Custom formed panels for transport structures and methods for assembling same

Information

  • Patent Grant
  • 11479015
  • Patent Number
    11,479,015
  • Date Filed
    Friday, February 14, 2020
    4 years ago
  • Date Issued
    Tuesday, October 25, 2022
    2 years ago
Abstract
Techniques for providing custom formed panels for transport structures including vehicles and aircraft are disclosed. In one aspect of the disclosure, a panel for a transport structure includes a first face sheet, a second face sheet arranged opposite the first face sheet, the second face sheet comprising a different geometrical profile than the first face sheet to define a space between the first and second face sheets having a variable thickness, a core configured to occupy the space. In another aspect, a node can be additively manufactured to form the custom panels by engaging opposing face sheets. The node has an inlet port for providing a foam-like substance into the space between the face sheets to thereafter solidify into a core.
Description
INCORPORATION BY REFERENCE

Applicant incorporates by reference, as if fully set forth herein, U.S. patent application Ser. No. 15/853,301 filed Dec. 22, 2017, entitled “Methods and Apparatus for Forming Node to Panel Joints” and assigned to the present Applicant.


BACKGROUND
Field

The present disclosure relates generally to the assembly of vehicles and other transport structures, and more specifically to techniques for assembling custom-formed panels for a variety of applications.


Background

Panels incorporating a wide variety of sizes, shapes and other physical characteristics are commonly used in the assembly of transport structures such as vehicles, trains, motorcycles, sea vessels, submarines, spacecraft, aircraft and the like. These include interior and exterior panels. They also include panels for enclosing a space and body panels designed to bear structural loads. Sandwich panels, which include outer face sheets adhered to an inner core, are used both in low density applications and in applications in which high structural rigidity is imperative. To accommodate this range of applications, traditional panels may accordingly be designed with different geometries, may embody different material compositions (e.g., single ply panels versus sandwich panels, etc.), and may include different physical characteristics such as density, ductility, rigidity, tensile strength, and so on.


As the demand for more sophisticated and varied panel geometries increases, more complex tooling is required, and tooling and labor expenses become increasingly relevant issues to the manufacturer. Sandwich panels are conventionally produced using traditional manufacturing techniques including dedicated molds and other equipment for producing panel cores and integrating face sheets onto opposing sides of the cores. The resulting panels produced using conventional casting equipment may often be uniformly flat, with a constant distance between the face sheets and a uniformly thick interior core structure for support.


Manufacturers in assembly-line environments often strive to minimize fabrication costs by attempting to limit the types of panels used in vehicles, sticking instead to those varieties that can be acquired at lower cost or that can be made using in-house tooling. Design flexibility and innovation can be compromised as a result.


Problems may also be encountered where design considerations reflect the need for longer panels using more intricate geometries, some of which may extend across a considerable portion of the transport structure. Attaching sandwich panel segments together end-to-end to achieve longer panels may require welding and labor processes that add time and labor to the overall assembly. Coupling panels together edgewise may also require high precision machining equipment, e.g., to connect panels of a new aircraft design together in a manner that avoids protrusions or other discontinuities that tend to produce aerodynamic drag.


There is a need in the art to develop a fundamentally new assembly infrastructure for efficiently and quickly assembling new panel designs without the aforementioned limitations.


SUMMARY

Custom formed panels in accordance with several aspects of the disclosure will be described more fully hereinafter.


One aspect of a panel includes a first face sheet, a second face sheet arranged opposite the first face sheet, the second face sheet including a different geometrical profile than the first face sheet to define a space between the first and second face sheets having a variable thickness, and a core occupying the space.


Another aspect of the disclosure includes a panel, including: a first face sheet, a second face sheet opposed to the first face sheet, a third face sheet, a fourth face sheet opposed to the third face sheet, a first bridge node comprising a first interface that joins respective edges of the first and third face sheets, and a core material filling a space defined by at least the joined first and third face sheets.


Another aspect of the disclosure includes an additively manufactured (AM) node, including a base including a length of material having a first end and a second end, a first interface proximate to the first end, the first interface for engaging a face sheet edge of a first face sheet, a second interface proximate to the second end, the second interface for engaging a face sheet edge of a second face sheet, such that the face sheet edges of the first and second face sheets oppose one another, and a foam inlet port arranged on the base, the foam inlet port configured to enable a flow of a foam-like substance into an area defined by at least the first and second face sheets.


It will be understood that other aspects of providing interfaces using AM components will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the subject matter presented herein is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of interfaces between parts of a transport structure will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1A is a perspective view of an opposing pair of face sheets.



FIG. 1B is a perspective view of a sandwich panel.



FIGS. 2A-C are perspective views of different custom sandwich panels having a variable thickness between respective face sheets according to an aspect of the disclosure.



FIG. 3A is a perspective view of an additively manufactured node being used to assemble a sandwich panel according to another aspect of the disclosure.



FIG. 3B is a perspective view of the additively manufactured node coupled to an assembled sandwich panel according to another aspect of the disclosure.



FIG. 3C is a perspective view of the additively manufactured node coupled to another example of an assembled sandwich panel according to another aspect of the disclosure.



FIG. 3D is a flow diagram illustrating an exemplary process for assembling a sandwich panel using face sheets with different geometrical profiles and assembling an integrated node-sandwich panel into a transport structure.



