The present invention relates to footwear and, more particularly, to a footwear construction having improved shock attenuation, flexibility and energy return.
In the footwear industry, there is an ongoing effort to produce footwear having exceptional cushioning capabilities and shock attenuation. The need to produce such a cushioning system is particularly pronounced in the design of work, walking and athletic footwear, where increased cushion and rebound are primary objectives. For example, to minimize the effects of standing and walking on hard surfaces such as concrete floors, some footwear manufacturers manufacture specialty footwear that cushions the wearer's foot, particularly the heel, from the hard surface.
One example of specialty cushioning footwear is disclosed in U.S. Pat. No. 5,216,824, assigned to Wolverine World Wide, Inc. This patent discloses a walking shoe having a thick, unitary, cushioned sole having two integral protrusions in the heel and forefoot. These two protrusions are each surrounded by separate, deep grooves that isolate the respective heel and forefoot protrusions and their vertical movement relative to a peripheral ledge. This construction of the sole allows those protrusions to sink upward, into the sole a certain amount and then rebound to respectively provide some shock attenuation and toe off efficiency. While this provides cushioning and energy return to the wearer, the monolithic sole and the two protrusions sometimes can be too rigid, which impairs its ability to be laterally flexible and to provide medial to lateral, or vice versa, compression. The configuration of the two protrusions and the respective surrounding grooves sometimes can impair adequate vertical compression.
Although conventional cushioning systems can provide cushioning and energy return, there remains a long felt and unmet need for a footwear construction that provides these features as well as inherent flexibility and suppleness of the sole to enhance comfort of the footwear.
A footwear configured to attenuate shock and provide rebound is provided, including an outsole having independent compression pods separated from an outer support perimeter by a peripheral groove and from one another by multiple transverse grooves that can be deeper than the peripheral groove. The pods can extend from a medial side to a lateral side, across a majority of an outsole width. The pods can compress individually and forwardly as the footwear engages the ground, and can rebound, providing energy return. The pods also can independently compress medially and/or laterally to provide enhanced side to side flexibility of the outsole and corresponding cushioning and comfort.
In one embodiment, the transverse grooves can be deeper than the thickness of lower walls of the pods so that those lower walls can compress deeply upward and into the outsole to provide shock attenuation upon strike of the pods with a ground surface.
In another embodiment, the transverse grooves can extend laterally, across a majority of the width of the sole. The transverse grooves can intersect the peripheral groove in multiple locations along the lateral and medial sides of the footwear. The transverse grooves can visibly extend below a support perimeter from a side view of the footwear disposed on a ground surface.
In yet another embodiment, the outsole can include a resilient, flexible shell bounded by a sidewall having a first thickness. The sidewall can transition to a support perimeter having a lower support perimeter surface that generally surrounds the compression pods but it is disposed at a level higher than the lower, ground contacting surfaces of the respective compression pods. When the pods are fully compressed, the lower support perimeter surface and the lower ground contacting surface of the compression pods can be at the same level to provide support.
In still another embodiment, each of multiple compression pods, aligned one in front of the other in the forefoot and/or heel regions of the footwear, is configured to compress upward on at least one of the lateral side and the medial side. A compression pod lower wall bottom surface can move upward within the outsole, toward a level or elevation equal to that of the lower support perimeter surface, upon application of at least one of a lateral compression force and a medial compression force. Optionally, each individual compression pod can tilt laterally or medially, or vice versa, so that the lower wall bottom surface is at a higher level on the medial side than on the lateral side, or vice versa. Each pod can tilt in this manner, independent of all the other pods due to the separation of the pods via the transverse grooves adjacent the pods, and in some cases, due to the peripheral groove located adjacent the lateral and medial edges of the respective pods.
In even another embodiment, the outsole can be constructed to include a thin, flexible, resilient shell, optionally made from rubber or some synthetic or other natural material. The shell can extend through and can form the contours of the compression pods and the respective walls thereof. For example the shell can form a compression pod lower wall. The shell can be configured so that its thickness in that lower wall is less than a depth of a corresponding adjacent or nearby transverse groove. In some cases, with this disparity between the transverse groove depth and the thickness of the shell, flexibility can be enhanced.
