Cushioning element for sports apparel

Information

  • Patent Grant
  • 10506846
  • Patent Number
    10,506,846
  • Date Filed
    Wednesday, September 13, 2017
    7 years ago
  • Date Issued
    Tuesday, December 17, 2019
    5 years ago
Abstract
Improved cushioning elements for sports apparel, in particular for soles for sports shoes, are described. A cushioning element for sports apparel with a first deformation element is provided. The deformation element includes a plurality of randomly arranged particles of an expanded material, wherein there are first voids within the particles and/or between the particles.
Description
FIELD OF THE INVENTION

The present invention concerns cushioning elements for sports apparel, in particular a sole for a sports shoe.


BACKGROUND

Cushioning elements play a great role in the field of sports apparel and are used for clothing for the most varied types of sports. Exemplarily, winter sports clothing, running wear, outdoor clothing, football wear, golf clothing, martial arts apparel or the like may be named here. Generally, cushioning elements serve to protect the wearer from shocks or blows, and for padding, for example, in case the wearer falls down. For this, the cushioning elements typically comprise one or more deformation elements that deform under an external effect of pressure or a shock impact and thereby absorb the impact energy.


A particularly important role is to be attributed to the cushioning elements in the construction of shoes, especially sports shoes. By means of cushioning elements in the form of soles, shoes are provided with a large number of different properties which may vary considerably, according to the specific type of the shoe. Primarily, shoe soles have a protective function. By their stiffness, which is higher than that of the shoe shaft, they protect the foot of the respective wearer against injuries caused, e.g., by pointed or sharp objects that the wearer of the shoe may step on. Furthermore, the shoe sole, due to its increased abrasion resistance, usually protects the shoe against excessive wear. In addition, shoe soles may improve the contact of the shoe on the respective ground and thereby enable faster movements. A further function of a shoe sole may comprise providing certain stability. Moreover, a shoe sole may have a cushioning effect in order to, e.g., cushion the effects produced by the contact of the shoe with the ground. Finally, a shoe sole may protect the foot from dirt or spray water and/or provide a large variety of other functionalities.


In order to accommodate the large number of functionalities, different materials are known from the prior art which may be used for manufacturing cushioning elements for sports apparel.


Exemplarily, reference is made here to cushioning elements made of ethylene-vinyl-acetate (EVA), thermoplastic polyurethane (TPU), rubber, polypropylene (PP) or polystyrene (PS), in the form of shoe soles. Each of these different materials provides a particular combination of different properties that are more or less well suited for soles of specific shoe types, depending on the specific requirements of the respective shoe type. For instance, TPU is very abrasion-resistant and tear-resistant. Furthermore, EVA distinguishes itself by having a high stability and relatively good cushioning properties. Furthermore, the use of expanded materials, in particular, of expanded thermoplastic urethane (eTPU) was taken into account for the manufacture of a shoe sole. Expanded thermoplastic urethane has a low weight and particularly good properties of elasticity and cushioning. Furthermore, according to WO 2005/066250, a sole of expanded thermoplastic urethane may be connected to a shoe shaft without additional adhesive agents.


Moreover, US 2005/0150132 A1 discloses footwear (e.g., shoes, sandals, boots, etc.) that is constructed with small beads stuffed into the footbed, so that the beads may shift about due to pressure on the footbed by the user's foot during normal use. DE 10 2011 108 744 A1 discloses a method for the manufacture of a sole or part of a sole for a shoe. WO 2007/082838 A1 discloses foams based on thermoplastic polyurethanes. US 2011/0047720 A1 discloses a method of manufacturing a sole assembly for an article of footwear. Finally, WO 2006/015440 A1 discloses a method of forming a composite material.


One disadvantage of the cushioning elements which are known from prior art, in particular of the known shoe soles, is that these have a low breathability. This disadvantage may considerably restrict the wearing comfort of the sports clothing that contains the cushioning element, since it leads to increased formation of sweat or heat accumulation under the clothing. This is disadvantageous particularly in cases where the clothing is worn continuously for a longer time, as, for instance, during a walking tour or a round of golf or during winter sports. Furthermore, cushioning elements often increase the overall weight of the sports clothing in a an amount that is not insignificant. This may have an adverse effect on the wearer's performance, in particular in sports of endurance or running.


Starting from prior art, it is therefore an object of the present invention to provide better cushioning elements for sports apparel, in particular for soles for sports shoes. A further object of the present invention comprises improving the breathability of such a cushioning element and in further reducing its weight.


SUMMARY

The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.


According to certain embodiments of the present invention, a cushioning element for sports apparel, in particular for a sole of a sports shoe, comprises a first deformation element having a plurality of randomly arranged particles of an expanded material, wherein there are first voids within the particles and/or between the particles.


The use of expanded material for the construction of a deformation element for a cushioning element of sports clothing may be beneficial, as this material is very light and has, at the same time, very good cushioning properties. The use of randomly arranged particles of the expanded material facilitates the manufacture of such a cushioning element considerably, since the particles may be handled easily and no particular orientation is necessary during the manufacture. So, for instance, the particles may be filled, under pressure and/or by using a transport fluid, into a mold used for producing the deformation element or the cushioning element, respectively. Due to the voids between or within the particles of the expanded material, the weight of the deformation element and thus of the cushioning element is further reduced.


In certain embodiments, the particles of the expanded material comprise one or more of the following materials: expanded ethylene-vinyl-acetate, expanded thermoplastic urethane, expanded polypropylene, expanded polyamide, expanded polyether block amide, expanded polyoxymethylene, expanded polystyrene, expanded polyethylene, expanded polyoxyethylene, and expanded ethylene propylene diene monomer. According to the specific profile requirements, one or more of these materials may be used for the manufacture due to their substance-specific properties.


In certain embodiments, the particles of the expanded material have one or more of the following cross-sectional profiles: ring-shaped, oval, square, polygonal, round, rectangular, and star-shaped. By the form of the particles, the size, the arrangement, and the shape of the voids between and/or within the particles and thus the density of the finished deformation element may be influenced, which may have effects on the weight, heat insulation, and breathability of the cushioning element.


According to other embodiments of the invention, the first deformation element is manufactured by inserting the particles of the expanded material into a mold and exposing them after said insertion into the mold to a heating and/or pressurizing and/or steaming process. Thereby, the surfaces of the particles may be melted at least in part, so that the surfaces of the particles bond after cooling. Furthermore, the particles, due to the heating and/or pressurizing and/or steaming process, may also form a bond by a chemical reaction. Such a bond is highly robust and durable and does not require a use of further bonding agents, e.g. adhesives.


As a result, a cushioning element may be manufactured with a first deformation element comprising a “loose” arrangement of randomly arranged particles of the expanded material, with voids and also channels or cavities (cf. below) in between the randomly arranged particles, or even a network of such voids, channels and cavities, without the danger of losing the necessary stability of the first deformation element. By at least partially fusing the particle surfaces, e.g. by means of a steaming process or some other process, the resulting bond is strong enough to ensure that, in particular, particles arranged at the surface of such a first deformation element or cushioning element are not “picked off” during use of the element.


Moreover, the manufacture of such elements are, inter alia, simpler, safer, more cost-effective and more environment-friendly. By adjusting, e.g., the pressure or the duration of the treatment, the size and shape of the voids between the particles of the expanded materials may be influenced, which, as already mentioned, may have effects on the weight, heat insulation, and breathability of the cushioning element.


In certain embodiments, before being inserted into the mold, the particles may comprise a density of 10-150 g/l, and may further comprise a density of 10-100 g/l, and may even further comprise a density of 10-50 g/l.


According to further embodiments of the invention, the first deformation element may be manufactured by intermixing the particles of the expanded material with a further material which is removed later or which remains at least in part in the first voids of the first deformation element, which enables, on the one hand, a further exertion of influence on the properties of the voids forming between the particles. If, on the other hand, the second material is not removed completely from the voids, it may increase the stability of the deformation element.


In further embodiments, a solidified liquid resides in the first voids of the deformation element. This solidified liquid may, for instance, be a transport fluid, which is used for filling a form with the particles of the expanded material and which has solidified during the heating and/or pressurizing and/or steaming process. Alternatively, the particles inserted in the mold may also be coated continuously with the liquid during the heat and/or pressure and/or steam treatment, whereby said liquid solidifies gradually.


Preferably, the first voids form one or more cavities in which air is trapped. In this manner, the heat insulation of the cushioning element may be increased.


As will be appreciated, air may comprise a lower heat conduction than solid materials, e.g. the particles of the expanded material. Hence, by interspersing the first deformation element with air filled cavities, the overall heat conduction of the first deformation element and thus the cushioning element may be reduced so that the foot of a wearer, e.g., is better insulated against loss of body heat through the foot.


In principle, the cavities could also trap another type of gas or liquid inside them or they could be evacuated.


According to further embodiments of the invention, the first voids form one or more channels through the first deformation element that are permeable to air and/or liquids. Thereby, the breathability of the deformation element is increased.


In this case, the use of randomly arranged particles may be advantageous. By the random arrangement, such channels develop independently with a certain statistical probability without requiring a specific arrangement of the particles when they are filled into a mold, which reduces the manufacturing expenses of such a deformation element significantly.