FIGS. 4A and 4B are perspective and side views, respectively, of an additively manufactured node coupled to a sandwich panel assembly using bridge nodes to secure the face sheets edgewise.



FIG. 5 is a perspective view of a pair of opposing face sheets secured via an additively manufactured node for use in a transport structure in accordance with an embodiment.



FIG. 6 is a perspective view of a pair of opposing face sheets secured via an additively manufactured node in accordance with an embodiment.



FIG. 7 is a perspective view of two pairs of opposing face sheets secured via an additively manufactured node and a single bridge node with a lattice center in accordance with an embodiment.



FIG. 8 is a perspective view of an automotive bonnet secured via an additively manufactured node in accordance with an embodiment.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of interfaces between parts of a transport structure and is not intended to represent the only embodiments in which the invention may be practiced. The terms “example” and “exemplary” used throughout this disclosure mean “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


The use of 3-D printing in the context of transport structures provides significant flexibility for enabling manufacturers of mechanical structures and mechanized assemblies to manufacture parts with complex geometries. For example, 3-D printing techniques provide manufacturers with the flexibility to design and build parts having intricate internal lattice structures and/or feature-rich geometric profiles that are not practicable or possible to manufacture via traditional manufacturing processes.


Aspects of the present disclosure are directed to techniques for fabricating custom panels in transport structures. Conventional panels are typically formed with top and bottom “skins” or “face sheets”. The face sheets may be composed of a metal such as aluminum or titanium, an alloy, a plastic, or a composite such as carbon fiber or fiberglass. Face sheets can be formed using a conventional technique such as resin transfer molding (RTM), for example, or they can be milled or additively manufactured. FIG. 1A is a perspective view 100 of a pair of opposing face sheets 102 and 104. Each face sheet 102 and 104 may be additively manufactured, or traditionally formed via casting or machining techniques. Each face sheet has dimensions characterized by a thickness Z and a uniform distance Y therebetween in the example shown. A low-density core is typically adhered to the inner surfaces of the face sheets using an adhesive. FIG. 1B is a perspective view of a corresponding sandwich panel 108. Core 110 may be made a solid structure or, for reducing weight while maintaining structural integrity, core 110 may be composed of a lattice or honeycomb structure or other custom structure. Core 110 may be manufactured through traditional subtractive manufacturing techniques or it may be additively manufactured. Edges of core 110 may be trimmed if necessary to maintain a position flush with face sheets 102 and 104.


As is shown in FIG. 1B, the thickness Y of the core 110 may be constant across the plane of the sandwich panel 108. As discussed above, components such as load-bearing panels often require more complex interfaces and connections than are currently machined using conventional methods. These methods can be costly and time-consuming, given that traditional manufacturing techniques typically are not optimal for producing geometrically complex components and are seldom capable of producing a variety of different geometric configurations using the same tooling. Moreover, because many conventional transport structures rely on body parts and outer shells that must be engineered to provide resistance to significant structural loads, added structures may be needed such as sophisticated brackets, clamps, and screws to provide a sufficiently strong interface between these body panels and other components within the transport structure to provide long term structural durability.


In an aspect of the disclosure, custom panels are formed to incorporate a core having a thickness that is variable across the plane of the face sheets. In an exemplary embodiment, varying the thickness of the core 110 can be accomplished by first, utilizing face sheets having varying profiles relative to one another, and second, injecting foam, a low-density core material, through additively manufactured nodes to expand and fill the space between the top and bottom face sheets. The foam or foam-like substances can be designed to cure and solidify to realize the geometrically diverse custom formed panel.



FIGS. 2A-C are perspective views of different custom sandwich panels having a variable thickness between respective face sheets. Referring first to FIG. 2A, sandwich panel 200 has a flat face sheet 204 at the bottom and a geometrically sophisticated face sheet 202 at the top, such that the distance or thickness X between the face sheets is variable across their inner surfaces where the core 206 is present. As depicted in FIG. 2A, the profiles of the top and bottom face sheets are different. As a result, when the face sheets are positioned opposite one another and maintained generally parallel to each other, the distance between them (X in FIG. 2A) varies at different points of measurement along a plane parallel to face sheet 204. For clarity, the profile of the bottom face sheet 204 has been depicted to be a simple planar sheet. However, the bottom face sheet can have any profile, depending on design requirements or other criteria. In other exemplary embodiments, the face sheets may both be contoured uniquely. FIG. 2B shows sandwich panel with a varying distance X between inner surfaces of the face sheet, but with lower face sheet 204 having an uneven profile as well as upper face sheet 202. FIG. 2C shows the sandwich panel wherein the vertical geometrical features are principally included in the lower face sheet 204. The upper face 202 may be flat but may include horizontal indentations to expose the underlying core 206 for accomplishing an application-specific objective. For example, in an embodiment, the core 206 may be extended upward through one or both of the indentations and coupled to a fixture, a connector, or another desired feature. Techniques for assembling the core in this manner are detailed further below.


Fabricating the face sheets. In an exemplary embodiment, the face sheets can be additively manufactured (3-D printed). Alternatively, as noted above, the face sheets can be fabricated using resin transfer molding (RTM). RTM is an effective technique for molding components with large surface areas, complex shapes and smooth finishes. Other techniques for manufacturing the face sheets are possible. The face sheets can also be vacuum bagged using carbon fiber reinforced polymer (CFRP) or glass fiber reinforced polymer (GFRP), etc., as the composite material, for example. The face sheets can also be manufactured via compression molding, Sheet Molding Compound (SMC), Vacuum assisted resin transfer molding (VARTM), injection molding, and the like.


