The present invention relates to footwear such as shoes, boots, and so on, and in particular to the soles thereof.
Footwear comes in a variety of types and sizes, including sandals, shoes and boots. Footwear includes soles that protect and cushion the bottoms of the feet.
When walking, the heel of the foot strikes the ground first, followed by the forefoot. As the foot pushes off, the foot bends so that the heel rises and the forefoot is the last part to remain in contact with the ground. The heel takes the brunt of the force of the foot contacting the ground. Yet, the forefoot also experiences forces when the foot is landing on the ground and pushing off therefrom.
Much walking is done on hard surfaces, such as concrete, tile, etc. For example, walking on sidewalks and across streets involves concrete or asphalt surfaces. A shoe sole protects the foot from contact and abrasion with such hard surfaces.
In the prior art, Gaspard EU Patent No. 0383685 discloses a shoe sole with balls in the outsole. The balls are loosely provided in the outsole and are designed to move about.
It is desired to provide a shoe sole that provides improved protection and comfort.
An article of footwear comprises an upper configured to engage with a wearer's foot when the article of footwear is worn on the wearer's foot. A sole has a heel portion and a forefoot portion. The upper is connected to the sole, the sole having at least one cavity located in the heel portion or the forefoot portion. A cushion is located in the cavity, the cushion comprising resilient balls located in a resilient matrix material. The balls having a first durometer and the matrix material having a second durometer that is different than the first durometer.
In accordance with one aspect, the first durometer of the balls is greater than the second durometer of the matrix material.
In accordance with another aspect, the sole comprises an outsole and a midsole. The outsole has an upper surface and a lower surface that is configured to engage with a surface on which the wearer is striding. The midsole has a midsole lower surface that contacts the upper surface of the outsole. The midsole has the cavity that receives the cushion.
In accordance with another aspect, the midsole has a third durometer, the first durometer of the balls is less than the third durometer of the midsole.
In accordance with another aspect, the midsole has a forefoot cavity and a heel cavity, the heel cavity is separated from the forefoot cavity by a midsection of the midsole. The cushion comprises a heel cushion located in the heel cavity, further comprising a forefoot cushion located in the forefoot cavity, the forefoot cushion comprising balls in forefoot matrix material, with the durometer of the forefoot matrix material being different than the durometer of the balls in the forefoot cushion.
In accordance with another aspect, the balls in the forefoot cavity cushion are of a first diameter and the balls in the heel cavity cushion are of a second diameter, the first diameter being smaller than the second diameter.
In accordance with another aspect, the heel cavity is separated from the forefoot cavity by a midsection of the midsole.
In accordance with another aspect, the midsole comprises a lower portion located between the cushion and the outsole, the cavity being open to an upper surface of the midsole.
In accordance with another aspect, the balls in the cushion form a single layer of balls.
In accordance with another aspect, each of the balls in the cushion is interconnected with adjacent respective balls by spacing pins. The spacing pins creating gaps between adjacent respective balls, the matrix material being located in the gaps.
In accordance with another aspect, the matrix material substantially surrounds each of the balls in the cushion.
In accordance with another aspect, there is an upper cover over the cushion.
In accordance with another aspect, a lower cavity is in a lower surface of the sole. Balls are located in the lower cavity. A cover is over the lower cavity. The cover is at least translucent to provide a visual indication of the balls in the lower cavity. The cover is exposed to an exterior of the footwear.
In accordance with another aspect, the first durometer of the balls is greater than the second durometer of the matrix material. The sole comprises an outsole and a midsole. The outsole has an upper surface and a lower surface that is configured to engage with a surface on which the wearer is striding. The midsole has a midsole lower surface that contacts the upper surface of the outsole. The midsole has the cavity that receives the cushion. The midsole has a third durometer. The first durometer of the balls is less than the third durometer of the midsole. The balls in the cushion form a single layer of balls. Each of the balls in the cushion is interconnected with adjacent respective balls by spacing pins. The spacing pins create gaps between adjacent respective balls. The matrix material is located in the gaps. The midsole comprises a lower portion located between the cushion and the outsole. The cavity is open to an upper surface of the midsole.
An article of footwear comprises an upper configured to engage with a wearer's foot when the article of footwear is worn on the wearer's foot. An outsole has an upper surface and a lower surface that is configured to engage with a surface on which the wearer is striding. The outsole has an opening therein. A midsole has a midsole lower surface that contacts the upper surface of the outsole. The midsole has at least one cavity located in an upper surface and in a heel or a forefoot portion. The midsole also has a lower cavity that is adjacent to the opening in the outsole. A cushion is located in the cavity, the cushion comprising resilient balls located in a resilient matrix material. The balls have a first durometer and the matrix material having a second durometer that is different than the first durometer. Balls are located in the lower cavity. A retainer is over the lower cavity, the retainer retaining the balls in the lower cavity and being at least translucent to provide a visual indication of the balls in the lower cavity.
In accordance with another aspect, the outsole further comprises a protective tread member located below the lower cavity retainer.