In a further embodiment, the shell can include a bridge that extends between and connects lower walls of adjacent compression pods. The bridge can extend above the respective transverse groove, between adjacent pods, to connect the relatively thin lower walls of the pod and shell to one another.
In yet a further embodiment, the footwear can include a cushion unit disposed in the shell. The cushion unit can be constructed from a second material different from the material from which the shell is constructed. The cushion unit can include a varying thickness, which optionally increases from heel-to-toe in the footwear. Optionally, where separate groups of compression pods are located in the heel and the forefoot regions, the cushion unit can be divided into separate forefoot and heel region units that are disconnected from one another. Each of the respective cushion units can vary in thickness without regard to one another from heel-to-toe, optionally becoming thinner toward the toe.
In still a further embodiment, the cushion unit can include bottom or lower surfaces that engage the lower walls of the respective underlying compression pods. These cushion unit lower surfaces can be disposed below a bottom of a corresponding transverse groove disposed between adjacent compression pods. The cushion units optionally can include bridge recesses within which the bridges of the thin shell and portions of the respective transverse grooves are disposed to minimize the profile of the outsole.
The current embodiments provide a novel footwear construction including an outsole that is flexible from side to side, yet can attenuate shock and provide exceptional cushioning.
These and other objects, advantages and features of the invention will be more readily understood and appreciated by reference to the detailed description of the preferred embodiments and the drawings.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited to the details of operation or to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention may be implemented in various other embodiments and of being practiced or being carried out in alternative ways not expressly disclosed herein. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. Further, enumeration may be used in the description of various embodiments. Unless otherwise expressly stated, the use of enumeration should not be construed as limiting the invention to any specific order or number of components. Nor should the use of enumeration be construed as excluding from the scope of the invention any additional steps or components that might be combined with or into the enumerated steps or components.
Footwear constructed in accordance with a current embodiment is shown in
Although the current embodiment of footwear is illustrated in the context of a casual shoe, it may be incorporated into any type or style of footwear, including performance shoes, hiking shoes, trail shoes and boots, hiking boots, work boots, all-terrain shoes, barefoot running shoes, athletic shoes, running shoes, sneakers, conventional tennis shoes, walking shoes, multisport footwear, boots, dress shoes or any other type of footwear or footwear components. It also should be noted that directional terms, such as “vertical,” “horizontal,” “top,” “bottom,” “upper,” “lower,” “inner,” “inwardly,” “outer”, “outwardly,” “below” and “above” are used to assist in describing the embodiments based on the orientation of the embodiments shown in the illustrations.
Further, the terms “medial,” “lateral” and “longitudinal” are used in the manner commonly used in connection with footwear. For example, when used in referring to a side of the shoe, the term “medial” refers to the inward side (that is, the side facing the other shoe) and “lateral” refers to the outward side. When used in referring to a direction, the term “longitudinal direction” refers to a direction generally extending along the length of the shoe between toe and heel, and the term “lateral direction” refers to a direction generally extending across the width of the shoe between the medial and lateral sides of the shoe. The use of directional terms should not be interpreted to limit the invention to any specific orientation. Further, as used herein, the term “arch region” (or arch or midfoot) refers generally to the portion of the footwear or sole assembly corresponding to the arch or midfoot of the wearer's foot; the term “forefoot region” (or forefoot) refers generally to the portion of the footwear forward of the arch region corresponding to the forefoot (for example, including the ball and the toes) of a wearer's foot; and the term “heel region” (or heel) refers generally to that portion of the footwear rearward of the arch region corresponding to the heel of the wearer's foot. The forefoot region 17, arch region or mid-foot region 18 and heel region 19 generally are identified in
The upper 20 will only be described briefly here. It can include a quarter 23 and a vamp 24. The upper 20 can terminate in the lower peripheral allowance 25, which can be attached via stitching to a Strobel board 22, which generally closes the bottom of the upper 20. Alternatively, the upper can be placed on a last, attached to an insole (not shown) with cement or adhesive to close the bottom of the upper, with the sole further adhered to the lasted upper, which results in a permanent bond between the upper, insole and outsole, with no stitching. Where optionally included, the Strobel board 22 can extend over the respective cushion unit 80, concealing the cushion unit from view through the interior of the upper 20. The upper 20 can be manufactured from leather, canvas, nylon, knitted or woven fabric or other suitable materials, and may include a liner (not shown) or other conventional accessories. Optionally, although not shown, the footwear can include a footbed or insole disposed above the Strobel board, or cement lasted construction mentioned above, associated with the upper 20.