In an aspect of the disclosure, the thickness between the face sheets is not constant across their areas. As described in more detail below, an additively manufactured node may be used to fixture the panel by securing the two face sheets with respect to each other. In other embodiments, locating features may be used to achieve the precise location of the two sheets during assembly. Adjacent components having dissimilar materials may also be isolated from one another to prevent galvanic corrosion or to address other problems caused by direct contact of the materials. An appropriate isolating material may be provided between the two materials where physical contact is to be avoided.


Preparing the face sheets for assembly into a panel. In an exemplary embodiment, an additively manufactured node may be used to form the panel. The node may provide a number of functions including (i) orienting the face sheets in a precise manner relative to one another, (ii) providing locating and isolating features, where desired, to facilitate assembly and prevent corrosion of future parts, (iii) optionally providing adhesive inlet, vacuum, and/or sealant features for forming the bond between the node and the panel in circumstances where, for example, the node and panel are intended for use as an integrated unit for assembly within a vehicle or other transport structure, and (iv) forming the sandwich panel by facilitating injection of a foam-like substance through a channel in the node, such that the foam will occupy the space between the nodes and solidify in a curing stage to form the core.


A node is a structural unit in a vehicle or other transport structure that can serve as a joint member or other structural interface for interconnecting tubes, panels, extrusions, and other portions of the vehicle. A node may include multiple interfaces such that multiple structures having different interfaces (e.g., tongues, grooves, etc.) can be interconnected and integrated together. Beyond or apart from its role as a joint member or interconnect unit, a node may perform different specialized functions. For example, the node may be configured to deliver fluid, adhesive, sealant, vacuum, and other materials to specific regions of an adjacent or connected structure in order to form a strong bond or to realize another functional relationship with the adjacent or connected structure. The node may also be used to route various structures such as electrical cabling. Nodes may be designed with different geometries and physical characteristics, e.g., to provide support as part of a load bearing structure, to enable a portion of a vehicle to include a “crumple zone” for absorbing energy in an impact event, or to provide non-load bearing aesthetic features. A significant benefit of using nodes in a transport structure is that the transport structure can be modular, meaning that different portions of the vehicle can be independently assembled and can be readily exchanged or replaced using standard interfaces without having to exchange or replace other portions of the vehicle that do not need changing. This is in contrast to conventional approaches, where damage to a small portion of a vehicle often requires that a number of panels be removed and replaced, however unrelated they are to the damaged structure. Also, using nodes, portions of the vehicle can be upgraded or modified without affecting other modules in the vehicle.


As noted above, the node may be additively manufactured or otherwise constructed to position two opposing face sheets. The node may be a base section 350 of material having, among other possible geometrical features, a lengthwise dimension “I” (FIG. 3A) which includes interfaces 312a-b that engage with edges of the opposing panel to hold them in a generally parallel or opposing position relative to each other, such as shown in the node 310 of FIG. 3A. As detailed below, the node may include features such as inlet and outlet adhesive ports to provide adhesive and vacuum to and from the channel. The node may also include features to accept sealants, O-rings and isolators. The node may include adhesive channels. As an example, in some embodiments a strong adhesive bond may be desired between the face sheets and core. The node can provide an interface to draw a vacuum and inject the adhesive. Thus, for example, the node may include extension portions that protrude from the base and that allow for an even injection of sealant and adhesive across the structure.


In addition, the node 310 may include inlet ports for enabling a manufacturer to form the core between the panels by injecting a foam-like substance into the space defined by the face sheets 302, 304. The foam-like substance may enter the space between the face sheets and thereafter solidify to form the core 306. In an embodiment, the manufacturer may cut away, manually or using an automated mill, the excess portions of substances extending outside the border between the face sheets. In another embodiment, the manufacturer may remove any excess foam prior to it solidifying, such as by using a brush or other light tool to remove the excess foam and straighten the edges. In an embodiment, the node-face sheets structure may be housed in a compartment or chamber that has walls designed to contain the foam. In another embodiment, the node itself may be constructed with walls or a chamber that contains the foam in its desired area between the face sheets 302, 304.


Referring in more detail to FIG. 3A, a perspective view 300 of an additively manufactured node 310 is shown securing face sheets 302 and 304. In an exemplary embodiment, the node 310 may be additively manufactured using a powder bed fusion (PBF)—based 3-D printer such as, for example, selective laser sintering (SLS). However, any 3-D printing technique may generally be employed. The additively manufactured node 310 may include a base section 350 that may extend lengthwise vertically as shown by the arrow labeled I. Proximate each end of the lengthwise section I are interfaces 312a and 312b for the face sheets 302 and 304, or other types of female interconnect features (such as grooves, slots or apertures) designed to enable corresponding male interconnect features (such as tabs, protrusion, or here, the edges of respective face sheets 302 and 304) to fit securely in place. In other embodiments, the interfaces 312a and 312b may use another type of interconnect. For example, the interfaces may alternatively include protrusions designed to fit into a corresponding groove etched into face sheets 302 and 304. The interfaces may, in another embodiment, include clamps for securing the face sheets 302 and 304 with a force.