It will be appreciated that in general some of the first voids may form one or more cavities that trap air inside them and some of the first voids may form one or more channels throughout the first deformation element which are permeable to air and/or liquids.


Whether the first voids between the randomly arranged particles predominantly form cavities that trap air inside them or predominantly form channels as described above may depend on the size, shape, material, density, and so forth of the randomly arranged particles and also on the manufacturing parameters like temperature, pressure, packing density of the particles, etc. It may also depend on the pressure load on the first deformation element.


For example, a first deformation element arranged in the heel region or forefoot region of a shoe will experience a strong compression during a gait cycle, e.g. during landing on the heel or push-off over the forefoot. Under such a pressure load, potential channels through the first deformation element might be sealed by the compressed and deformed randomly arranged particles. Also, during landing or push-off, the foot may be in close contact with the inner surface of the shoe. This design might reduce the breathability of the sole. The sealing of the channels may, however, lead to the formation of additional cavities within the first deformation element, trapping air inside them, and may thus increase the heat insulation of the sole, which is particularly important when the sole contacts the ground, because here a large amount of body heat might be lost.


After push-off of the foot, on the other hand, the randomly arranged particles of the first deformation element might re-expand, leading to a re-opening of the channels. Also, in the expanded state, some of the cavities present in the loaded state might open up and form channels through the first deformation element that are permeable to air and/or liquids. Also, the foot may not be in tight contact with the inner surface of the shoe anymore during such periods of the gait cycle. Hence, breathability might be increased during this phase, while heat insulation might be reduced.


This interplay between the formation of channels and cavities within the first deformation element depending on the state of compression may provide a preferred direction for airflow through the first deformation element, e.g. in the direction of the compression and re-expansion of the first deformation element. For a first deformation element arranged in the sole of a shoe, e.g., the compression and re-expansion in a direction from the foot to the ground during a gait cycle may guide and control an airflow in the direction from the ground through the first deformation element to the foot, or out of the shoe.


Such a guided airflow may, in particular, be employed in combination with the high energy return provided by a first deformation element comprising randomly arranged particles of an expanded material, e.g. eTPU. For example, a first deformation element arranged in the forefoot region comprising randomly arranged particles of eTPU may provide high energy return to the foot of a wearer when pushing off over the toes. The re-expansion of the first deformation element after push-off may also lead to a guided or directed inflow of air into the forefoot region, leading to good ventilation and cooling of the foot. The re-expansion of the first deformation element may even lead to a suction effect, sucking air into channels through the first deformation element, and may thus facilitate ventilation and cooling of the foot even further. Such an efficient cooling may provide the foot of a wearer with additional “energy” and generally improve performance, well-being and endurance of an athlete.


While the above example was specifically directed to a first deformation element arranged in the forefoot region, its main purpose was to exemplify the advantageous combination of energy return and directed airflow that may be provided by embodiments of inventive cushioning elements with first deformation elements. It is clear to the skilled person that this effect may also be advantageously employed in other regions of a sole or in entirely different sports apparel. Herein, the direction of compression and re-expansion and the direction of guidance of the airflow may vary depending on the specific arrangement of the first deformation element and its intended use.


In addition, it is also possible that the manufacture of the cushioning element comprises the creation of one or more predefined channels through the first deformation element that are permeable to air and/or liquids.


This design allows further balancing the heat insulating properties vs. the breathability of the cushioning element, for example. The predefined channel(s) may for example be created by corresponding protrusions or needles in a mold that is used for the manufacture of the cushioning element.


In further embodiments, the cushioning element may comprise a reinforcing element, in particular, a textile reinforcing element and/or a foil-like reinforcing element and/or a fiber-like reinforcing element, which enables manufacture of a deformation element with very low density/very low weight and a high number of voids and ensures, at the same time, the necessary stability of the deformation element.


In certain embodiments, the reinforcing element is provided as a foil comprising thermoplastic urethane. Thermoplastic urethane foils are well suited for use in combination with particles of expanded material, especially particles of expanded thermoplastic urethane.


Furthermore, in preferred embodiments, the foil may be permeable to air and/or liquids in at least one direction. So, the foil may, for instance, be permeable to air in one or both directions, while being permeable to liquids only in one direction, thus being able to protect against moisture from the outside, e.g. water.


In certain embodiments, a cushioning element in which the first voids form one or more channels permeable to air and/or liquids through the first deformation element, is combined with a reinforcing element, in particular a textile reinforcing element and/or a foil-like reinforcement element, especially a foil comprising thermoplastic urethane, and/or a fiber-like reinforcing element, whereby the reinforcing element comprises at least one opening which is arranged in such a way that air and/or liquid passing through one or more channels in the first deformation element may pass in at least one direction through the at least one opening of the reinforcing element. This feature enables a sufficient stability of the deformation element without influencing the breathability provided by the channels. In case the at least one opening of the reinforcing element is, for example, only permeable to liquids in the direction from the foot towards the outside, the reinforcing element may also serve to protect from moisture from the outside.


According to further embodiments of the invention, the first deformation element takes up a first partial region of the cushioning element, and the cushioning element further comprises a second deformation element. Thereby, the properties of the cushioning element may be selectively influenced in different areas, which increases the constructive freedom and the possibilities of exerting influence significantly.


In certain embodiments, the second deformation element comprises a plurality of randomly arranged particles of an expanded material, whereby second voids are provided within the particles and/or between the particles of the second deformation element, which on average are smaller than the first voids of the first deformation element. In this case, a size of the second voids, which is smaller on average, may translate into a greater density of the expanded material of the second deformation material and thus a higher stability and deformation stiffness. The smaller size of the second voids could also result in also a lower breathability. By combining different deformation elements with voids of different sizes (on average), the properties of deformation elements may be selectively influenced in different areas.


It is for example conceivable that the randomly arranged particles in the first deformation element and the manufacturing parameters are chosen such that the first voids predominantly form channels throughout the first deformation element permeable to air and/or liquids, thus creating good breathability in this region. The randomly arranged particles in the second deformation element and the manufacturing parameters may be chosen such that the second voids predominantly form cavities trapping air inside them, thus creating good heat insulation in this region. The opposite is also conceivable.


In certain embodiments, the cushioning element is designed as at least one part of a shoe sole, in particular at least as a part of a midsole. In certain embodiments, the cushioning element is designed as at least a part of an insole of a shoe. Hereby, different embodiments of deformation elements with different properties each may be combined with each other and/or be arranged in preferred regions of the sole and/or the midsole and/or the insole. For example, the toe region and the forefoot region are preferred regions where permeability to air should be enabled. Furthermore, the medial region is preferably configured more inflexibly so as to ensure a better stability. In order to optimally support the walking conditions of a shoe, the heel region and the forefoot region of a sole preferably have a particular padding. Owing to the most varied requirements for different shoe types and kinds of sports, the sole may be adapted exactly to the requirements, according to the aspects described herein.


According to further embodiments of the invention, a possibility to arrange the different regions or the different deformation elements, respectively, in a cushioning element comprises manufacturing these in one piece in a manufacturing process. To do so, for example, a mold is loaded with one or more types of particles of expanded materials. For instance, a first partial region of the mold is loaded with a first type of particles of an expanded material, and a second partial region of the mold is loaded with a second type of particles. The particles may differ in their starting materials, their size, their density, their color etc. In addition, individual partial regions of the mold may also be loaded with non-expanded material. After insertion of the particles and, if necessary, further materials into the mold, these may be subjected, as already described herein, to a pressurizing and/or steaming and/or heating process. By an appropriate selection of the parameters of the pressurizing and/or steaming and/or heating process—such as, for example, the pressure, the duration of the treatment, the temperature, etc.—in the individual partial regions of the mold as well as by suitable tool and machine adjustments, the properties of the manufactured cushioning element may be further influenced in individual partial regions.


Further embodiments of the invention concerns a shoe, in particular a sports shoe, with a sole, in particular a midsole and/or an insole, according to one of the previously cited embodiments. Hereby, different aspect of the cited embodiments and aspects of the invention may be combined in an advantageous manner, according to the profile of requirements concerning the sole and the shoe. Furthermore, it is possible to leave individual aspects aside if they are not important for the respective intended use of the shoe.





BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed description, embodiments of the invention are described referring to the following figures:



FIG. 1 is a top view of a cushioning element configured as midsole, according to certain embodiments of the present invention.



FIG. 2 is a top view of particles of an expanded material which have an oval cross-sectional profile, according to certain embodiments of the present invention.



FIG. 3 is a perspective view of a cushioning element provided as midsole, wherein a solidified liquid resides in the first voids, according to certain embodiments of the present invention.



FIG. 4 is a top view of a cushioning element provided as midsole with a first reinforcing element and a second foil-like reinforcing element, according to certain embodiments of the present invention.



FIG. 5 is a cross-section of a shoe with a cushioning element configured as a sole, and a reinforcing element which comprises a series of openings which are permeable to air and liquids, according to certain embodiments of the present invention.



FIG. 6 is a top view of a cushioning element provided as a midsole and with a deformation element which constitutes a first partial region of the cushioning element, according to certain embodiments of the present invention.