In some constructions, the footwear 10 can include a shank 38 that spans through the arch region 18, and optionally into a portion of the heel region 19 and forefoot region 17. As shown in
The outsole 30 as illustrated in
As mentioned above, the outsole 30, in particular the resilient flexible shell includes a sidewall 42 that transitions to a support perimeter 50 having a lower support perimeter surface 52. The support perimeter 50 can be in the form of a thicker portion of the shell so that it does not compress or deform as easily as the compression pods as described below. This support perimeter 50 thus can serve as a bottom or support wall that arrests the compression of the outsole after one or more compression pods compresses a suitable amount during a shock attenuation event or activity with the footwear in general. Optionally, the resilient shell can be between 1.5 mm and 6.5 mm, inclusive, thick throughout the shell. In the support perimeter 50, the thickness can be at the higher end of this range to provide a “hard stop” during compression of the pods to thereby arrest further compression of the outsole.
As mentioned above, the shell 40 can form and/or include one or more front 31 or rear 32 sets of compression pods 61-66 and 61′-64′. With reference to
Further optionally, with regard to the sense of pods, the thickness of the pods from a front pod to a rear pod of a set can vary. For example, with regard to the front set 31 of pods, that set can include a front pod 65 the rear pod 66. The rear pod 66 typically is the first pod to engage the ground during normal gait. The front pod 65 is the last pod to engage the ground. The front pod 65, however, is also the last pod to touch the ground during toe off as compared to the rear pod 66. Optionally, the rear pod 66 can include a first thickness TS1 at its bottom, for example, the bottom wall of that pod which is formed by a portion of the shell can have thickness TS1. That thickness can be optionally 4.5 mm to 6.5 mm, inclusive, further optionally 5.0 mm to 7.5 mm, inclusive, yet further optionally about 6.0 mm inclusive. Front pod 65 can include a second thickness TS2 at its bottom, for example, the bottom wall of that pod, which is formed by a portion of the shell, can have a thickness TS2. That second thickness TS2 can be optionally 1.5 mm to 4.0 mm, inclusive, further optionally 1.5 mm to 3.0 mm, inclusive, yet further optionally 3.0 mm to 3.5 mm, inclusive. Optionally, the first thickness TS1 can be greater than the second thickness TS2 of the respective front and rear pods. In this manner, the greater thickness in the rear can provide for more shock absorption than the second thickness in the front. This can be particularly true for the rear set of pods 32, where the rearmost pod 64 generally is the first to strike the ground under force upon contact of the footwear with a ground surface during normal gait cycle. Again, with this thicker portion of the shell and the thicker pod bottom wall in this region, this can attenuate the shock, dissipating it over a larger surface area of the pod, the pod set, the outsole, and generally the heel region.
Turning now to the compression pods 61-66, which are presented here as an example, these pods can each extend across the majority of the width W1 in the location where those pods are located. Generally the width W1 is transverse to longitudinal axis LA. By the majority of the width W1, it is meant that the pods can extend across at least 60%, further optionally at least 70%, yet further optionally at least 80%, yet further optionally at least 85%, yet further optionally at least 90%, still further optionally at least 95% of the width W1 where those pods are located.