Thus, one function of node 310 is to hold the face sheets in place so that they are precisely oriented at the correct distance from each other in the correct position. Additively manufacturing the node enables the designer to use a node of any arbitrary shape for securing opposing face sheets of specific widths and for varying the base section such that the edges of the panels can be positioned at any desired distance closely proportional in this embodiment to I.


Referring still to FIG. 3A, in an exemplary embodiment, locating features 345 shown near each interface 312a-d may be used to orient the two face sheets properly with respect to each other during the manufacturing process. The locating features may include protrusions that in part define interfaces 312a, 312b, 312c, and 312d, or they may include other types of locating features 345 additively manufactured into the node. In an exemplary embodiment, the locating features are co-printed with the node and define four female interconnect features, one at each interface 312a-d. In cases where contact between dissimilar materials (node and face sheet) is to be avoided to prevent galvanic corrosion or for other reasons, the locating features may include an isolating material. FIG. 3A shows a blow-up of interface area 312a which shows that the face sheet 302 has been separated from node 310 by the use of isolating structures such as nylon washers 326a-c, a side view of which is shown in the blow-up and expanded for clarity. To accommodate the nylon washers 326a-c in an exemplary embodiment, the internal groove of interface 312a may be printed with further recesses (not shown) designed to receive the nylon washers. In a post-processing step, an adhesive may be injected into the recesses, e.g., using channels co-printed into the node that connect an inlet port to one or more apertures in the recesses. The adhesive may be injected via an automated machine or manually, and the washers 326a-c may then be inserted into the recesses to bond onto the inner portions of the recesses where they protrude outward. In other embodiments, structures other than washers may be used, and in still other embodiments, the isolating structures may be co-printed with the node 310 and pre-affixed to the node 310. Locating features 345 in some embodiments may also perform the isolation function. Thus, the face sheet 302 can advantageously maintain separation from node 310 where such separation is necessary. A similar separation technique (not shown) can be used on the interface 312b for isolating face sheet 304 from node 310.


The node may optionally be constructed as a part of the transport structure. In this case, node 310 and the connected face sheets 302, 304 may ultimately form a node-to-panel connection for assembly in a vehicle or other transport structure. As noted above, in various exemplary embodiments, the node may incorporate additional features such as adhesive injection and outlet ports, adhesive channels, transfer ports, and sealant features. Many of these features are illustrated in detail in Applicant's previous patent application Ser. No. 15/853,301 and filed Dec. 22, 2017 by the present Assignee entitled “Methods and Apparatus for Forming Node to Panel Joints”, the contents of which are hereby incorporated by reference as if fully set forth herein. That prior application filed Dec. 22, 2017 involved a panel that was formed prior to the assembly with the node. In the present disclosure, the features of the node are being exploited to form the panel. In either case, the node-panel structure may integrated together and assembled into the transport structure as a full node-panel connection. To this end, node 310 may include other interfaces, functional features or interconnect features for interfacing with other structures. Certain of these features are omitted for clarity and to avoid unduly obscuring the concepts of the disclosure.


Preparing the Panel Core.


In another aspect of the disclosure, the interior core 206 (FIGS. 2A-C) is prepared by means of a foam inlet port 308/outlet port 314 additively manufactured with node 310 (FIG. 3A). The foam inlet port 308 may include a channel 311 to enable the inlet of a foam-like substance 319 that will become the core material. Foam may be injected into the inlet port 308. Upon injection, the foam 319 may travel through the foam channel (e.g., a hole through node 310) and flow out of the foam outlet port 314. While one foam outlet port 308 has been depicted for simplicity in FIG. 3A, the node can have any number of foam ports distributed across a region of the face sheets. For example, for a longer or larger panel, it may be desirable to include a plurality or array of evenly spaced foam inlet ports for effecting an even application of the foam.


Referring to FIG. 3A, the foam 319 may expand to occupy the void. The foam may then solidify into a solid interior core 306 that was pre-designed to incorporate the necessary density properties and other characteristics. This may result in the formation of a custom formed panel with the core 306 shown in FIG. 3B. Containment of the foam 319 may be controlled in different ways. The foam may be contained before or after it solidifies or cures into a solid core substance. In one post-processing step, the excess foam that travelled outside the volume defined by the face sheets 302 and 304 may simply be cut or shaved off by a tool. In an alternative exemplary embodiment, the assembly 300 may further include walls bordering the face sheets to prevent further spread of the foam 319. The assembly 300 may also be placed in an appropriately sized chamber to contain the foam 319 to its proper position between the face sheets. The chamber may be pressurized to control the ejection and spread of the foam 319.


In an exemplary embodiment, the inner surfaces of the face sheet may be coated with an adhesive, whether manually or by means of a robot or automated machine, to ensure adherence of the foam to the face sheets. The adhesive injection process may commence prior to, during, or after completion of the foam injection process. The resulting sandwich panel, whether separated from the node 310 or used as connected to the node 310, may thereafter be assembled with other components, or into the transport structure at another station. FIG. 3C represents another perspective view of the node/panel combination. In this embodiment, lower face sheet 304 includes a pair of curvatures that extend upward. Thus, the final assembled panel, or node panel combination 300, need not be restricted to sharp gradients or step variations in the geometrical profile of one or both face sheets 302 and 304. Any shape, including gradual and curved orientations, may be used to realize the face sheet 302.