FIG. 7 is a perspective view of a cushioning element configured as a midsole, which comprises a first deformation element and a second deformation element, according to certain embodiments of the present invention.



FIGS. 8a-b are schematic illustrations of the influence of the compression and re-expansion of the randomly arranged particles on an airflow through a first deformation element, according to certain embodiments of the present invention.



FIG. 9a is a lateral side view of a shoe comprising a cushioning element, according to certain embodiments of the present invention.



FIG. 9b is a medial side view of the shoe of FIG. 9a.



FIG. 9c is a rear view of the shoe of FIG. 9a.



FIG. 9d is a bottom view of the shoe of FIG. 9a.



FIGS. 9e and 9f are enlarged pictures of the cushioning element 905 of the shoe of FIG. 9a.





DETAILED DESCRIPTION

The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.


In the following detailed description, embodiments of the invention are described with respect to midsoles. However, it is pointed out that the present invention is not limited to these embodiments. For example, the present invention may also be used for insoles as well as other sportswear, e.g. for shin-guards, protective clothing for martial arts, cushioning elements in the elbow region or the knee region for winter sports clothing and the like.



FIG. 1 shows a cushioning element 100 configured as part of a midsole, according to certain embodiments of the invention, which comprises a deformation element 110. The deformation element 110 has a plurality of randomly arranged particles 120 of an expanded material, whereby first voids 130 are comprised within the particles 120 and/or between the particles 120.


In the embodiments shown in FIG. 1, the deformation element 110 constitutes the whole cushioning element 100. In further preferred embodiments, however, the deformation element 110 takes up only one or more partial regions of the cushioning element 100. It is also possible that the cushioning element 100 comprises several deformation elements 110, which each form a partial region of the cushioning element 100. Thereby, the different deformation elements 110 in the various partial regions of the cushioning element 100 may comprise particles 120 of the same expanded material or of different expanded materials. The voids 130 between the particles 120 of the expanded material of the respective deformation elements 110 may each, on average, also have the same size or different sizes.


The average size of the voids is to be determined, for example, by determining the volume of the voids in a defined sample amount of the manufactured deformation element, e.g. in 1 cubic centimeter of the manufactured deformation element. A further possibility to determine the average size of the voids is, for example, to measure the diameter of a specific number of voids, e.g. of 10 voids, and to subsequently form the mean value of the measurements. As a diameter of a void, for example, the largest and the smallest distance between the walls of the respective void may come into play, or another value which may be consistently measured by the skilled person.


By an appropriate combination of different expanded materials and/or different average sizes of the voids 130, deformation elements 110 with different properties for the construction of a cushioning element 100 may be combined with each other. Thereby, the properties of the cushioning element 100 may be influenced locally by selection.


To reiterate, the cushioning elements 100, according to one or more aspects of the present invention, as shown in FIG. 1, are not only suitable for manufacturing shoe soles, but may also be advantageously used in the field of other sports apparel.


In certain embodiments, the particles 120 of the expanded material may comprise in particular one or more of the following materials: expanded ethylene-vinyl-acetate (eEVA), expanded thermoplastic urethane (eTPU), expanded polypropylene (ePP), expanded polyamide (ePA), expanded polyether block amid (ePEBA), expanded polyoxymethylene (ePOM), expanded polystyrene (ePS), expanded polyethylene (ePE), expanded polyethylene (ePOE), expanded polyoxyethylene (ePOE), and expanded ethylene-propylene-diene monomer (eEPDM).


Each of these materials has characteristic properties which, according to the respective requirement profile of the cushioning element 100, may be advantageously used for manufacture. So, in particular, eTPU has excellent cushioning properties which remain unchanged at higher or lower temperatures. Furthermore, eTPU is very elastic and returns the energy stored during compression almost completely during subsequent expansion, which may be helpful in embodiments of cushioning elements 100 that are used for shoe soles.


For manufacturing such a cushioning element 100, the particles 120 of the expanded material, according to further embodiments of the invention, may be introduced into a mold and subjected to a heating and/or pressurization and/or steaming process after filling the mold. By varying the parameters of the heating and/or pressurization and/or steaming process, the properties of the manufactured cushioning elements may be further influenced. As a result, it may be possible to influence the resulting thickness of the manufactured cushioning element or the shape or the size, respectively, of the voids 130 by the pressure to which the particles 120 are subjected in the mold. The thickness and the size of the voids 130 may thereby depend also on the pressure used for inserting the particles 120 into the mold. Therefore, in some embodiments, the particles 120 may be introduced into the mold by means of compressed air or a transport fluid.


The thickness of the manufactured cushioning element 100 is further influenced by the (mean) density of the particles 120 of the expanded material before filling the mold. In some embodiments, before filling the mold, this density lies in a range between 10-150 g/l, and may further lie in a range between 10-100 g/l, and may even further lie in a range of 10-50 g/l. These ranges may be beneficial for the manufacture of cushioning elements 100 for sports apparel, in particular for shoe soles. According to the specific profile requirements for sports apparel, however, other densities are imaginable too. For example, higher densities come into consideration for a cushioning element 100 of a shin-guard which has to absorb higher forces, whereas lower densities are also possible for a cushioning element 100 in a sleeve. In general, by appropriately selecting the density of the particles 120, the properties of the cushioning element 100 may be advantageously influenced according to the respective profile requirements.


It is to be appreciated that the manufacturing methods, options, and parameters described herein allow the manufacture of a cushioning element 100 with a first deformation element 110 comprising a “loose” arrangement of randomly arranged particles 120, as shown in FIG. 1. Even in the presence of first voids 130, which may further form channels or cavities (cf. below) or even a network of voids, channels and cavities in between the randomly arranged particles 120, the necessary stability of the first deformation element 110 may be provided. For example, by at least partially fusing the surfaces of the particles 120 by means of a steaming process or other processes, the resulting bond is strong enough to ensure that particles 120 arranged at the surface of such a first deformation element 110 or cushioning element 100 are not “picked off” during use.


According to further embodiments of the invention, the particles 120 of the expanded material for the manufacture of the cushioning element 100 are first intermixed with a further material. The particles may be of another expanded or non-expanded material, a powder, a gel, a liquid, or the like. In certain embodiments, wax-containing materials or materials that behave like wax are used. In certain embodiments, the additional material is removed from the voids 130 in a later manufacturing step, for example, after filling the mixture into a mold and/or after a heating and/or pressurizing and/or steaming process. The additional material may, for example, be removed again from the voids 130 by a further heat treatment, by compressed air, by means of a solvent, or by other suitable process. By an appropriate selection of the further material and of the ratio between the amount of particles 120 and the amount of further material, as well as the manner in which the further material is removed again, the properties of the deformation element 110 and thereby of the cushioning element 100 and, in particular, the shape and size of the voids 130 may be influenced. In other embodiments of the present invention, the additional material may remain at least partially in the voids 130, which may have a positive influence on stability and/or tensile strength of the cushioning element 100.


According to further embodiments of the invention, the particles 120 may also show different cross-sectional profiles. There may, for example, be particles 120 with ring-shaped, oval, square, polygonal, round, rectangular, or star-shaped cross-section. The particles 120 may have a tubular form, i.e. comprise a channel, or else may have a closed surface which may surround a hollow space inside. The shape of the particles 120 has a substantial influence on the packing density of the particles 120 after insertion into the mold. The packing density depends further on, e.g., the pressure under which the particles 120 are filled into the mold or to which they are subjected in the mold, respectively. Furthermore, the shape of the particles 120 has an influence on whether the particles 120 comprise a continuous channel or a closed surface. The same applies to the pressure used during the filling of the mold and/or within the mold, respectively. In a similar manner, the shape and the average size of the voids 130 between the particles 120 may be influenced.


Furthermore, the configuration of the particles 120 and the pressure used during filling and/or in the mold determine the likelihood that the voids 130 form one or more channels permeable to air and/or to liquids through the deformation element 110. As the particles 120 are arranged randomly, according to certain embodiments of the invention, such continuous channels develop, with certain statistical likelihood, independently without the need of specific expensive manufacturing processes, such as an alignment of the particles 120 or the use of complicated molds. The likelihood of this autonomous channel formation depends, inter alia, on the shape of the particles 120, in particular on the maximum achievable packing density of the particles 120 within a given shape. So, for instance, cuboid particles 120 may, as a rule, be packed more densely than star-shaped or round/oval particles 120, which leads to smaller voids 130 on average and to a reduced likelihood of the development of channels permeable to air and/or liquids. There is also a higher probability that channels develop that are permeable to air, because air is gaseous and therefore able to pass through very small channels which are not permeable to liquids due to the surface tension of the liquid. As a result, deformation elements 110 may be manufactured without increased manufacturing efforts by an appropriate selection of the shape and size of the particles 120 and/or an appropriate filling pressure of the particles 120, and/or an adaption of the parameters of the heating and/or pressurizing and/or steaming process to which the particles 120 are possibly subjected in the mold, these deformation elements 110 being indeed breathable, while also being impermeable to liquids. This combination of properties is particularly advantageous for sports apparel which is worn outdoors.