Each of the compression pods can include a compression pod lower wall. An example of this is the compression pod lower wall 61W of the first compression pod 61. This compression pod lower wall 61W can include an upper surface 61US disposed above a bottom surface 61BS. The bottom surface 61BS can correspond to the surface 46 of the outsole and form a portion of it. It also can include tread or textures for traction. The first compression pod lower wall 61LW can have a first thickness T1. The first thickness T1 can extend between the first compression pod lower wall bottom surface 61BS and the first compression pod lower wall upper surface 61US. This thickness T1 can be optionally 1.0 mm to 6.5 mm, inclusive, optionally 1.5 mm to 4.0 mm, inclusive, further optionally 1.5 mm to 3.0 mm, inclusive, yet further optionally 3.0 mm to 3.5 mm, inclusive, or any of the other thicknesses mentioned above in connection with the front pod and rear pod. Optionally the thickness can be about 3.5 mm in this particular pod in some applications. In other applications, the first compression pod lower wall 61LW first thickness T1 can be at least 2.0 mm. The second compression pod 62 can include a lower wall similar in structure with a similar pod lower wall 62LW having a second thickness T2 that is also at least 2.0 mm. Of course, it can have a thickness T2 similar to any of those claims mentioned in connection with T1.
Each of the compression pods, and optionally each set of pods can be surrounded by a common peripheral groove. For example, the front pod set 31 can be surrounded by common peripheral groove 53 having a peripheral groove depth PGD. Optionally, the first compression pod 61 is disposed on an interior of the common peripheral groove 53, and disposed across from the peripheral support 50. The peripheral groove depth PGD can be measured from the lower support perimeter surface 52 upward, that is, away from the ground surface GS, to a bottom 53B of the common peripheral groove 53. The peripheral groove depth PGD can be optionally 1.0 mm to 4.0 mm, inclusive, further optionally 2.0 mm to 3.5 mm, inclusive, yet further optionally 1.5 mm to 2.5 mm inclusive. In some cases, the peripheral groove depth PGD can be variable from the rear pod 66 to the front pod 65. For example, the depth of the peripheral groove 53 can vary and can become shallower as it transitions forward generally along the longitudinal axis. Of course, in the application shown, the groove depth PGD can be substantially the same depth from the rear pod 66 to the front pod 65.
As shown in
As shown in
As further shown in
There can be a number of relationships between the depths of the transverse grooves and other components of the outsole to enhance flexibility. For example, the transverse groove depth TGD2 can be greater than the thickness T1 of the shell 40 in the compression pod lower wall 61LW, or generally the thickness T1 of the shell in that region, between the bottom surface 61BS and the upper surface 61US of the lower wall 61LW. The depth TGD2 can be such that the upper surface 61US of the lower wall 61LW is at an elevation that is below or lower than the bottom 72B of the transverse grooves 72. Indeed, the upper surface 61US can be below this bottom 72B by optionally 0.1 mm to 1.0 mm, inclusive, further optionally 0.5 mm to 2.0 mm, inclusive, or other distances, depending on the desired flexibility of the pods relative to one another.
Optionally, the pods themselves can be integral with one another despite being separated by the transverse grooves. For example, flexible shell 40 can include a bridge 44, which is located above the transverse groove 72, and that extends above the lower wall upper surface 61US. This bridge 44 can span from a lower wall 61LW first compression pod 61 to another lower wall 62LW of a second compression pod 62. The bridge can be in the form of and can surround the transverse groove 72. In some cases, the bridge 44 can be in the form of a “U” or “V”, with sidewalls that intersect front and rear edges of adjacent compression pods as described further detail below. This bridge 44 also can bound the bottom 72B of the transverse groove 72.
The transverse grooves 71-75 also can be configured to extend laterally and medially away from the longitudinal axis LA. Eventually, these grooves intersect the common peripheral groove 53 on the lateral side L and the medial side M. The transverse groove depth TGD1 and TGD2 of the grooves can extend continuously downward, below the lower support perimeter surface 52 and even beyond a compression pod lower wall bottom surface 61BS, 62BS. For example, as shown in
Optionally, at the intersection of the transverse grooves and peripheral groove, the transverse grooves can be approximately 1.25, 1.5, or 2.0 times the depth PGD of the common peripheral groove. In most cases, the ratio of the depth PGD of the common peripheral groove relative to the corresponding transverse groove depth T, TGD1, or TGD2 can be optionally 1:2, further optionally 1:2.5. In each set of the compression pods, the depth of the common peripheral groove 53 on the lateral and medial sides of a pod can be less transverse groove depth with regard to each respective compression pod. Of course, where the common peripheral groove 53 becomes progressively deeper from toe-to-heel, the transverse grooves can likewise become deeper in the above-noted ratio of 1:2 or some other desired ratio.