Additive manufacturing advantageously provides the platform for the creation of a single component with the complex adhesive and foam transport features. Expensive casting equipment and precision machining techniques are no longer required to create a complex sandwich panel with virtually any geometry.


Although node 310 is shown for simplicity to only include a single lengthwise base section 350 having two interfaces 312a-b, in other exemplary embodiments, the node may include multiple interfaces to secure additional face sheets, for example in a case where it is desirable to include additional plies of face sheets in the interior. Node 310b may in alternative embodiments include interfaces facing to the left relative to node 310 of FIG. 3A, so that a single node can be used to position and assemble two or more panels. In an embodiment, the base 350 of node 310 can include a long value of I, with multiple interfaces on one or both sides of the base 350 to position and secure multiple nodes. The resulting array of node and panels can optionally be assembled as a unitary segment into a transport structure.


While base 350 is illustrated essentially as a having an elongated rectangular shape, the node 310 is not limited to this configuration and base 350 can include different shapes and orientations in different embodiments.


The core material, when solidified, can provide the panel with the necessary structural integrity, among other desired properties. In an exemplary application, expanding Polyurethane (PU) foam may be used for the foam injection process. However, any expandable foam that can be injected can be used for this application. In some cases, urethane foam can be injected. In addition, multiple materials may be blended and injected, or they may be injected without blending. In an embodiment, the injection process may include injecting a two-part (or n-part, where n>2) foam system as liquids in precise quantities. The resulting foam may be formed during the reaction of the two-part (or n-part) systems and may expand to occupy the space between the face sheets.



FIG. 3D is a flow diagram illustrating an exemplary process for assembling a sandwich panel using face sheets with different geometrical profiles and assembling an integrated node-sandwich panel into a transport structure. At 370, face sheets having different geometrical profiles are fabricated, whether through additive manufacturing or conventional means such as RTM, etc. The design profile of the face sheets may be unique to a specific application, so that the fabricated panel may include unique geometrical properties. For example, the vertical distance between the face sheets in the assembled panel may vary at different locations. At 372, a node is additively manufactured to include interfaces for positioning and securing the opposing face sheets. The node may also include one or more inlets for applying a foam material to produce the core. The node optionally may include one or more of the features described in detail above, such as adhesive or vacuum injection ports. The node may also be designed with its own features relevant to the role it may play when and if it is assembled with the attached panels into a transport structure. For example, the node may include valves, extrusions, interfaces or other features for use as a part of a vehicle. Thus, in addition to its interface with the custom panels, the node may have separate interfaces to lock it into the transport structure and to perform additional features whether or not related specifically to the custom panels.


At 374, the face sheet edges are inserted into the interfaces on the node, either manually or by an automated machine or robot using a suitable effector for manipulating face sheets with respect to the node. The face sheets are precisely oriented with respect to each other. Locating features such as structures 345 in FIG. 3A, above, may be used to facilitate the orientation. At 376, assembly of the core begins as a foam is injected into the one or more foam inlet ports until the space between the opposing face sheets is occupied with the foam. At 378, excess foam may be removed at the face sheet boundaries. This step 378 may be performed before or after solidification of the foam or it may be performed by a pre-existing border structure or chamber in which the sandwich panel is being assembled.


At step 380, the foam is allowed to cure and solidify into what becomes the interior core material, thus realizing the sandwich panel. The core can be designed to have different properties based on the selected composition of the foam. In some embodiments, the solidified core is adhered to the respective inner faces of the face sheets. As discussed above, this adherence may be accomplished using adhesives. In an embodiment, the foam is self-configured to adhere to the surface of the face sheet as it solidifies. In other exemplary embodiments, adherence is accomplished by applying heat to the core/face sheet interfaces or by fusing or melting the core material and face sheets together with lasers, electron beams, electric arcs, or other energy sources.


At step 382, the constructed sandwich panel is attached, where desired, edgewise to other sandwich panels, whether conventionally using bonding techniques or alternatively using bridge nodes (discussed below). It will be appreciated that, in addition to the above, other steps may be used to fortify the bond between the node itself and the newly-created panel, such as by adding adhesive, sealant, and vacuum, and using O-rings or other structures. Thereafter, at 384, the resulting node/sandwich panel integrated combination can be assembled into the vehicle or other transport structure. In alternative embodiments, the sandwich panel can be attached to a structure other than a panel, such as another node, an extrusion, and the like.


Bridge Nodes.


In some exemplary embodiments, it is desirable to connect a chain of sandwich panels into one long panel. In some embodiments, the chain may be connected by bonding or welding. In some embodiments, the top and bottom face sheets are instead joined together first (prior to completing the sandwich panel) using bridge nodes. Bridge nodes may be used to “bridge” the elements in the face sheet chain by forming adhesive bonds between the surfaces of the face sheets and the bridge nodes. In an embodiment, depending on the mechanical requirements, the bridge node may either form a single shear, double shear, or both, with the face sheets.



