Not Applicable
Not Applicable.
Musicians, performers and the like that need to hear themselves and other members of a band or performers in order to stay in-time and/or in-tune are required to utilize a methodology to hear one another called monitoring. Historically open speakers called floor wedges have been used to provide a combined mix of the performers voices, instruments and/or music tracks in order for the performers to hear other pertinent audio during the performance.
Some years ago legacy hearing aid in-ear custom molded monitors were introduced into the market. These custom in-ear monitors took the place of the floor wedges. The custom in-ear monitors substantially reduced the amount of equipment needed for the performers, lowered overall stage volume and reduced risk of hearing damage from performers by allowing the overall monitoring level to be lower.
Since the advent of custom in-ear monitors the process for manufacturing them and the resulting product has not changed very much. This can be attributed to limited types of speaker technologies, legacy manufacturing methods utilized and materials and parts available for assembly. Although these methods and materials work, they fall short in many areas. These areas include: low frequency performance, sweat abatement into the inside, cerumen vapor intrusion, comfortable yet sealed canal lengths, ruggedization, reparability, digital manufacturing methodologies, precision internal parts, use of hybrid driver configurations, tunability, placement and sound bore diameter and length calculation for optimal performance.
With this the need exists for a better design which answers all of these shortcomings. A better custom in-ear monitor needed to be designed to better serve those who utilize them for their very livelihood.
An embodiment of the present invention is directed toward an in-ear monitor that is contained within a housing having a cover and a body. A trumpet-shaped sound collector is positioned in the housing. A main sound bore is acoustically coupled to the trumpet-shaped sound collector. A nozzle having a nozzle opening in the body is acoustically coupled to the sound bore. The nozzle includes a recessed channel and a sealing o-ring positioned on a tip of the nozzle that function as an ear canal seal. A bass port is acoustically coupled to the nozzle opening. An ambient port is also preferably acoustically coupled to the nozzle opening. A dynamic driver, such as a coaxial speaker or balanced armature receiver, is coupled to the trumpet shaped sound collector. The bass port preferably has a bass port valve that selectively restricts a sound flow through the bass port. The ambient port preferably includes an ambient port valve that selectively restricts a sound flow through the ambient port. A balanced armature receiver is acoustically coupled to the main sound bore. The balanced armature receiver is most preferably positioned directly inside the main sound bore.
Another embodiment of the present invention is directed toward a method of constructing a custom in-ear monitor. The method begins with the obtaining of an ear impression from a customer. A digital body model of a monitor body is created based on the ear impression. The digital model is then manipulated to remove surface abnormalities. Component templates are positioned in the digital body model. A driver is preferably mounted in the body and a balanced armature receiver is preferably positioned in a main sound bore of the in-ear monitor. The loft of a speaker mount in the in-ear monitor is adjusted to accommodate the selected driver. Valve adjustments are provided for a bass sound port and an ambient sound port of the in-ear monitor. The component templates are extracted from the digital body model. A cover template is fitted onto an upper surface of the digital body model. The in-ear monitor is then manufactured based upon the modified digital body model.
The present invention is directed toward an in-ear monitor that can be customized for particular applications and individuals. The monitor includes a housing formed from a body and a cover. A dynamic driver is mounted in a cavity in the housing on an angled mounting flange. The dynamic driver is acoustically coupled to a trumpet-shaped sound collector. The trumpet-shaped sound collector is coupled to a main sound bore that exits an opening in a nozzle portion of the body that is inserted into the ear canal of a user. An ambient sound port collects ambient sound and couples it to the sound bore. An additional bass port increases the bass response of the monitor. Ear impressions are used to customize the body of the monitor to the ear of a user and the location of the bass and ambient sound ports can be altered for different applications.
Referring now to
The in-ear monitor 2 preferably has a main smooth-flowing sound bore 24 acoustically coupled to a trumpet-shaped sound collector 26 that smoothly channels sound down the main sound bore 24 into the ear of the user. This configuration does not disturb the natural flow of sound from a dynamic driver 28 down the main sound bore 24 and creates a smooth path to the ear through the nozzle 12. An angled driver flange 32 is used to mate the sound collector 26 with the dynamic driver or speaker 28. As discussed in more detail herein, an ambient port valve 30 is used to selectively restrict the ambient sound port 20 and a bass port valve 34 is used to selectively restrict the bass sound port 22. Needle valves are preferably used to adjust the porting of the bass and ambient sound channels. However, any small valve design such as a slide valve, ball valve or butterfly valve can be utilized to adjust the porting.
The in-ear monitor 2 has an enlarged main sound bore 24 that is preferably 3-6 mm in diameter. The large size of the sound bore 24 reduces any effects of sweat which can clog standard sound bore tubes. It also allows for easy cleaning with a Q-tip to remove ear wax buildup.
Referring now to
The connector 43 for the in-ear monitor cable is recessed into the cover 40 for added comfort and strength. The recessed connector 43 is used to connect the ear monitor to a wired or wireless belt pack receiver, or other amplified audio source. Recessing the connector 43, reduces strains placed on the connector that result from pulling on the cable attached to the connector.
The cover 40 is preferably constructed so that a recessed logo can be engraved in the outer surface of the cover. This gives a dimensional look to any text or logo added to the cover and can be easily painted to enhance the visual appearance of the cover. The cover 40 can be made of almost any material such as carbon fiber, wood, ivory, mother of pearl, etc.
The cover 40 can also be plated with metals such as chrome, gold, black rhodium, etc. The cover 40 is preferably attached with recessed, stainless, self-tapping T-3 torx bit screws. These screws thread themselves into the 1.1 mm×6 mm holes 45 on the body to attach the cover 40 and allow its removal when needed for repair or cleaning. While torx bit screws are preferred, any type of suitable of screw can be used.
As shown in
As shown in
As discussed above an ambient sound port is positioned in the body. The ambient sound port 60 can be positioned in the body 62 in one of two different manners. As shown in
The ambient port opening 64 can also be positioned in two different locations. As shown in
As shown in
As shown in
As shown in
The in-ear monitor preferably makes hybrid use of both dynamic drivers and balanced armature receivers for added high frequency response. As shown in
As shown in
As shown in
Although there have been described particular embodiments of the present invention of a new and useful IN-EAR MONITOR, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
The present Utility patent application is based upon and claims priority from U.S. Provisional Patent Application No. 61/534,404 filed Sep. 14, 2011.
Number | Name | Date | Kind |
---|---|---|---|
7194102 | Harvey | Mar 2007 | B2 |
7194103 | Harvey | Mar 2007 | B2 |
7263195 | Harvey et al. | Aug 2007 | B2 |
7634099 | Harvey et al. | Dec 2009 | B2 |
7986803 | DeKalb | Jul 2011 | B1 |
RE42602 | Krywko | Aug 2011 | E |
8061473 | Kerr | Nov 2011 | B1 |
20080247561 | Smith | Oct 2008 | A1 |
20110058702 | Saggio, Jr. | Mar 2011 | A1 |
20120087511 | Lumsden et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2000078689 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20130251161 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61534404 | Sep 2011 | US |