The present invention provides a cushioned shoe sole for footwear that is both comfortable and provides support to the foot. The shoe sole has cavities, which cavities contain resilient balls. The balls can be loose or encompassed within a resilient matrix material. The balls provide cushioning for the foot. The balls are typically hidden from view. A visual indication can be provided that the shoe sole contains cushioning balls.
The footwear includes shoes, boots and so on. Examples of footwear include casual shoes, recreational shoes, athletic shoes, outdoor shoes and dress shoes. Further examples of footwear include cowboy boots, western boots, riding boots, outdoor boots, hiking boots and work boots. Additional examples of footwear include specialty footwear such as military boots.
Several embodiments are described herein, with
Referring to
As used herein, the terms “upper”, “lower”, “top” and “bottom” and similar terms as used to describe spatial relationships between components of the footwear and/or between a component of the footwear and the ground. Such terms are relative to the footwear positioned in an upright orientation on a ground surface. “Ground” includes interior floors and exterior surfaces such as streets, sidewalks, soil, etc.
The outsole 17 extends the length of the shoe and has an upper surface 31 and a lower surface 33. The lower surface 33 contacts the ground when the shoe is worn in normal use. The lower surface is configured to engage with the ground or other surface upon which the wearer of the shoe is striding or walking. The lower surface 33 is typically provided with a tread pattern, an example of which is shown in
The upper surface 31 is typically smooth, although need not be so. In one embodiment, the upper surface can be pockmarked with craters or shallow depressions, which depressions correspond to circular shaped projections 35 on the lower surface. The outsole may have upwardly extending side projections 39, which projections couple to the sides of the midsole. Such side projections 39 are located at the toe of the outsole, at the heel, and at locations between the toe and heel.
The footwear includes a heel 41 (see
The outsole 17 has an opening 43 therethrough, which opening is located forward of the heel 41 (see
The midsole 19 is sized and shaped to fit on top of the outsole 17 and the side projections 39 (see
The forefoot cavity 55 (see
The heel cavity 57 (see
The midsole 19 has a midsection cavity 71 as well (see
The midsole has an insert cavity 73 (see
A cover element 75 is provided to cover the bottom of the midsection cavity 71. The cover element 75 is transparent to allow viewing of the interior of the midsection cavity. Alternatively, the cover element can be translucent. If the midsection cavity 71 is closed at the bottom, then the bottom wall of the cavity is either transparent or translucent.
When the midsole 19 is coupled to the outsole 17, the bottoms of the forefoot and heel cavities 55, 57 are closed by the outsole.
Referring to
The forefoot cavity 55 has a single layer of balls 23. The heel cavity 57 has either a double layer, or a single layer, of balls 23. The balls are in contact with one another, although the balls are not deformed by the contact. In the heel cavity, the upper layer of balls can be arranged as shown in
Once the balls have been placed into the cavities 55, 57, the cavities are closed with the respective cavity covers 25.
The midsection cavity 71 has a single layer of balls 23. The midsection cavity is primarily to allow the user to visually see that the shoe sole contains balls. The forefoot cavity 55 and heel cavity 57 are closed off from viewing once the shoe is completed. Because of its location under the insert 21, the balls in the midsection cavity 71 do not serve a significant role in cushioning the foot.
The insert 21 is shaped like an “X”, having a central shank portion 81 and anus 83 extending therefrom. The central portion 81 of the insert is elongated and extends over the midsection cavity. The front arms 83 form a curved shape that extends about the heel end of the forefoot cavity 55. Likewise, the rear arms 83 form a curved shape that extends about the toe end of the heel cavity 57. The rear arms overlay the lip 65. The insert 21 is thin. A section of midsole 19 is between the insert 21 and the midsection cavity 71.
The outsole 17 is preferably made of synthetic or natural rubber, while the midsole 19 is preferably made of EVA or PU. The insert 21 is preferably made of thermoplastic urethane. The midsole is softer than the outsole and the insert. The outsole is softer and more flexible than the insert. Typically, the outsole 17 has a Shore A hardness of 62-72. Safety toe shoes have harder outsoles than do soft toe shoes. Typically, the midsole 19 has a Shore C hardness of 55-60. The insert 21 hardness is typically Shore D 73-77.
To assemble the shoe sole, the insert 21 is glued into the insert cavity 73 on the midsole. The top surface of the insert 21 is flush with the upper surface 54 of the midsole. Balls are put into the midsection cavity 71 and the cover 75 is glued over the cavity. In one embodiment, the balls in the midsection cavity 71 are smaller in diameter than the balls in the forefoot and heel cavities 55, 57. Then, the midsole 19 is coupled to the outsole 17 by adhesive. The tread 45 overlays and retains the cover 75, while permitting viewing of the balls 23 inside the midsection cavity. (In
With the midsole coupled to the outsole, the bottoms of the forefoot and heel cavities 55, 57 are closed. Balls 23 are placed into each cavity. As noted above, the balls in the forefoot cavity are smaller in diameter than the balls of the heel cavity. The balls in the forefoot cavity form a single layer and are abutting one another. The balls in the heel cavity are in two layers. The bottom layer of balls extends under the projecting lip 65. The balls in each layer are abutting one another. The balls 23 in each cavity are loose and not attached to one another. The tops of the balls 23 in each cavity are flush with the lip 61. Thus, in the preferred embodiment, the balls 23 do not protrude out of the top of each cavity.