The common peripheral groove 53 defined in the shell 40 can be configured to include an interior sidewall 55. As shown to the right of
Optionally, the interior sidewall can be outwardly angled as the interior sidewall extends upward, away from the ground surface, becoming farther away from the longitudinal axis as it transitions upward. In some cases, the interior sidewall can be optionally less than 2.5 mm in thickness, yet further optionally less than 2.0 mm in thickness, further optionally less than 1.5 mm in thickness. This thin thickness, as well as the shape and contour of the interior sidewall, can enable it to bend, flex, bow, angle and/or otherwise deform so that the compression pod 61 can compress upwardly into the outsole until the lower support perimeter surface 52 of the perimeter support 50 engages a ground surface GS, along with the first compression pod lower wall bottom surface 61BS.
An example of compression of a compression pod is illustrated in
The respective interior sidewalls 55 of each compression pod, in combination with the transverse grooves also can provide independent tilting of the compression pods relative to one another. For example, as shown in
As mentioned above, the transverse grooves can include transverse groove depths. Optionally, these depths are greater than respective common peripheral groove depths adjacent the respective compression pod. Put another way, the common peripheral groove 53 adjacent a respective compression pod can be shallower than the respective transverse groove also adjacent that same compression pod. For example, with regard to the first 61, second 62 and third 63 compression pods, which are partially surrounded by the common peripheral groove 53, that groove 53 can be shallower than each of the second 72 and third 73 transverse grooves. This can be true for other pods adjacent the common peripheral groove 53, and whether the pods are located in the front set of compression pods or in the rear set of compression pods.
With reference to
As mentioned above, within the sets of pods, for example, the front set 31, there can be multiple pods adjacent one another, generally aligned one after the other along the longitudinal axis LA, extending toward the toe. Accordingly, the features of the next or second compression pod 62 can be similar to that of the first compression pod the one described above. For example, the second compression pod 62 can be disposed forward of the first compression pod 61. The second compression pod (and any subsequent compression pods forward of the first or rear pods), can span a majority of the width W1 of the outsole from the medial side M to the lateral side L. The compression pod 62 can include a second compression pod lower wall 62LW that has a second thickness T2, as shown in
With reference to
The compression pod 62 also can include a second medial edge 62M bounded by a second medial groove 53. Again this second medial groove can be the peripheral groove adjacent that compression pod in that region of the footwear. The pod also can include a second lateral edge 62L bounded by a second lateral groove 53, which can be the peripheral groove on the opposite side of the footwear. The lower perimeter surface 52 can be disposed opposite the second medial edge 62M across the second medial groove 53 on the medial side M. Likewise the lower perimeter surface 52 on the lateral side L can be disposed opposite the second lateral edge 62L disposed across the second lateral groove 53 of the lateral side L of the footwear. The second lateral groove 62L can include a fifth depth, that is, the depth of the peripheral groove adjacent the compression pod on the lateral side L adjacent the second lateral edge 62L. This fifth depth can be the peripheral groove depth PGD of the peripheral groove in that location. The second lateral edge 62L extends below the lower support perimeter surface 52 a seventh distance H2. The seventh distance H2 again can be equal to the other distances or heights H1 of the first compression pod 61, or optionally distances similar to the extension of other compression pods, depending on the application. The seventh distance H2 can be approximately equal to the sixth depth of a second medial groove 53, that is, the peripheral groove depth PGD so that the second compression pod lower wall bottom surface 62BS lays below or at an elevation below the lower support perimeter surface 52 the sixth distance H2 on the lateral side L, and optionally also the seventh distance H2 on the medial side M. Optionally, the second transverse groove 72 can be deeper than the second lateral groove and the second medial groove 53, which again can be the common peripheral groove 53 on opposite lateral and medial sides respectively of the longitudinal axis.
As mentioned above, adjacent and/or distal compression pods are configured to flex upward and downward on the lateral side and/or the medial side, substantially independent of one another, even when the compression pods are in the same set of pods. This independent lateral compression or medial compression, which produces a tilting from side to side of the respective compression pods, can be due to the separation of the pods via a transverse grooves between them, as well as the characteristics of the thin flexible and resilient shell. Again as mentioned above, compression pods, such as the first 61 and second 62 compression pods can be separated from one another by a transverse groove, such as the second transverse groove. These pods also can be separated from the lower perimeter support by the respective first and second lateral medial grooves 53. This can effectively isolate the compression pods from one another, and can allow them to twist and tilt independent of one another on lateral and medial sides of the outsole.
