The subject invention relates generally to software development systems and more particularly to custom languages that are created and provided as an alternative documentation form to supplement or enhance spoken language documentation.
Software Documentation or Source Code Documentation is written text that accompanies computer software and is often created in a computer development environment. Generally, such documentation explains how the underlying code operates and/or how to utilize the code. The term software documentation can have more than one context and thus exist in different forms. Some example types of documentation include architecture or design documentation for software. Another form includes technical documentation of code, algorithms, interfaces, and APIs. Still yet other forms of documentation include manuals for the end-user, system administrators, support staff along with marketing literature including product briefs and promotional information.
Design documents tend to take a broad view. Rather than describe how things are used, this type of documentation focuses more on the why. For example, in a design document, a programmer may explain the rationale behind organizing a data structure in a particular manner, or may list member functions of a particular object and how to add new objects to the code. This may include explaining the reasons why a given class is constructed in a particular manner, outlining patterns, discussing alternative designs, outlining ideas for improvement, or providing plans for how to improve designs later on such as with respect to future projects. This type of documentation is typically not considered appropriate for code or technical documentation however that is designed with other requirements in mind.
Regarding technical documentation, this is the type of information most programmers think of when using the term software documentation. When creating software, code alone is insufficient. There should be some text along with the code to describe various aspects of its intended operation. This documentation is usually embedded within the source code itself so it is readily accessible to anyone who may be traversing though it. In one instance, comments may be added to source code that can be highly technical and are mainly employed to define and explain APIs, data structures and algorithms. For example, one might use this documentation to explain that a variable refers to a particular location or machine in a factory. It is important for code documents to be thorough, but not so verbose that it becomes difficult to maintain. In addition to source code documentation, other technical documentation requirements may include descriptions on tasks, routines, controllers, modules, data types, tags, phases, add-on instructions, and so forth.
Often, tools such as Doxygen, javadoc, ROBODoc, POD or TwinText can be used to auto-generate code documents—that is, they extract comments from the source code and create reference manuals in such forms as text or HTML files. Code documents are often organized into a reference guide style, allowing programmers to quickly look up an arbitrary function or class. Many programmers are comfortable with the notion of auto-generating documentation for various reasons. For example, since it is extracted from the source code itself (for example, through comments), the programmer can write it while referring to their code, and can thus employ the same tools used to create the source code, to generate the documentation.
In addition to standard documentation tasks, systems are now developed for markets across the global economy. Thus, not only is documentation required in the native language employed for code or system development, there often is a requirement to have the documentation localized into one or more foreign languages in addition to the language the original code was developed in. As development of software projects continues to become more global, users have a need to deploy software or system designs across the world where the language of the consumers of the respective design may be different than the language of the creators of the design. Thus, different languages may be spoken by the development engineer, the maintenance engineer, and the operators that view the design which can create problems for those who may need to update, alter, and/or operate the given design.
Another problem with current documentation schemes is that it may not be possible to easily associate certain control system documentation with a specified “spoken language” for example machine names or numeric constants. Also, different types of documentation may be desired for different user-types of a given project. For instance, a designer may document their code with long and short forms of the project documentation in the same spoken language, a maintainer may desire to view a shortened-version of project documentation out on the plant floor, whereas a troubleshooter may desire to view a longer-form version of project documentation to help get to the root of potential issues.
The following presents a simplified summary in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview nor is intended to identify key/critical elements or to delineate the scope of the various aspects described herein. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Custom language components and options are provided to facilitate electronic documentation such as can be provided in a software development environment. Custom languages allow designers to tailor documentation for various needs and according to particular nuances associated with language such as dialects or the type of documentation that is generated for an application. Thus, a plurality of differing language components can be generated as a set and then individually selected for the needs of the end user of such documentation. In general, custom languages can be applied to different application situations. In one case, a language component may be tagged to indicate that no foreign language translation is to be applied to the documentation so tagged or marked. For example, for strings that are not translated or are not easily tied to a spoken-language, the user is able to specify a custom language in which to store/display those tagged components of project documentation. A specific example is a user who creates a custom language for “System Constants”, without having to place this documentation in English (United States) or any other specified language. Thus, one language may be employed as the custom language that remains applied to the component regardless of underlying language translations that may have been developed for the overall documentation of a project or application.