FIG. 4A is a perspective view of an additively manufactured node coupled to a sandwich panel assembly 400 using bridge nodes to secure the face sheets edgewise. Node 410 includes foam inlet port 408. Node 410 includes groove-based interfaces 412a and 412b. Groove interface 412c is also partially visible (i.e., the isolator is shown). In some embodiments, such as here, interfaces 412a and 412b are continuous grooves that extend into the drawing to the other side of the node. In such embodiments, a separate interface groove on the opposite side of the node (such as at interface 412c) may not be necessary. Thus, the lower member of interfaces 412b and 412c may be parts of the same structure. In some embodiments, the grooves of interfaces 412a-c include other features, such as a reinforcing member co-printed with the node (not shown), attached to the base and extending between the isolators above the face sheet to strengthen the connection to the face sheet. Other connection means may be possible.



FIG. 4A includes opposing face sheets 402 and 404 as shown in prior embodiments. Node 402 is coupled edgewise to another face sheet 403 via bridge node 416. Bridge node 416 may be additively manufactured to achieve a desired shape. Bridge node 416 may be constructed using any suitable material, and may, but need not, be constructed from the same material as node 416. Bridge node 416 is a double shear node, meaning that it is reinforced in a generally “I” shape with connecting members on both sides of the face sheets 402 and 403, and therefore it is designed to withstand shear forces on both sides. In addition, the grooves on the double shear node help ensure a solid and snug fitting of the face sheet edge, which receives support on both sides. The double shear node can add mass, and therefore the single shear node may be alternatively used in cases where the anticipated loads and forces do not mandate the double shear variety.


Bridge node 416 may couple the face sheets 402 and 403 together in various ways. In the embodiment shown, the generally “I” shape includes grooves on each side in which the edges of respective face sheets 402 and 403 are inserted. The face sheet edges may be bonded to the bridge node 416 via an adhesive. Bridge node 416 may optionally include additional features as necessary such as isolators and ports and channels for adhesive, vacuum, sealant, and the like. In the present embodiment, bridge node 416 is constructed to be streamlined and simple.


The bridge node 416 may be constructed to angle the adjoining face sheets 402 and 403. In this manner, the sandwich panel need not be straight and instead can be positioned to include a desired angle between panels.


Face sheet 404 is coupled edgewise to face sheet 405 using bridge node 418. Bridge node 418 is a single shear node in that it only includes a supporting vertical member on one side. Bridge node 418 in the example of FIG. 4A is generally in the shape of an inverted “T”. Like double shear bridge node 416, single shear bridge node 418 can be additively manufactured, or co-printed with bridge node 416 or node 410 (or the combination).


Bridge node 418 can also be shaped to meet the edges of face sheets 404 and 405 at an angle. In an embodiment, bridge node is secured to respective face sheets 404 and 405 using an adhesive, although other connection means are possible. Single-shear bridge node 418 is advantageously simpler than a double shear node and contributes less mass. Therefore, it can be used, for example, in embodiments on a side of the panel assembly 400 where less impact or force is expected. In another embodiment, bridge node 418 can be reinforced with one or both face sheets using screws or nails that penetrate the face sheet and enter the node along a side of the bridge node 418 orthogonal to the drawing. Brackets may also be used. In an embodiment, the connection functionality is integrated into the node itself to eliminate manufacturing steps while maintaining secure connections.


Construction of the panel assembly of FIG. 4A is similar to the techniques described above in FIG. 3D. For example, the node 410 and bridge nodes 416, 418 are additively manufactured. The four face sheets are constructed, e.g., using RTM. Thereupon, adhesive is injected into the grooves of interfaces 412a-b along the entire panel portion orthogonal to the drawing. Respective edges of face sheets 402 and 404 are inserted into the grooves and time is allotted for the adhesive to cure. Similarly, adhesive may be applied along the relevant members of bridge nodes 416 and 418 that correspond with the other ends of face sheets 402 and 404. Bridge nodes 416 and 418 may then be attached to the ends of face sheets 402 and 404. It will be appreciated that in other embodiments, adhesive can be applied alternative or additionally to the edges of the face sheets.


Adhesive can be applied to the remaining members of bridge nodes 416 and 418. Face sheets 403 and 405 are then attached, respectively, to bridge nodes 416 and 418. It will be appreciated that the order of attaching the various components may vary. Thus, for example, bridge nodes 416 and 418 may first be secured via an adhesive to respective face sheets 403 and 405 and then the combinations may be adhered to edges of face sheets 402 and 404. In an embodiment, the order that results in the most time-efficient assembly is used. For example, the face sheets and bridge nodes may be first assembled and attached to node 410 in a manner that minimizes the time for the adhesive in the various portions to cure. In particular, multiple bond points can be allowed to cure simultaneously to maximize efficiency of the overall assembly.


A foam source can be connected to foam inlet port 408. Foam can be injected into the space between the face sheets as described above. In an embodiment, a plurality of foam ports are used to maximize foam distribution in less time. In these embodiments, the panel assembly 400 is longer and there an increased amount of pressure may be needed to efficiently fill the space between the plurality of opposing face sheets. In an embodiment, the fill is controlled in a chamber or compartment having horizontal walls substantially flush against both sides of the assembly such that a seal is formed in the void between the face sheets. As the foam exits and fills the initial portions of the void, the pressure from the foam buildup causes the foam to migrate to the farther portions of the assembly 400. Eventually the foam will fill the entire void. In an embodiment, a vacuum is initially drawn in the compartment to ensure an even and quick distribution of the foam. In other embodiments where the distance between the face sheets is small, a compartment may not be needed and the foam can be injected until it fills the void, with the excess foam removed as described above.