Moreover, the first voids 130 may also form one or more cavities in which air is trapped. In this manner, the heat insulation of the cushioning element 100 may be increased. As will be appreciated, air may comprise a lower heat conduction than solid materials, e.g. the particles 120 of the expanded material. Hence, by interspersing the first deformation element 110 with air filled cavities, the overall heat conduction of the first deformation element 110 and thus the cushioning element 100 may be reduced so that the foot of a wearer, e.g., is better insulated against loss of body heat through the foot.


In general, some of the first voids 130 may form one or more cavities that trap air inside them, and some of the first voids 130 may form one or more channels throughout the first deformation element 110 that are permeable to air and/or liquids.


As already suggested above, whether the first voids 130 between the randomly arranged particles 120 predominantly form cavities that trap air inside them or predominantly form channels permeable to air and/or liquids may depend on the size, shape, material, density and so forth of the randomly arranged particles 120 and also on manufacturing parameters like temperature, pressure, packing density of the particles 120, etc. It may also depend on the pressure load on the first deformation element 110 or cushioning element 100.


For example, the forefoot region or the heel region of the first deformation element 110 will experience a strong compression during a gait cycle, e.g. during landing on the heel or push-off over the forefoot. Under such a pressure load, potential channels through the first deformation element 110 might be sealed. Also, during landing or push-off, the foot may be in close contact with the top surface of cushioning element 100. This condition might reduce the breathability. Sealing of the channels may, however, lead to the formation of additional cavities within the first deformation element 110, trapping air inside them, and thus increase the heat insulation of the cushioning element 100, which is particularly important during ground contact, because here a large amount of body heat might be lost.


After push-off of the foot, on the other hand, the randomly arranged particles 120 of the first deformation element 110 might re-expand, leading to a re-opening of the channels. Also, in the expanded state, some of the cavities present in the loaded state might open up and form channels through the first deformation element 110 that are permeable to air and/or liquids. Also the foot may not be in tight contact with the top surface of the cushioning element 100 anymore during such periods of the gait cycle. Hence, breathability might be increased during this phase whereas heat insulation might be reduced.


This interplay between the formation of channels and cavities within the first deformation element 110 depending on the state of compression may provide a preferred direction to an airflow through the first deformation element 110 and cushioning element 100, e.g. in the direction of the compression and re-expansion. For a cushioning element 100 arranged in the sole of a shoe, e.g., the compression and re-expansion in a direction from the foot to the ground during a gait cycle may guide and control airflow in that direction.



FIGS. 8a-b show an illustration of a directed airflow through a cushioning/deformation element discussed above. Shown is a cushioning element 800 with a first deformation element 810 that comprises randomly arranged particles 820 of an expanded material. There are also first voids 830 between and/or within the particles 820. FIG. 8a shows a compressed state wherein the compression is effected by a pressure acting in a vertical direction in the example shown here. FIG. 8b shows a re-expanded state of the first deformation element 810, wherein the (main) direction of re-expansion is indicated by the arrow 850.


It is clear to the skilled purpose that FIGS. 8a-b only serve illustrative purposes and the situation shown in these figures may deviate from the exact conditions found in an actual cushioning element. In particular, in an actual cushioning element, the particles 820 and voids 830 form a three-dimensional structure whereas here only two dimensions may be shown. This means, in particular, that in an actual cushioning element the potential channels formed by the voids 830 may also “wind through” the first deformation element 810, including in directions perpendicular to the image plane of FIGS. 8a-b.


In the compressed state, as shown in FIG. 8a, the individual particles 820 are compressed and deformed. Because of this deformation of the particles 820, the voids 830 in the first deformation element 810 may change their dimensions and arrangement. In particular, channels winding through the first deformation element 810 in the unloaded state might now be blocked by some of the deformed particles 820. On the other hand, additional cavities may, for example, be formed within the first deformation element 810 by sections of sealed or blocked channels. Hence, an airflow through the first deformation element might be reduced or blocked, as indicated by the arrows 860.


With re-expansion 850 of the first deformation element 810, cf. FIG. 8b, the particles 820 may also re-expand and return (more or less) to the form and shape they had before the compression. By this re-expansion, which may predominantly occur in the direction of the pressure that caused the deformation (i.e. a vertical direction in the case shown here, cf. 850), previously blocked channels might reopen and also previously present cavities might open up and connect to additional channels through the first deformation element 810. The re-opened and additional channels may herein predominantly “follow” the re-expansion 850 of the first deformation element 810, leading to a directed airflow through the first deformation element 810, as indicated by arrows 870. The re-expansion of the first deformation element 810 might even actively “suck in” air, further increasing the airflow 870.


Returning to the discussion of FIG. 1, a guided airflow as discussed above may, in particular, be employed in combination with the high energy return provided by a first deformation element 110 comprising randomly arranged particles 120 of an expanded material, e.g. eTPU. For example, in the forefoot region, the cushioning element 100 with the first deformation element 110 may provide high energy return to the foot of a wearer when pushing off over the toes. The re-expansion of the first deformation element 110 after push-off may also lead to a guided inflow of air into the forefoot region, leading to good ventilation and cooling of the foot. The re-expansion of the first deformation element 110 may even lead to a suction effect, sucking air into channels through the first deformation element 110, and may thus further facilitate ventilation and cooling of the foot. Such an efficient cooling may provide the foot of a wearer with additional “energy” and generally improve performance, well-being and endurance of an athlete.


A similar effect may also be provided, e.g., in the heel region of the cushioning element 100.


As a further option, it is also possible that the manufacture of the cushioning element 100 comprises the creation of one or more predefined channels (not shown) through the first deformation element 110 that are permeable to air and/or liquids. This design may allow further balance between the heat insulating properties vs. the breathability of the cushioning element 100. The predefined channel(s) may be created by corresponding protrusions or needles in a mold that is used for the manufacture of the cushioning element 100.



FIG. 2 shows embodiments of particles 200 of an expanded material which have an oval cross-section. The particles have, in addition, a wall 210 and a continuous channel 220. Due to the oval shape of the particles 200 of the expanded material, voids 230 develop between the particles. The average size of these voids 230 may be dependent on the shape of the particles 200, in particular on the maximum achievable packing density of the particles 200 within a given mold, as explained above. So, for example, cuboid or cube-shaped particles may, as a rule, be packed more densely than spherical or oval-shaped particles 200. Furthermore, in a deformation element manufactured from the randomly arranged particles 200, due to the random arrangement of the particles 200, one or more channels permeable to air and/or liquids develop with a certain statistical probability, without requiring an alignment of the particles or the like, which significantly facilitates the manufacturing effort.


In the embodiments of the particles 200 shown in FIG. 2, the probability of a development of such channels is further increased by the tubular configuration of the particles 200 with the wall 210 and the continuous channel 220. For example, the channels permeable to air and/or liquids may extend along the channels 220 within the particles 200, along the voids 230 between the particles 200, and along a combination of the channels 220 within and the voids 230 between the particles 200.


The average size of the voids 230 as well as the probability of developing channels permeable to air and/or liquids in the finished deformation element depend furthermore on the pressure with which the particles are filled into a mold used for manufacture and/or on the parameters of the heating and/or pressurizing and/or steaming process to which the particles may be subjected in the mold. In addition, it is possible that the particles 200 have one or more different colors, which influences the optical appearance of the finished deformation element or cushioning element, respectively. In certain embodiments, the particles 200 are made of expanded thermoplastic urethane and are colored with a color comprising liquid thermoplastic urethane, which may lead to a very durable coloring of the particles and hence of the deformation element or cushioning element, respectively.



FIG. 3 shows further embodiments of a cushioning element 300 configured as a midsole and comprising a deformation element 310, according to certain embodiments of the present invention. The deformation element 310 comprises a number of randomly arranged particles 320 of an expanded material, whereby first voids 330 are present between the particles 320. In the embodiments shown in FIG. 3, however, a solidified liquid resides between the voids 330. Said solidified liquid 330 may, for instance, be a solidified liquid 330 comprising one or more of the following materials: thermoplastic urethane, ethylene-vinyl-acetate or other materials that are compatible with the respective expanded material of the particles 320. Furthermore, in certain embodiments, the solidified liquid 330 may serve as transport fluid for filling the particles 320 of the expanded material into a mold used for manufacturing the cushioning element 300, whereby the transport fluid solidifies during the manufacturing process, for example, during a heating and/or pressurizing and/or steaming process. In further embodiments, the particles 320 introduced into a mold are continuously coated with the liquid 330 which solidifies gradually during this process.


The solidified liquid increases the stability, elasticity and/or tensile strength of the deformation element 310 and thus allows the manufacture of a very thin cushioning element 300, according to certain embodiments of the invention, which may reduce the weight of such a cushioning element 300. Furthermore, the low thickness of such a cushioning element 300 allows the use of the cushioning element 300 in regions of sports apparel where too great a thickness would lead to a significant impediment of the wearer, for example in the region of the elbow or the knee in case of outdoor and/or winter sports clothing, or for shin-guards or the like.


By means of an appropriate combination of the materials of the particles 320 and the solidified liquid 330, as well as a variation of the respective percentages in the deformation element 310, according to the present invention, deformation elements 310 with a plurality of different properties such as thickness, elasticity, tensile strength, compressibility, weight, and the like may be manufactured.



