Referring now to the drawings, reference numeral 10 in
The optics 57 may include a suitable lens (or multiple lens system) to focus the light beam 51 into a scanning spot at an appropriate reference plane. The light source 46, such as a semiconductor laser diode, introduces a light beam into an optical axis of the lens 57, and other lenses or beam shaping structures as needed. The beam is reflected from an oscillating mirror 59 that is coupled to a scanning drive motor 60 energized when a trigger 54 is manually pulled. The oscillation of the mirror 59 causes the outgoing beam 51 to scan back and forth in a desired pattern, such as a scan line or a raster pattern of scan lines, across the symbol.
The return light 52 reflected or scattered back by the symbol 70 passes back through the window 56 for transmission to the detector 58. In the exemplary reader shown in
The signal processing circuitry includes a digitizer 63 mounted on a printed circuit board 61. The digitizer processes the analog signal from detector 58 to produce a pulse signal where the widths and spacings between the pulses correspond to the widths of the bars and the spacings between the bars of the symbol. The digitizer serves as an edge detector or wave shaper circuit, and a threshold value set by the digitizer determines what points of the analog signal represent bar edges. The pulse signal from the digitizer 63 is applied to a decoder, typically incorporated in the programmed microprocessor 40 which will also have associated program memory and random access data memory. The microprocessor decoder 40 first determines the pulse widths and spacings of the signal from the digitizer. The decoder then analyzes the widths and spacings to find and decode a legitimate bar code message. This includes analysis to recognize legitimate characters and sequences, as defined by the appropriate code standard. This may also include an initial recognition of the particular standard to which the scanned symbol conforms. This recognition of the standard is typically referred to as autodiscrimination.
To scan the symbol 70, the operator aims the bar code reader 10 and operates the movable trigger switch 54 to activate the light source 46, the scanning motor 60 and the signal processing circuitry. If the scanning light beam 51 is visible, the operator can see a scan pattern on the surface on which the symbol appears and adjust aiming of the reader 10 accordingly. If the light beam 51 produced by the source 46 is marginally visible, an aiming light may be included. The aiming light, if needed, produces a visible light spot that may be fixed, or scanned just like the laser beam 51. The operator employs this visible light to aim the reader at the symbol before pulling the trigger.
As shown in
To avoid the back-reflections, it was also known to sufficiently tilt the planar window 56, as shown in
In accordance with this invention, as shown in
It will be understood that each of the elements described above, or two or more together, also may find a useful application in other types of constructions differing from the types described above.
While the invention has been illustrated and described as embodied in a curved window in an electro-optical reader, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore. Such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.