. | Sep 2020 | A1 |
20200399161 | Kumar et al. | Dec 2020 | A1 |
20210055599 | Chen et al. | Feb 2021 | A1 |
20210188685 | Gahagan et al. | Jun 2021 | A1 |
20220024179 | Alonzo et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
1111906 | Nov 1995 | CN |
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101320182 | Dec 2008 | CN |
101496083 | Jul 2009 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
102566841 | Jul 2012 | CN |
103136490 | Jun 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
204111583 | Jan 2015 | CN |
104380715 | Feb 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
204439971 | Jul 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107613809 | Jan 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109135605 | Jan 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
202008012502 | Oct 2009 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
0076924 | Apr 1983 | EP |
0241355 | Oct 1987 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
0418700 | Mar 1991 | EP |
0423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
0664210 | Jul 1995 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3315467 | May 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Jan 2009 | FR |
3012073 | Apr 2015 | FR |
0805770 | Dec 1958 | GB |
0991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Jul 1979 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
60-222316 | Nov 1985 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
3059337 | Jun 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
07-257169 | Oct 1995 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004-284839 | Oct 2004 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2010-145731 | Jul 2010 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2013-188993 | Sep 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015-092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016-031696 | Mar 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
5976561 | Aug 2016 | JP |
2016-173794 | Sep 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016-203609 | Dec 2016 | JP |
2016-207200 | Dec 2016 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201017499 | May 2010 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
9801649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
2004087590 | Oct 2004 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014118293 | Aug 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
2015084902 | Jun 2015 | WO |
2015085283 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2016208967 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017155932 | Sep 2017 | WO |
2017158031 | Sep 2017 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018015392 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
2018129065 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019074800 | Apr 2019 | WO |
2019075065 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
2020106413 | May 2020 | WO |
2020106471 | May 2020 | WO |
2020112435 | Jun 2020 | WO |
Entry |
---|
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation: C770-16, 2016. |
“Standard Test Method for Measurement of Glass Stress-Optical Coefficient”, In ASTM standard C770-98, 2013. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Baillon et al: “An Improved Method for Manufacturing Accurate and Cheap Glass Parabolic Mirrors”, Nuclear Instruments & Methods in Physics Research. Section A, Elsevier BV * North-Holland, NL, vol. A276, No. 3, 1988, 13 pages, XP000051982. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference At Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Beus (Eds), 2014; 8 Pages. |
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patierns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (Eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular” , Composites Part B 79 (2015) 285-300. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass”; Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
Galuppi et al; “Optimal Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243. |
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass—New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 pages. |
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics”; Chapter 1 in “Materials Research for Manufacturing: An Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center Cnsole Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Photodon, “Screen Protectors For Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave—Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97. |
Weijde; “Graduation Plan”; Jan. 2017; 30 pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 pages. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
Number | Date | Country | |
---|---|---|---|
20230382083 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
63004131 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17214124 | Mar 2021 | US |
Child | 18231545 | US |