Once the void is filled with foam, the foam may be cured to solidify into the interior core 406, with excess foam or core material removed at any time before, during or after the curing process. The panel assembly 400 with node 410 may then be assembled into the transport structure.



FIG. 4A shows one of several examples of the modular nature of the sections. In FIG. 4A, modular section 464A is shown, which includes the face sheets 402 and 404 as coupled to node 416. The connection uses the edges of face sheets 402 and 404 as male interconnect features (e.g., tabs) to couple to corresponding female interconnect features (e.g., slots) of nodes 416 and 418, as shown in FIG. 4A. Similarly, modular section 464b includes face sheets 403 and 405 connected to modular section 464a via nodes 416 and 418. The modular sections 464A-B may be identical, or they may differ to provide different contours or geometrical features. In this example, modular sections 464A-B provide a variable thickness within the core to include different shapes and surface contours by virtue of the non-planar shape of face sheets 402 and 403.



FIG. 4B illustrates a side view of a panel assembly 400a coupled to node 410 that may be constructed using methods similar to FIG. 4A. Panel assembly 400 includes face sheets 431 and 433 coupled to the base of node 410. In an embodiment, the inlet port 408 that was used to form the interior core 458 may be broken or cut off if it interferes with the placement of the resulting part in a transport structure. The assembly 400 and node 410 can then be further assembled in its intended vehicle, etc., as required.



FIG. 4B includes a double-shear bridge node 416a that couples an edge of face sheet 431 to face sheet 435. Assembly 400a further includes a double shear bridge node 416b that connects face sheet 435 to face sheet 421. Face sheet 421 is curved upward before flattening out, illustrating similar to FIG. 3C that the geometric profile of the panels need not be limited to segmented linear variations in height.


The bottom of the assembly 400 includes face sheet 433 coupled to the base of node 410 and to face sheet 437 via single shear bridge node 418a. In an exemplary embodiment, face sheet 437 is coupled to face sheet 462 via an inverted single shear bridge node 418b. The bridge node 418b is additively manufactured such that its middle member is flush with the surfaces of face sheets 437 and 462. That way, a smooth surface between face sheets 437 and 462 can be assured. In an embodiment, where manufacturing tolerances are such that the surfaces are not exactly flush or where the bridge node should not be in direct contact with the panels due to possible galvanic corrosion resulting from dissimilar materials, a sealant may be introduced into the space between the bridge node 418b along with the necessary adhesive as described above. Thus use of additively manufactured inverted bridge nodes may be beneficial in applications such as the exterior of a transport structure to minimize drag, or the surface of an aircraft to reduce parasitic and induced drag which can be detrimental to efficient flight.



FIG. 4B includes three modular sections defined respectively by opposing face sheets 431 and 433, 435 and 437, and 421 and 463. While all three modular sections provide different shapes to the core 458, the modular section defined by face sheets 421 and 462 includes a dramatically different shape. More specifically, face sheet 421 exhibits a dramatic upward curvature before leveling out on the right, such that the modular section defined by face sheets 421 and 462 have different contours than each other and other modular sections. Thus, by virtue of the shapes of the face sheets, the core 458 can have a geometry, shape or contour that is custom designed.



FIG. 5 is a perspective view of a pair of opposing face sheets 506 and 508 secured via an additively manufactured node for use in a transport structure in accordance with an embodiment. Injection inlet port 502 of node 504 is visible and can be used as described above for providing the core of the panel. Injection inlet port 502 can be used to provide an injection point for the foam, which travels via pipe 510 to outlet 512. Node 504, in addition to functioning as a tool to position the face sheets and create the core, can also have its own unique design that is amenable for interfacing with other structures in a vehicle. Thus the node 504 may function duly to manufacture the panel and as a functional joint member in a transport structure.


As in previous embodiments, node 504 includes interfaces 516a and 516b for connecting the face sheets 508 and 506, respectively, as well as locating members including structure 545. In some embodiments, the interior core can be manufactured from a combination of inlet foam with other structures. For example, the foam can be shaped to provide a core for the varying provides of the face sheet 506. Then a different structure, such as a lattice or honeycomb structure, can be used as part of the core to separate the flat portions of face sheets 506 and 508 to provide different physical and structural properties. This hybrid core may be useful, for example, in cases where some additional material characteristic (e.g. stiffness) is needed for the panel interior that cannot be provided by the foam.



FIG. 6 is a perspective view of a pair of opposing face sheets secured via an additively manufactured node in accordance with an embodiment. The assembly of FIG. 6 is similar to FIG. 5, except that face sheet 606 has a uniquely curved contour. Injection inlet port 602 otherwise provides an inlet for the foam material via pipe 610 and outlet 612. Node 604 is coupled to face sheets 606 and 608 via interfaces as illustrated and as also described with respect to prior embodiments.



FIG. 7 is a perspective view of a panel assembly 700 having two pairs of opposing face sheets secured via an additively manufactured node and a single bridge node with a lattice center in accordance with an embodiment. Node 704 includes inlet injection port 702, pipe 719 and outlet 712 in a manner similar to previous embodiments. Node 704 also includes interfaces 716a and 716b for coupling with face sheets 708a and 706a, respectively. In an exemplary embodiment, face sheets 706a and 708a are respectively coupled to face sheets 719a and 719b via an additively manufactured single bridge node 711. The single bridge node 711 includes a single shear interface 711a for joining face sheets 708a and 719b and a double shear interface 711b for joining face sheets 706a and 719a. The single bridge node 711 also includes a lattice centerpiece 765 for joining the single and double shear interfaces 711a and 711b.


