This invention generally relates to packing disks such as semiconductor wafers. More particularly, this invention relates to a cushion device for use in packing disks.
Semiconductor wafers typically include an array of integrated circuits on a disc of semiconductor material. The wafers typically are manufactured in one location, packaged and shipped to another location and then arranged in particular devices. The wafers and the circuits on them must be protected during the packaging and shipping stages of a normal production cycle.
A variety of packages have been developed for packing and shipping semiconductor wafers. One known type of package receives a stack of wafers between a top and bottom with a plurality of separators and cushions within the container. Another type of container includes a cassette that receives a series of wafers and the cassette is received between a container top and bottom. Known containers include some form of cushion to bias the wafers into a proper position within the cassette. Examples are shown in U.S. Pat. Nos. 4,966,284 and 5,228,568. The arrangement in the first of these patents relies upon cantilevered arms that are formed as part of the top of the container. One disadvantage of this arrangement is that molding the container top is complicated by the presence of the cantilevered arms. Another shortcoming of that arrangement is that the cantilevered arms may not provide a reliable and desired level of bias after several uses.
The separate cushion of the second patent mentioned above has an advantage over the first example because it simplifies the molding process for making the container top. On the other hand, that arrangement still includes cantilevered cushion members that suffer from the same shortcoming as those in the first patent mentioned above.
There is a need for an improved arrangement for packing semiconductor wafers or other sensitive disks in a container that includes a cassette for receiving and supporting the wafers. This invention provides an improved cushion that satisfies that need.
An exemplary disclosed embodiment of a device for packing at least one disk includes a base. A plurality of cushion members each have a first end supported by the base and a second end supported by the base. Each cushion member has a plurality of generally linear segments between the first and second ends. Adjacent generally linear segments are transverse to each other. Each cushion member has at least one contacting portion for contacting a disk. The contacting portions are located near at least one vertex between two of the generally linear segments.
One example includes contacting portions on first and second cushion members that are aligned with each other for contacting a single disk. The contacting portions are spaced apart such that an angle between respective reference lines from each of the first and second cushion member contacting portions to a point corresponding to a center of a disk if a disk were engaged by the first and second cushion members is in a range from about 65° to about 180°. In a disclosed example, the angle is in a range from about 120° to about 160°. In one example, the angle is about 150°. Spacing the contacting portions in this way facilitates better handling during packing and better stability during shipping, for example.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiments. The drawings that accompany the detailed description can be briefly described as follows.
An example container 20 is schematically shown in an assembled condition in
In the illustrated example, the first portion 24 receives a cassette 30. The wafers are received into the cassette 30 in a known manner. The cassette 30 is configured to support the wafers 22 in a manner that keeps them spaced from each other and in a generally stable position within the container 20.
Part of the wafer outer surfaces engage grooves on the cassette 30 and another part of the outer surfaces engage a cushion 40. In the illustrated example, the cushion 40 is snap fit into a secured position relative to the second portion 26. The cushion 40 biases the wafers 22 into a stable position within the cassette 30 and keeps the wafers 22 from shifting about within the container 20 during shipping and handling.
The example cushion 40 shown in
The example base 42 also has cross bars 54 and 56 that are generally perpendicular to the support portions 44-50. The cross bars 54 and 56 and the support portions 44-50 are rigid and the base 42 is self-supporting in one example. The base 42 is adapted to be snap fit into the second portion 26 of the container 20 so that cushion members 60 extend toward the wafers in the cassette 30.
The example cushion 40 includes a plurality of cushion members 60 that have a generally stepped configuration when viewed from the perspective of
One end 70 of each cushion member is supported by one of the lateral support portions 44 or 46. In the illustrated example, the end 70 is supported near an end of an arm 72 that extends from the corresponding support portion 44, 46 such that the end 70 of the cushion members is spaced a selected distance from the base 42. In this example, each arm 72 is rigid in a longitudinal direction of the arm (i.e., in a direction extending between the end 70 of the cushion member and the corresponding support portion 44, 46). In one example, the arms 72 comprise continuous sides of the cushion that are not separated at the position of each cushion member 60. In another example, each cushion member 60 has a dedicated arm 72 that is separate from the other arms 72. In still another example, the arms 72 are partially integrated and partially separated.
An opposite end 74 of each cushion member 60 is supported by one of the example support portions 48, 50 near a center of the base 42. In this example, the second end 74 is supported immediately adjacent the corresponding support portion 48, 50 without any intervening arm.
Having fixed ends 70 and 74 supported by the base 42 provides a more stable arrangement and a more consistently reliable bias and cushion effect compared to previous designs that rely on cantilevered fingers. The stepped configuration of the cushion members 60 and the material selected to form the cushion 40 provide resiliency between the fixed, supported ends 70 and 74 that allows wafers or disks to be received between the cushion 40 and the cassette 30 without any risk of damage to the wafers or disks under expected handling procedures. One example material is polypropylene.
In the illustrated example, each cushion member 60 has a corresponding cushion member on an opposite side of a center of the cushion 40 such that two cushion members 60 are aligned with each other to engage each wafer received between the cushion 40 and the cassette 30. Each cushion member in one example has a grooved wafer-receiving surface that tends to center a corresponding portion of a wafer edge along the cushion member.
The illustration of
Referring to
Referring to
As can be appreciated from
Keeping the angle α greater than 65° and less than 180° provides better handling procedures. During assembly of a container 20, as the top portion 26 is placed in position on the bottom 24, with conventional arrangements, there is a tendency for more than one disk to be engaged by a set of corresponding cantilevered fingers, for example. This is due, in part, because of the close proximity of the positions where such fingers contact the disks (i.e., within a range less than 60° apart). By spacing apart the contacting portions 90 a greater distance, the illustrated example reduces a tendency for more than one disk to be engaged by a corresponding set of cushion members 60 as the container is assembled into a closed condition.
Keeping the contacting portions 90 further down the sides of a disk within the range illustrated at 99 in
The second portion 26 of the container 20 in the example of
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
This application claims priority to U.S. Provisional Application No. 60/603,873, which was filed on Aug. 24, 2004.
Number | Date | Country | |
---|---|---|---|
60603873 | Aug 2004 | US |