As mentioned above, the outsole can include a cushion unit 80. This cushion unit 80 can be disposed above one or more of the compression pods. Indeed, the cushion unit can include separate and independent front 81 and rear 82 units that extend over the respective front set 31 and rear set 32 of compression pods. Each of the respective cushions units 81 and 82 can be constructed from ethyl vinyl acetate (EVA), polyurethane, or other cushioning materials. As shown in
The cushion unit 80 can be disposed above the compression pods, within the shell, and optionally well below the upper most portion of the shell 40. The cushion unit 80 parts, for example, cushion unit 81 can include a cushion unit lower surface 81LS and a cushion bridge element 84. The bridge element 84 can extend over the bridge 44 of the shell 40, between cushion pod portions 85 and 86. The cushion can include a cushion unit upper surface 81US. The thickness of the cushion 81 bridge element 84 to the upper surface 81US can be greater over the lower wall of the respective compression pods, that is, in the pod portions 85 and 86, than it is over the respective bridge 44, that is, in the bridge element 84.
As illustrated, the cushion unit lower surface 81LS can be disposed at a level or elevation that is below the cushion bridge element 84 and that is below the bottom 72B of the transverse groove 72. This optionally can be repeated for each of the compression pods. In some cases, the cushion lower surface 81LS be joined with the compression pod wall lower wall upper surface 61US via a cement, a mechanical and/or a chemical bond. This cushion unit lower surface 81LS also can be lower in elevation than the bridge 44 of the adjacent portion of the shell 40. As mentioned above, the rear cushion unit 82 can have a similar structure, profile and features as the front unit 81.
Directional terms, such as “vertical,” “horizontal,” “top,” “bottom,” “upper,” “lower,” “inner,” “inwardly,” “outer” and “outwardly,” are used to assist in describing the invention based on the orientation of the embodiments shown in the illustrations. The use of directional terms should not be interpreted to limit the invention to any specific orientations.
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual elements of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular. Any reference to claim elements as “at least one of X, Y and Z” is meant to include any one of X, Y or Z individually, and any combination of X, Y and Z, for example, X, Y, Z; X, Y; X, Z; and Y, Z.
Number | Name | Date | Kind |
---|---|---|---|
4141158 | Benseler | Feb 1979 | A |
4570362 | Vermonet | Feb 1986 | A |
4777738 | Giese | Oct 1988 | A |
5216824 | Bissett et al. | Jun 1993 | A |
5918385 | Sessa | Jul 1999 | A |
7313875 | Morgan | Jan 2008 | B2 |
8127468 | Morgan | Mar 2012 | B2 |
8307569 | McInnis et al. | Nov 2012 | B2 |
8424221 | Litchfield et al. | Apr 2013 | B2 |
8713817 | Litchfield et al. | May 2014 | B2 |
20060016100 | Riha | Jan 2006 | A1 |
Entry |
---|
Hush Puppies Bilal Patterson, http://www.hushpuppies.com/US/en/bilal-patterson/883799677208.html?CID=MAR-Hush-Puppies-G-Shopping-Bilal-Patterson&CAWELAID=120144290000316810&CAGPSPN=pla&CAAGID=36835366242&CATCI=aud-253048239173tpla-60512637292&gclid=EAIalQobChMI1PHbpe3_1g IVBAaGCh2-IQX4EAQYAiABEgLQj_D_BwE (downloaded Oct. 23, 2017). |
Hush Puppies Power Walker, https://www.6pm.com/p/hush-puppies-power-walker-ii/product/7441183 (downloaded Oct. 23, 2017). |
Hush Puppies Roland Jester, https://www.6pm.com/p/hush-puppies-roland-jester/product/8647219 (downloaded Oct. 23, 2017). |
Number | Date | Country | |
---|---|---|---|
20190125031 A1 | May 2019 | US |