FIG. 4 shows further embodiments according to certain embodiments of the invention. FIG. 4 shows a cushioning element 410 configured as a midsole. The cushioning element 400 comprises a deformation element 410, which comprises a number of randomly arranged particles of an expanded material, with first voids being present within the particles and/or between the particles. The cushioning element 400 further comprises a first reinforcing element 420, which preferably is a textile and/or fiber-like reinforcing element 420. The reinforcing element 420 serves to increase the stability of the deformation element 410 in selected regions, in some embodiments shown in FIG. 4 in the region of the midfoot. The use of a textile and/or fiber-like reinforcing element 420 in combination with a deformation element 410 allows, according to one or more aspects of the present invention, the manufacture of a very light cushioning element 400 that nevertheless has the necessary stability. Such embodiments of a cushioning element 400 may be used in the construction of shoe soles. In further embodiments, the reinforcing element 420 may also be another element that increases the stability of the deformation element 420 or a decorative element or the like.


According to further embodiments of the invention, the cushioning element 400 shown in FIG. 4 furthermore comprises a foil-like reinforcing element 430. In certain embodiments, this is a foil comprising thermoplastic urethane. When combined with a deformation element 410, which comprises randomly arranged particles that comprise expanded thermoplastic urethane, such a foil 430 may form a chemical bond with the expanded particles that is extremely durable and resistant and, as such, does not require an additional use of adhesives. As a result, the manufacture of such cushioning elements 400 may be easier, more cost-effective and more environment-friendly.


The use of a foil-like reinforcing element 430 may increase the (form) stability of the cushioning element 400, while also protecting the cushioning element 400 against external influences, such as abrasion, moisture, UV light, or the like. In certain embodiments, the first reinforcing element 420 and/or the foil-like reinforcing element 430 further comprise at least one opening. The at least one opening may be arranged such that air and/or liquids flowing through one or more of the channels permeable to air and/or liquids may pass in at least one direction through the at least one opening. As a result, manufacture of breathable cushioning elements 400 is facilitated, while also using the advantages of additional reinforcing elements 420, 430 described above to protect against moisture from the outside. Thereby, in certain embodiments, the foil-like reinforcing element 430 is designed as a membrane that is permeable to air in both directions for breathability, but is permeable to liquids in one direction only, preferably in the direction from the foot outwards, so that no moisture from the outside may penetrate from the outside into the shoe and to the foot of the wearer.



FIG. 5 shows a schematic cross-section of a shoe 500, according to other embodiments of the present invention. The shoe 500 comprises a cushioning element designed as a midsole 505, which cushioning element comprises a deformation element 510 which may comprise randomly arranged particles of an expanded material. Here, voids are present within the particles and/or between the particles. Preferably, the voids, as described above, develop one or more channels permeable to air and/or liquids through the deformation element 510. In certain embodiments, the materials and the manufacturing parameters are selected such that the channels, as described above, are permeable to air, but not to liquids. This design enables the manufacture of a shoe 500 which, though being breathable, protects the foot of the wearer against moisture from the outside.


The cushioning element 505 shown in FIG. 5 further comprises a reinforcing element 520 which is configured as a cage element in the presented embodiments and which, for example, encompasses a three-dimensional shoe upper. In order to avoid negative influences on the breathability of the shoe, the reinforcing element 520 preferably comprises a succession of openings 530 arranged such that air and/or fluid flowing through the channels in the deformation element 510 may flow, in at least one direction, through the at least one opening 530 in the reinforcing element 520, e.g. from the inside to the outside. Furthermore, the cushioning element 505 preferably comprises a series of outer sole elements 540, which may fulfill a number of functions. As a result, the outer sole elements 540 may additionally protect the foot of the wearer against moisture and/or influence the cushioning properties of the sole 505 of the shoe 500 in a favorable manner and/or further increase the ground contact of the shoe 500 and so forth.



FIG. 6 and FIG. 7 show further embodiments of cushioning elements 600, 700 provided as midsoles, each comprising a first deformation element 610, 710 which takes up a first partial region of the cushioning element 600, 700, and a second deformation element 620, 720, which takes up a second partial region of the cushioning element 600, 700. The different deformation elements 610, 710, 620, 720 each comprise randomly arranged particles of an expanded material, with voids being present within the particles and/or between the particles of the deformation elements 610, 710, 620, 720. For the different deformation elements 610, 710, 620, 720, particles of the same expanded material or of different materials may be used. Furthermore, the particles may have the same cross-sectional profile or different shapes. The particles may also have different sizes, densities, colors etc. before filling into the molds (not shown), which are used for the manufacture of the cushioning elements 600, 700. According to certain embodiments of the invention, the particles for the first deformation element 610, 710 and the second deformation element 620, 720, as well as the manufacturing parameters, are selected such that the voids in the first deformation element 610 or 710, respectively, show a different size on average than the voids in the second deformation element 620 or 720.


For example, the particles and the manufacturing parameters (e.g. pressure, duration and/or temperature of a heating and/or pressurizing and/or steaming process) may be selected such that the voids in the second deformation element 620 or 720, respectively, are smaller on average than the voids in the first deformation element 610 or 710, respectively. Therefore, by combining different deformation elements, properties such as, elasticity, breathability, permeability to liquids, heat insulation, density, thickness, weight etc. of the cushioning element may be selectively influenced in individual partial regions, which increases the constructional freedom to a considerable extent. In further embodiments, the cushioning element comprises an even higher number (three or more) of different deformation elements which each take up a partial region of the cushioning element. Here, all deformation elements may comprise different properties (e.g., size of the voids), or several deformation elements may have similar properties or comprise the same properties.


As one example, it is conceivable that the randomly arranged particles in the first deformation element 610, 710 and the manufacturing parameters are chosen such that the first voids between and/or within the randomly arranged particles of the first deformation element 610, 710 predominantly form channels throughout the first deformation element 610, 710 that are permeable to air and/or liquids, thus creating good breathability in this region. The randomly arranged particles in the second deformation element 620, 720 and the manufacturing parameters may be chosen such that the second voids between and/or within the randomly arranged particles in the second deformation element 620, 720 predominantly form cavities which trap air inside them, thus creating good heat insulation in this region. The opposite situation is also possible.


Finally, FIGS. 9a-f show embodiments of a shoe 900 comprising embodiments of a cushioning element 905. FIG. 9a shows the lateral side of the shoe 900, and FIG. 9b shows the medial side. FIG. 9c shows the back of the shoe 900, and FIG. 9d shows the bottom side. Finally, FIGS. 9e and 9f show enlarged pictures of the cushioning element 905 of the shoe 900.


The cushioning element 905 comprises a first deformation element 910, comprising randomly arranged particles 920 of an expanded material with first voids 930 between the particles 920. All explanations and considerations put forth above with regard to the embodiments of cushioning elements 100, 300, 400, 505, 600, 700, 800 and first deformation elements 110, 310, 410, 510, 610, 710, 810 also apply here.


Furthermore, emphasis is once again put on the fact that by at least partially fusing the particle surfaces, e.g. by means of a steaming process or some other process, the resulting bond is strong enough so that the particles 920 are not “picked off” during use of the shoe 900.


The cushioning element further comprises a reinforcing element 950 and an outsole layer 960. Both reinforcing element 950 and outsole layer 960 may comprise several subcomponents that may or may not form one integral piece. In these embodiments shown here, the reinforcing element 950 comprises a pronation support in the medial heel region and a torsion bar in the region of the arch of the foot. The outsole layer 960 comprises several individual subcomponents arranged along the rim of the sole and in the forefoot region.


Finally, the shoe 900 comprises an upper 940.


The shoe 900 with cushioning element 905 may, in particular, provide a high energy return to the foot of a wearer, combined with good heat insulation properties during ground contact and high ventilation, potentially with directed airflow, during other times of a gait cycle, thus helping to increase wearing comfort, endurance, performance and general well-being of an athlete.


In the following, further examples are described to facilitate the understanding of the invention:


1. Cushioning element for sports apparel, comprising:


a. a first deformation element comprising a plurality of randomly arranged particles of an expanded material;


b. wherein there are first voids within the particles and/or between the particles.


2. Cushioning element according to example 1, wherein the particles of the expanded material comprise one or more of the following materials: expanded ethylene-vinyl-acetate, expanded thermoplastic urethane, expanded polypropylene, expanded polyamide; expanded polyether block amide, expanded polyoxymethylene, expanded polystyrene; expanded polyethylene, expanded polyoxyethylene, expanded ethylene propylene diene monomer.


3. Cushioning element according to example 1 or 2, wherein the particles of the expanded material comprise one or more of the following cross-sectional profiles: ring-shaped, oval, square, polygonal, round, rectangular, star-shaped.


4. Cushioning element according to one of the preceding examples 1-3, wherein the first deformation element is manufactured by inserting the particles of the expanded material into a mold and, after the inserting into the mold, subjecting the particles of the expanded material to a heating and/or a pressurization and/or a steaming process.


5. Cushioning element according to example 4, wherein, before inserting into the mold, the particles comprise a density of 10-150 g/l, preferably 10-100 g/l and particularly preferably 10-50 g/l.