Once the balls are positioned, the cavities are closed with the covers 25. The covers are glued to the lips 61. The top surfaces of the covers 25 are flush with the upper surface 54 of the midsole.
The sole is now assembled. The upper is attached to the sole to complete the shoe.
In use, when foot pressure is not applied to the sole, the balls are generally spherical in shape. As foot pressure is applied the sole, the balls 23 compress down. Foot pressure is unevenly distributed across the top of the sole. The heel area experiences higher pressure than the forefoot area and midsection area. The forefoot area experiences higher pressure than the midsection area. However, the foot pressure applied to the forefoot area is typically uneven, with the balls of the feet producing a higher pressure on the sole than the other forefoot areas. The balls under the highest foot pressure compress more. As the foot pressure is released, such as during walking when the foot is raised to take the next step, the balls resume their spherical shape. The wearer thus experiences softened steps. If walking over a hard ground surface such as concrete, the wearer's feet are protected from the hardness of the ground.
Even though the balls 23 in the forefoot and heel cavities 55, 57 are hidden from view, the balls in the midsection cavity 71 are visible through the cover element 75. Thus, a customer, when shopping for shoes, can view the balls and visually affirm that the shoe sole 11 contains balls.
The forefoot cavity 55 has a different size and shape in
The heel cavity 57 in
The insert 21 of
The insert 21 has a rear edge 95. Notches 97 are formed in the rear edge 95, along the central shank. In the preferred embodiment, there are three notches 97, which extend for a short distance into the central shank. These notches 97 allow the rear edge 95 to be flexible, resulting in a softer fit. When a user puts weight on the foot in the shoe, the rear edge 95 flexes down due to pressure from the heel. This is a more comfortable feeling when compared to an un-notched rear edge, which has less movement.
To make the ball matrices 103, 105, the balls 23 are placed into a respective mold. For the forefoot ball matrix 103, the balls are typically arranged in a single layer. For the heel ball matrix 105, the balls are typically arranged in a double layer. The respective mold is then filled with the matrix material 107. In the preferred embodiment, the matrix material covers substantially all of the surface area of the balls. As shown in
The provision of the matrix material maintains the relative positions of the balls with respect to one another, while still allowing the balls to compress under foot pressure and resume a spherical shape when foot pressure is removed. In this manner, the balls do not shift or move. In addition, the matrix material provides cushioning and resiliency in addition to the balls, adding to the overall cushioning of the sole. As foot pressure is applied to the sole, the ball matrix compresses. Thus, the balls and the matrix material compress under the foot pressure. When foot pressure is removed, the balls and matrix material decompress.
The ball assemblies 111 include whole balls 23W and partial balls. Whole balls are of course complete spheres. Partial balls are less than whole spheres. The partial balls are located around the periphery of the ball assembly. For example, as shown in
The provision of partial balls 23A, 23B, 23C along the periphery of the ball assembly 111 allows for a staggered fit of the balls with respect to one another and also allows for filling spaces along the periphery of the ball assembly when inserted into a respective cavity 55, 57, 71. The balls 23 are staggered in fit as shown in
The forefoot and heel cavities 55, 57 are shaped in a non-geometrical manner. That is to say, the cavities, when viewed in plan view from the top, are not circular or oval in shape. The cavities are shaped to the foot. By providing partial balls 23A, 23B, 23C, the balls in the ball assembly can fit within the cavities. The partial balls serve to fill much of the peripheral space between the whole balls and the cavity walls.
The pins 113 may disconnect or break away from the balls 23 when the shoe sole is in use. If the ball assembly is in a matrix, the balls remain fixed in place by the matrix material 107. If the balls are not in a matrix, then the balls can move slightly relative to the other balls. However, the relative positions of the balls remain unchanged. For example, the balls in one row can move about between the adjacent rows.
The balls 23 of
The foregoing disclosure and showings made in the drawings are merely illustrative of the principles of this invention and are not to be interpreted in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
4779359 | Famolare, Jr. | Oct 1988 | A |
4831749 | Tsai | May 1989 | A |
4970807 | Anderie | Nov 1990 | A |
5402588 | Graham | Apr 1995 | A |
5815949 | Sessa | Oct 1998 | A |
5918383 | Chee | Jul 1999 | A |
8316560 | Caron | Nov 2012 | B2 |
20040093766 | Hahn | May 2004 | A1 |
20050150132 | Iannacone | Jul 2005 | A1 |
20050262726 | Ferniani | Dec 2005 | A1 |
20080060221 | Hottinger | Mar 2008 | A1 |
20130239435 | McDowell | Sep 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20190343225 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62671085 | May 2018 | US |