The single bridge node 711 accords significant benefits. For example, it can add a significant structural support member in a portion of the panel assembly 700 that is needed. Moreover, the flexibility of additive manufacturing enables the designer to shape the single bridge node 711 in any configuration suitable for the design. Here, node 711 includes lattice centerpiece 765 which has vertical members that can be made of a metallic material for providing substantial vertical support. At the same time, the designer can minimize mass of the assembly by using the lattice cutouts. In an embodiment, the node 711 is first securably affixed to the face sheets, e.g., using an appropriate adhesive at the interfaces. Once the node 704 has positioned face sheets 706a and 708a, and the node 711 has adjoined top face sheets 706a with 719a and bottom face sheets 708a with 719a, then the foam substance can be injected to produce an interior core which encases the centerpiece 611, in turn providing further support or other characteristics to the design such as a shock absorbing capability for impact events.


Additionally, the flexibility of selecting between single and double shear interfaces provides further advantages. For example, an upper portion of the assembly 700 may need structural stability in both vertical directions, namely up and down. Thus the upper face sheets are each set in a double shear interface. Conversely, the lower portion of the assembly may require only the ability to support a vertical force in a single direction, e.g., to support a load. Therefore, to reduce mass, a single shear interface may be used. The single bridge node can be customized to virtually any shape and can include a large number of different materials that may provide different characteristics to the assembly 700. In another embodiment, the single bridge node 700 can be modified to a multi-bridge node to provide more than one set of interfaces in a single matrix.



FIG. 8 is a perspective view of an automotive bonnet 800 secured via an additively manufactured node 813 in accordance with an embodiment. The bonnet or hood 800 includes face sheets 806 and 808. In addition to having the properties needed to meet structural requirements (e.g., pedestrian safety requirements), bonnet 800 may be aesthetically contoured by shaping the face sheets 806 and 808. In this embodiment, the foam inlet injection port 802 is arranged on the side to facilitate ease of injection and to stay removed from critical vehicle functions. If necessary to ensure enough foam can be provided, the bonnet 800 in some embodiments may include a similar injection port on the other side (obscured from view). Corresponding outlet ports 812 and one on the opposing obscured side can supply foam to the interior region between face sheets 806 and 808. The node 813 in this case is relatively simple and may serve as an interconnect between the hood and other parts of the vehicle. In alternative embodiments, additional interior paneling may be coupled to the bonnet 800 using the bridge nodes and single and double shear nodes and interfaces as described herein.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for providing interfaces between parts. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A node, comprising; a base comprising a length of material having a first end and a second end;a first interface proximate to the first end, the first interface engaging a face sheet edge of a first face sheet while being separated from the face sheet edge of the first face sheet by a first set of isolating structures abutting at least two surfaces of the first face sheet edge;a second interface proximate to the second end, the second interface engaging a face sheet edge of a second face sheet while being separated from the face sheet edge of the second face sheet by a second set of isolating structures abutting at least two surfaces of the second face sheet edge, such that the first and second face sheets oppose one another; anda foam inlet port arranged on the base, the foam inlet port configured to enable a flow of a substance into an area defined by at least the first and second face sheets.
  • 2. The node of claim 1, wherein the first face sheet and the second face sheet occupy, at least in part, planes parallel to one another.
  • 3. The node of claim 1, wherein the first and second interfaces comprise single-shear interfaces.
  • 4. The node of claim 1, wherein the first and second interfaces comprise double-shear interfaces.
  • 5. The node of claim 1, wherein the first set of isolating structures includes a washer.
  • 6. The node of claim 5, wherein the washer is a nylon washer.
  • 7. The node of claim 1, wherein the first set of isolating structures comprises an electrically-insulating material.
US Referenced Citations (362)
Number Name Date Kind
3110961 Melill et al. Nov 1963 A
5203226 Hongou et al. Apr 1993 A
5245809 Harrington Sep 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7540123 Semmes Jun 2009 B1
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9340972 Naidoo May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwarzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Garni et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaalliausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10385562 Moss Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
10563400 Graham Feb 2020 B2
20060108783 Ni et al. May 2006 A1
20100266808 Klein et al. Oct 2010 A1
20140157710 Potter Jun 2014 A1
20140277669 Nardi et al. Sep 2014 A1
20160237683 Husin-Ali Aug 2016 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20180218723 Lin et al. Aug 2018 A1
20180319121 Waldrop, III et al. Nov 2018 A1
20190226204 Visser Jul 2019 A1
20190351641 Massey, Jr. Nov 2019 A1
Foreign Referenced Citations (39)
Number Date Country
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2003078752 Sep 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
Partial Search Report, Form PCT/ISA/206, issued for corresponding International Application No. PCT/US21/18014, dated Oct. 5, 2021, 2 pages.
International Search Report and the Written Opinion, issued for corresponding International Application No. PCT/US21/18014, dated Dec. 10, 2021, 10 pages.
Related Publications (1)
Number Date Country
20210252825 A1 Aug 2021 US