6. Cushioning element according to one of the preceding examples 1-5, wherein the first deformation element is manufactured by intermixing the particles of the expanded material with a further material which is subsequently removed or remains at least partially within the first voids of the first deformation element.


7. Cushioning element according to example 6, wherein a solidified liquid resides in the first voids of the first deformation element.


8. Cushioning element according to one of the preceding examples 1-7, wherein the first voids form one or more cavities in which air is trapped.


9. Cushioning element according to one of the preceding examples 1-8, wherein the first voids form one or more channels through the first deformation element that are permeable to air and/or liquids.


10. Cushioning element according to one of the preceding examples 1-9, further comprising a reinforcing element, in particular a textile reinforcing element and/or a foil-like reinforcing element and/or a fiber-like reinforcing element.


11. Cushioning element according to example 10, wherein the reinforcing element is provided as a foil comprising thermoplastic urethane.


12. Cushioning element according to example 10 or 11 in combination with example 9, wherein the reinforcing element comprises at least one opening which is arranged in such a way that air and/or a liquid passing through the one or more channels in the first deformation element can pass in at least one direction through the at least one opening in the reinforcing element.


13. Cushioning element according to one of the preceding examples 1-12, wherein the first deformation element takes up a first partial region of the cushioning element and wherein the cushioning element further comprises a second deformation element.


14. Cushioning element according to example 13, wherein the second deformation element comprises a plurality of randomly arranged particles of an expanded material, wherein there are second voids within the particles and/or between the particles of the second deformation element, and wherein the second voids are smaller on average than the first voids of the first deformation element.


15. Cushioning element according to one of the preceding examples 1-14, wherein the cushioning element is provided as at least a part of a sole of a shoe, in particular as at least a part of a midsole.


16. Cushioning element according to one of the examples 1-14, wherein the cushioning element is provided as at least a part of an insole of a shoe.


17. Shoe comprising at least one cushioning element according to example 15 and/or example 16.


Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.

Claims
  • 1. A shoe sole comprising at least one cushioning element for sports apparel, the at least one cushioning element further comprising: (a) a first deformation element comprising a plurality of randomly arranged particles of an expanded material;(b) wherein there are first voids within the particles, between the particles, or both within and between the particles;(c) wherein the first deformation element takes up a first partial region of the cushioning element and wherein the cushioning element further comprises a second deformation element comprising a plurality of randomly arranges particles of an expanded material;(d) wherein there are second voids within the particles, between the particles, or both within and between the particles of the second deformation element, and wherein the second voids are smaller on average than the first voids of the first deformation element.
  • 2. The shoe sole according to claim 1, wherein the first voids form one or more channels through the first deformation element that are permeable to air and/or liquids.
  • 3. The shoe sole according to claim 2, further comprising a reinforcing element.
  • 4. The shoe sole according to claim 3, wherein the reinforcing element is a textile reinforcing element.
  • 5. The shoe sole according to claim 3, wherein the reinforcing element is a foil reinforcing element.
  • 6. The shoe sole according to claim 5, wherein the foil reinforcing element is air and/or liquid permeable in at least one direction.
  • 7. The shoe sole according to claim 5, wherein the foil reinforcing element is air permeable in one or both directions and liquid permeable only one direction.
  • 8. The shoe sole according to claim 3, wherein the reinforcing element is a fiber reinforcing element.
  • 9. The shoe sole according to claim 3, wherein the reinforcing element comprises at least one opening which is arranged in such a way that air and/or a liquid passing through the one or more channels in the first deformation element can pass in at least one direction through the at least one opening in the reinforcing element.
  • 10. The shoe sole according to claim 3, wherein the reinforcing element is a foil comprising thermoplastic urethane.
  • 11. The shoe sole according to claim 3, wherein the reinforcing element comprises at least one opening which is arranged in such a way that air and/or a liquid passing through the one or more channels in the first deformation element can pass in at least one direction through the at least one opening in the reinforcing element.
  • 12. A shoe comprising at least one cushioning element for sports apparel, the at least one cushioning element comprising: (a) a first deformation element comprising a plurality of randomly arranged particles of an expanded material;(b) wherein there are first voids within the particles, between the particles, or both within and between the particles;(c) wherein the first deformation element takes up a first partial region of the at least one cushioning element and wherein the at least one cushioning element further comprises a second deformation element comprising a plurality of randomly arranges particles of an expanded material;(d) wherein there are second voids within the particles, between the particles, or both within and between the particles of the second deformation element, and wherein the second voids are smaller on average than the first voids of the first deformation element; and(e) wherein the at least one cushioning element is provided as at least a part of a sole of the shoe.
  • 13. The shoe sole according to claim 1, wherein the randomly arranged particles of an expanded material in the first deformation element, in the second deformation element, or in both the first deformation element and the second deformation element comprise one or more of the following cross-sectional profiles: ring-shaped, oval, square, polygonal, round, rectangular, and star-shaped.
Priority Claims (2)
Number Date Country Kind
10 2013 202 291 Feb 2013 DE national
14152906 Jan 2014 EP regional
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional application of U.S. Application No. 14/178,720, filed on Feb. 12, 2014, entitled CUSHIONING ELEMENT FOR SPORTS APPAREL (“the '720 application”) which claims priority benefits from German Patent Application No. DE 10 2013 202 291.3, filed on Feb. 13, 2013, entitled CUSHIONING ELEMENT FOR SPORTS APPAREL (“the '291 application”), and from European Patent Application No. EP 14 152 906.5, filed on Jan. 28, 2014, entitled CUSHIONING ELEMENT FOR SPORTS APPAREL (“the '906 application”). The '720, '291 and '906 applications are hereby incorporated herein in their entireties by this reference.

US Referenced Citations (258)
Number Name Date Kind
D64898 Gunlock Jun 1924 S
2131756 Roberts Oct 1938 A
2968106 Joiner et al. Jan 1961 A
3186013 Glassman et al. Jun 1965 A
3586003 Baker Jun 1971 A
D237323 Inohara Oct 1975 S
4132016 Vaccari Jan 1979 A
4364189 Bates Dec 1982 A
4481727 Stubblefield et al. Nov 1984 A
4524529 Schaefer Jun 1985 A
4546559 Dassler et al. Oct 1985 A
4624062 Autry Nov 1986 A
4642911 Talarico et al. Feb 1987 A
4658515 Oatman et al. Apr 1987 A
4667423 Autry et al. May 1987 A
D296262 Brown et al. Jun 1988 S
4754561 Dufour et al. Jul 1988 A
D302898 Greenberg Aug 1989 S
RE33066 Stubblefield Sep 1989 E
4864739 Maestri et al. Sep 1989 A
4922631 Anderie et al. May 1990 A
4970807 Anderie et al. Nov 1990 A
4980445 van Der wal et al. Dec 1990 A
5025573 Giese et al. Jun 1991 A
D329731 Adcock et al. Sep 1992 S
5150490 Busch Sep 1992 A
D333556 Purdom Mar 1993 S
D337650 Thomas, III et al. Jul 1993 S
D340797 Pallera et al. Nov 1993 S
5283963 Lerner et al. Feb 1994 A
5308420 Yang et al. May 1994 A
5319866 Foley et al. Jun 1994 A
D350016 Passke et al. Aug 1994 S
D350222 Hase Sep 1994 S
5383290 Grim Jan 1995 A
D356438 Opie et al. Mar 1995 S
5549743 Pearce Aug 1996 A
D375619 Backus et al. Nov 1996 S
5617650 Grim Apr 1997 A
5692319 Parker et al. Dec 1997 A
5709954 Lyden et al. Jan 1998 A
D389991 Elliott Feb 1998 S
D390349 Murai et al. Feb 1998 S
D393340 Doxey Apr 1998 S
D395337 Greene Jun 1998 S
D408618 Wilborn et al. Apr 1999 S
D408971 Birkenstock May 1999 S
D413010 Birkenstock Aug 1999 S
D414920 Cahill Oct 1999 S
D415610 Cahill Oct 1999 S
D415876 Cahill Nov 1999 S
5996252 Cougar Dec 1999 A
6014821 Yaw Jan 2000 A
6041521 Wong Mar 2000 A
D422400 Brady et al. Apr 2000 S
D423199 Cahill Apr 2000 S
6108943 Hudson et al. Aug 2000 A
D431346 Birkenstock Oct 2000 S
D441181 Morgan May 2001 S
D460852 Daudier Jul 2002 S
6516540 Seydel et al. Feb 2003 B2
D482855 Magro Dec 2003 S
6702469 Taniguchi et al. Mar 2004 B1
D490222 Burg et al. May 2004 S
D490230 Mervar May 2004 S
D490233 Cooper May 2004 S
D492099 McClaskie Jun 2004 S
6782640 Westin et al. Aug 2004 B2
6796056 Swigart Sep 2004 B2
D498901 Hawker et al. Nov 2004 S
6925734 Schaeffer et al. Aug 2005 B1
6948263 Covatch Sep 2005 B2
6957504 Morris Oct 2005 B2
D517302 Ardissono Mar 2006 S
D538518 Della Valle Mar 2007 S
7202284 Limerkens et al. Apr 2007 B1
D554848 Marston Nov 2007 S
D555343 Bettencourt Nov 2007 S
D555345 Bettencourt Nov 2007 S
D560883 McClaskie Feb 2008 S
D561433 McClaskie Feb 2008 S
D561438 Belley Feb 2008 S
D561986 Home et al. Feb 2008 S
D570581 Moretti Jun 2008 S
D571085 McClaskie Jun 2008 S
D572462 Hatfield et al. Jul 2008 S
7421805 Geer et al. Sep 2008 B2
D586090 Turner et al. Feb 2009 S
D589690 Truelsen Apr 2009 S
D594187 Hickman Jun 2009 S
D596384 Andersen et al. Jul 2009 S
D601333 McClaskie Oct 2009 S
D606733 McClaskie Dec 2009 S
D607190 McClaskie Jan 2010 S
D611233 Della Valle et al. Mar 2010 S
7673397 Jarvis Mar 2010 B2
D616183 Skaja May 2010 S
D617540 McClaskie Jun 2010 S
D618891 McClaskie Jul 2010 S
D631646 Müller Feb 2011 S
D633286 Skaja Mar 2011 S
D633287 Skaja Mar 2011 S
D634918 Katz et al. Mar 2011 S
D636156 Della Valle et al. Apr 2011 S
D636569 McMillan Apr 2011 S
D636571 Avar Apr 2011 S
7941941 Hazenberg et al. May 2011 B2
D641142 Lindseth et al. Jul 2011 S
D644827 Lee Sep 2011 S
D645649 McClaskie Sep 2011 S
D648105 Schlageter et al. Nov 2011 S
D649761 Chang Dec 2011 S
D649768 Petrie Dec 2011 S
D650159 Avar Dec 2011 S
8082684 Munns Dec 2011 B2
D655488 Blakeslee Mar 2012 S
D659364 Jolicoeur May 2012 S
8186081 Wilson, III et al. May 2012 B2
D680725 Avar et al. Apr 2013 S
D680726 Propét Apr 2013 S
D683116 Petrie May 2013 S
8479412 Peyton et al. Jul 2013 B2
8490297 Guerra Jul 2013 B2
D693553 McClaskie Nov 2013 S
D695501 Yehudah Dec 2013 S
D698137 Carr Jan 2014 S
D707934 Petrie Jul 2014 S
D709680 Herath Jul 2014 S
8834770 Nakano et al. Sep 2014 B2
D721478 Avent et al. Jan 2015 S
9010157 Podhajny et al. Apr 2015 B1
D739129 Del Biondi Sep 2015 S
D739131 Del Biondi Sep 2015 S
D740003 Herath Oct 2015 S
D740004 Hoellmueller et al. Oct 2015 S
9212270 Künkel et al. Dec 2015 B2
D758056 Herath et al. Jun 2016 S
D765380 Petrie Sep 2016 S
D776410 Herath et al. Jan 2017 S
D783264 Hoellmueller et al. Apr 2017 S
9610746 Wardlaw et al. Apr 2017 B2
D789064 Madore Jun 2017 S
D790832 Fogg Jul 2017 S
D796813 Link Sep 2017 S
9781970 Wardlaw et al. Oct 2017 B2
9781974 Reinhardt Oct 2017 B2
9788598 Reinhardt Oct 2017 B2
9788606 Reinhardt Oct 2017 B2
9820528 Reinhardt et al. Nov 2017 B2
9849645 Wardlaw et al. Dec 2017 B2
9930928 Whiteman et al. Apr 2018 B2
20030131501 Erickson et al. Jul 2003 A1
20030172548 Fuerst Sep 2003 A1
20030208925 Pan Nov 2003 A1
20040032042 Chi Feb 2004 A1
20040211088 Volkart Oct 2004 A1
20050065270 Knoerr et al. Mar 2005 A1
20050108898 Jeppesen et al. May 2005 A1
20050150132 Iannacone Jul 2005 A1
20050241181 Cheng Nov 2005 A1
20060026863 Liu Feb 2006 A1
20060083912 Park et al. Apr 2006 A1
20060125134 Lin et al. Jun 2006 A1
20060156579 Hoffer et al. Jul 2006 A1
20060235095 Leberfinger et al. Oct 2006 A1
20060283046 Mason Dec 2006 A1
20070193070 Bertagna et al. Aug 2007 A1
20070199213 Campbell et al. Aug 2007 A1
20070295451 Willis Dec 2007 A1
20080052965 Sato et al. Mar 2008 A1
20080060221 Hottinger et al. Mar 2008 A1
20080244932 Nau et al. Oct 2008 A1
20080250666 Votolato Oct 2008 A1
20090013558 Hazenberg et al. Jan 2009 A1
20090025260 Nakano Jan 2009 A1
20090113758 Nishiwaki et al. May 2009 A1
20090119023 Zimmer et al. May 2009 A1
20090199438 Polegato Moretti Aug 2009 A1
20090235557 Christensen et al. Sep 2009 A1
20090277047 Moretti Nov 2009 A1
20090320330 Borel et al. Dec 2009 A1
20100063778 Schrock et al. Mar 2010 A1
20100122472 Wilson, III et al. May 2010 A1
20100154257 Bosomworth et al. Jun 2010 A1
20100218397 Nishiwaki et al. Sep 2010 A1
20100222442 Prissok et al. Sep 2010 A1
20100242309 McCann Sep 2010 A1
20100287788 Spanks et al. Nov 2010 A1
20100287795 Van Niekerk Nov 2010 A1
20100293811 Truelsen Nov 2010 A1
20110047720 Maranan et al. Mar 2011 A1
20110067272 Lin Mar 2011 A1
20110232135 Dean et al. Sep 2011 A1
20110252668 Chen et al. Oct 2011 A1
20110283560 Portzline et al. Nov 2011 A1
20110302805 Vito Dec 2011 A1
20120005920 Alvear et al. Jan 2012 A1
20120047770 Dean et al. Mar 2012 A1
20120177777 Brown et al. Jul 2012 A1
20120233877 Swigart et al. Sep 2012 A1
20120233883 Spencer et al. Sep 2012 A1
20120235322 Greene et al. Sep 2012 A1
20120266490 Atwal et al. Oct 2012 A1
20130150468 Füssi et al. Jun 2013 A1
20130255103 Dua et al. Oct 2013 A1
20130266792 Nohara et al. Oct 2013 A1
20130269215 Smirman et al. Oct 2013 A1
20130291409 Reinhardt et al. Nov 2013 A1
20140017450 Baghdadi et al. Jan 2014 A1
20140033573 Wills Feb 2014 A1
20140066530 Shen et al. Mar 2014 A1
20140075787 Cartagena Mar 2014 A1
20140197253 Lofts et al. Jul 2014 A1
20140223673 Wardlaw et al. Aug 2014 A1
20140223776 Wardlaw et al. Aug 2014 A1
20140223777 Whiteman et al. Aug 2014 A1
20140223783 Wardlaw et al. Aug 2014 A1
20140227505 Schiller et al. Aug 2014 A1
20140366403 Reinhardt et al. Dec 2014 A1
20140366404 Reinhardt et al. Dec 2014 A1
20140366405 Reinhardt et al. Dec 2014 A1
20140373392 Cullen Dec 2014 A1
20150082668 Nakaya et al. Mar 2015 A1
20150089841 Smaldone et al. Apr 2015 A1
20150166270 Buscher et al. Jun 2015 A1
20150174808 Rudolph et al. Jun 2015 A1
20150197617 Prissok et al. Jul 2015 A1
20150237823 Schmitt et al. Aug 2015 A1
20150344661 Spies et al. Dec 2015 A1
20150351493 Ashcroft et al. Dec 2015 A1
20160037859 Smith et al. Feb 2016 A1
20160044992 Reinhardt et al. Feb 2016 A1
20160046751 Spies et al. Feb 2016 A1
20160121524 Däschlein et al. May 2016 A1
20160128426 Reinhardt et al. May 2016 A1
20160227876 Le et al. Aug 2016 A1
20160244583 Keppeler Aug 2016 A1
20160244584 Keppeler Aug 2016 A1
20160244587 Gutmann et al. Aug 2016 A1
20160278481 Le et al. Sep 2016 A1
20160295955 Wardlaw et al. Oct 2016 A1
20160302508 Kormann et al. Oct 2016 A1
20160346627 Le et al. Dec 2016 A1
20170173910 Wardlaw et al. Jun 2017 A1
20170253710 Smith et al. Sep 2017 A1
20170259474 Holmes et al. Sep 2017 A1
20170340067 Dyckmans et al. Nov 2017 A1
20170341325 Le et al. Nov 2017 A1
20170341326 Holmes et al. Nov 2017 A1
20170341327 Le et al. Nov 2017 A1
20180035755 Reinhardt et al. Feb 2018 A1
20180093437 Wardlaw et al. Apr 2018 A1
20180154598 Kurtz et al. Jun 2018 A1
20180206591 Whiteman et al. Jul 2018 A1
20180235310 Wardlaw et al. Aug 2018 A1
20180290349 Kirupanantham et al. Oct 2018 A1
20180303198 Reinhardt et al. Oct 2018 A1
20190021435 Kormann et al. Jan 2019 A1
Foreign Referenced Citations (108)
Number Date Country
1034662 Aug 1989 CN
1036128 Oct 1989 CN
2511160 Sep 2002 CN
2796454 Jul 2006 CN
2888936 Apr 2007 CN
101190049 Jun 2008 CN
201223028 Apr 2009 CN
101484035 Jul 2009 CN
101611950 Dec 2009 CN
202233324 May 2012 CN
202635746 Jan 2013 CN
202907958 May 2013 CN
103371564 Oct 2013 CN
203692653 Jul 2014 CN
203828180 Sep 2014 CN
3605662 Jun 1987 DE
4236081 Apr 1994 DE
19652690 Jun 1998 DE
19950121 Nov 2000 DE
10010182 Sep 2001 DE
10244433 Dec 2005 DE
10244435 Feb 2006 DE
102004063803 Jul 2006 DE
102005050411 Apr 2007 DE
202008017042 Apr 2009 DE
102008020890 Oct 2009 DE
102009004386 Jul 2010 DE
202010008893 Jan 2011 DE
112009001291 Apr 2011 DE
102010052783 May 2012 DE
202012005735 Aug 2012 DE
102011108744 Jan 2013 DE
102012206094 Oct 2013 DE
102013208170 Nov 2014 DE
001286116-0001 Jul 2011 EM
001286116-0002 Jul 2011 EM
001286116-0003 Jul 2011 EM
001286116-0004 Jul 2011 EM
001286116-0005 Jul 2011 EM
001286116-0006 Jul 2011 EM
165353 Dec 1985 EP
752216 Jan 1997 EP
873061 Oct 1998 EP
1197159 Apr 2002 EP
1424105 Jun 2004 EP
1197159 Sep 2004 EP
1854620 Nov 2007 EP
1872924 Jan 2008 EP
2110037 Oct 2009 EP
2233021 Sep 2010 EP
2250917 Nov 2010 EP
2316293 May 2011 EP
2342986 Jul 2011 EP
2446768 May 2012 EP
2649896 Oct 2013 EP
2540184 Jul 2014 EP
2792261 Oct 2014 EP
2848144 Mar 2015 EP
2939558 Nov 2015 EP
3067100 Sep 2016 EP
2683432 May 1993 FR
2258801 Feb 1993 GB
01274705 Nov 1989 JP
H0350286 May 1991 JP
04502780 May 1992 JP
6046483 Jun 1994 JP
H0662802 Sep 1994 JP
2640214 Aug 1997 JP
10152575 Jun 1998 JP
2000197503 Jul 2000 JP
2002361749 Dec 2002 JP
2005218543 Aug 2005 JP
2006-20656 Jan 2006 JP
2006-137032 Jun 2006 JP
2007516109 Jun 2007 JP
2007-275275 Oct 2007 JP
2008073548 Apr 2008 JP
2008-110176 May 2008 JP
2008543401 Dec 2008 JP
20050005614 Jan 2005 KR
1020110049293 May 2011 KR
201012407 Apr 2010 TW
8906501 Jun 1989 WO
1994020568 Sep 1994 WO
2005026243 Mar 2005 WO
2005038706 Apr 2005 WO
2005066250 Jul 2005 WO
2006015440 Feb 2006 WO
2006034808 Apr 2006 WO
2006134033 Dec 2006 WO
2007082838 Jul 2007 WO
2008047538 Apr 2008 WO
2008087078 Jul 2008 WO
2009036173 Mar 2009 WO
2009095935 Aug 2009 WO
2010010010 Jan 2010 WO
2010037028 Apr 2010 WO
2010045144 Apr 2010 WO
2010136398 Dec 2010 WO
2011134996 Nov 2011 WO
2012065926 May 2012 WO
2012135007 Oct 2012 WO
2013013784 Jan 2013 WO
2013168256 Nov 2013 WO
2014046940 Mar 2014 WO
2015052265 Apr 2015 WO
2015052267 Apr 2015 WO
2015075546 May 2015 WO
Non-Patent Literature Citations (47)
Entry
Translation of WO2013/013784, publ Jan. 31, 2013, Hartmann.
Translation of CN2888936, publ Apr. 18, 2007, Xihong.
“Colour and Additive Preparations for Extruded Polyolefin Foams”, Gabriel-Chemie Group, available at www.gabriel-chemie.com/downloads/folder/PE%20foams_en.pdf, last accessed on Jan. 17, 2017, 20 pages.
“http://www.dow.com/polyethylene/na/en/fab/foaming.htm”, Dec. 7, 2011, 1 page.
“https://www.britannica.com/print/article/463684”, Aug. 17, 2016.
U.S. Appl. No. 14/178,720, Advisory Action, dated Apr. 12, 2017, 3 pages.
U.S. Appl. No. 14/178,720, Final Office Action, dated Feb. 1, 2017, 11 pages.
U.S. Appl. No. 14/178,720, Non-Final Office Action, dated Oct. 25, 2016, 13 pages.
U.S. Appl. No. 14/178,720, Notice of Allowance, dated May 31, 2017, 8 pages.
U.S. Appl. No. 14/178,720, Restriction Requirement, dated Aug. 17, 2016, 5 pages.
U.S. Appl. No. 14/178,720, Restriction Requirement, dated May 23, 2016, 6 pages.
U.S. Appl. No. 15/581,112, filed Apr. 28, 2017 Unpublished.
U.S. Appl. No. 29/591,016, filed Jan. 16, 2017 Unpublished.
U.S. Appl. No. 29/592,946, filed Feb. 3, 2017 Unpublished.
U.S. Appl. No. 29/592,935, filed Feb. 3, 2017 Unpublished.
U.S. Appl. No. 29/594,228, filed Feb. 16, 2017 Unpublished.
U.S. Appl. No. 29/594,358, filed Feb. 17, 2017 Unpublished.
U.S. Appl. No. 29/595,852, filed Mar. 2, 2017 Unpublished.
U.S. Appl. No. 29/595,857, filed Mar. 2, 2017 Unpublished.
U.S. Appl. No. 29/614,532, filed Aug. 21, 2017 Unpublished.
U.S. Appl. No. 29/614,545, filed Aug. 21, 2017 Unpublished.
U.S. Appl. No. 62/137,139, filed Mar. 23, 2016 Unpublished.
Azo Materials, “BASF Develops Expanded Thermoplastic Polyurethane”, available http://www.azom.com/news.aspxNewsID=37360″, Jul. 2, 2013, 4 pages.
Baur et al., “Saechtling Kunststoff Taschenbuch”, Hanser Verlag, 31st Ausgabe, Oct. 2013, 18 pages (9 pages for the original document and 9 pages for the English translation).
Gunzenhausen et al., “The right turn (part 1)—Determination of Characteristic values for assembly injection molding”, Journal of Plastics Technology, Apr. 2008, pp. 1-8 (English translation of Abstract provided).
Chinese Patent Application No. 201410049613.4, Office Action, dated Jul. 27, 2015, 11 pages.
European Patent Application No. 14152906.5, European Search Report, dated May 6, 2014, 6 pages.
Nauta, “Stabilisation of Low Density, Closed Cell Polyethylene Foam”, University of Twente, Netherlands, 2000, 148 pages.
Office Action, Chinese Patent Application No. 201410049613.4, dated Dec. 30, 2016, 8 pages.
Office Action, Japanese Patent Application No. 2014-021229, dated Jun. 13, 2017.
Venable LLP, “Letter”, Jan. 14, 2016, 6 pages.
Office Action, Japanese Patent Application No. 2014-021229, dated Feb. 20, 2018.
Office Action, Japanese Patent Application No. 2014-021229, dated Feb. 5, 2019, 6 pages.
U.S. Appl. No. 29/663,342, filed Sep. 13, 2018, Unpublished.
U.S. Appl. No. 29/664,097, filed Sep. 21, 2018, Unpublished.
U.S. Appl. No. 16/353,374, filed Mar. 14, 2019, Unpublished.
U.S. Appl. No. 29/595,859, filed Mar. 2, 2017, Unpublished.
U.S. Appl. No. 29/691,166, filed May 14, 2019, Unpublished.
U.S. Appl. No. 29/643,233, filed Apr. 5, 2018 , Unpublished.
U.S. Appl. No. 29/641,371, filed Mar. 21, 2018, Unpublished.
U.S. Appl. No. 29/663,029, filed Sep. 11, 2018, Unpublished.
U.S. Appl. No. 29/641,256, filed Mar. 20, 2018, Unpublished.
U.S. Appl. No. 29/641,223, filed Mar. 20, 2018, Unpublished.
U.S. Appl. No. 29/691,854, filed May 20, 2019, Unpublished.
U.S. Appl. No. 29/679,962, filed Feb. 12, 2019, Unpublished.
U.S. Appl. No. 29/693,455, filed Jun. 3, 2019, Unpublished.
U.S. Appl. No. 16/465,485, filed May 30, 2019, Unpublished.
Related Publications (1)
Number Date Country
20180000197 A1 Jan 2018 US
Divisions (1)
Number Date Country
Parent 14178720 Feb 2014 US
Child 15703031 US