Another example application relates to a type of user who creates a custom language for “Extended Documentation” and associates it with a given language such as English, for example. The project may have “English (United States)” and “English (Extended Documentation),” where extended documentation may include a feature such as being more verbose (or some other language nuance) than standard English forms. As can be appreciated, custom languages can be developed for any language. This allows for multiple versions of documentation in the same (or similar) language targeting specific users of a system. When there are varying users with differing documentation needs, custom languages may save computer memory or interface screen real estate by targeting for someone monitoring a process, yet still provide enough information for a troubleshooter of a system, for example. Thus, end users can select the custom language features they need from one or more custom language components stored for a given documentation set.
To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in connection with the following description and the annexed drawings. These aspects are indicative of various ways which can be practiced, all of which are intended to be covered herein. Other advantages and novel features may become apparent from the following detailed description when considered in conjunction with the drawings.
Systems and methods are provided to facilitate software documentation. In one aspect, a software documentation system is provided. This includes a documentation object to store documentation data of an application. One or more custom language components are stored with the documentation objects to provide language display options for the application. The custom language components can be applied as a tag to indicate that tagged data items are to remain in a designated form such as a machine name that is to remain in the designated language of the documentation designer. The custom language components can also be specified as differing forms of a similar language. This includes storing differing versions of similar documentation where the forms are tailored to a given subset of users having differing contexts for the respective users.
It is noted that as used in this application, terms such as “component,” “object,” “interface,” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution as applied to an automation system for industrial control. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program and a computer. By way of illustration, both an application running on a server and the server can be components. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers, industrial controllers, and/or modules communicating therewith. Furthermore, it is noted that the term translated language and localized language can have similar meanings. Thus, documentation that has been translated from one language to another can be referred to as having been localized.
Referring initially to
As shown, the editor 150 is associated with a current language selected for the development tool 120, whereas the display component 110 provides a display of alternative languages that may be available for one or more of the documentation objects 140. Such objects 140 can include substantially any type of component that can have documentation such as comments associated therewith. These objects 140 include program objects, program instructions, specifications, design guidelines, algorithms, visual objects, sound objects, ladder logic elements, Sequential Function Chart elements, Function Block Diagrams, or higher level language objects such as associated with C++, Basic, Java, and so forth.
Generally, documentation associated with the documentation objects 140 can be stored in a storage medium 160 (e.g., database, data file), where current language documentation components 164 and custom language documentation components 168 can be imported and exported to/from the development tool 120. The documentation components 164 and 168 can be in substantially any language (e.g., English, German, French, Russian, and so forth). A language switch 170 can be associated with the development tool 120 to allow switching between a current language documentation context employed by the display component 110 and the editor 150 where the current documentation language component 164 are switched, to one or more alternative documentation forms supported by the custom language documentation components 168.
It is noted that there are several methods for generating the custom language components 168. One method is to send the current language components 164 out to a company and have one or more language forms generated from the current language components. For example, verbose comments could be sent out where a terse or reduced set of comments were provided as custom languages to the verbose set. In another example, a given language could have several dialects created as custom languages 168 for the respective language. Another method would allow developers to edit a comment at 150, save the edit, employ the language switch 170 to switch to an alternative language context, enter the comment in the alternative language and again save the comment according to the alternative language context thus building up the database with a set of custom language components 168. As can be appreciated, custom languages components 168 can be created in parallel at the editor 150 along with current language documentation components 164.
In general, the custom language components 168 and the ability to select between language components via the language switch 170 facilitate various applications. In one case, certain translations for a control system's project documentation may not be easily tied to an existing spoken-language, for example. Thus, the custom language components 168 may be configured by a user to store translations not readily associated with a provided language. For example, a user may desire to name/tag strings that are not translated into an alternative language as untranslatable strings.
Additionally, a user may desire to have a long-form piece of documentation for development and a more terse form of that documentation for maintenance. The custom language components 168 allow for “Language (long form)” and “Language (short form)” as another example, where Language specifies a given language such as French, English, German, Indian, and so forth. As will be described in more detail below, custom language components 168 can be developed for other applications such as languages that are tailored to a user's role. The user may configure the custom language components 168 to store translations of project documentation beyond those provided in a list of languages given for translations. During the configuration process, a custom language may be added to a project, where the user may then add translations to the custom language components 168.
Before proceeding, it is noted that the development system 100 can include means for displaying (display output 110) a documentation object 140 according to a current language context and means for storing custom language data (custom language objects 168) associated with the documentation object to generate at least one alternative form of project documentation. The system 100 can also include means for switching (language switch 170) between a current language context and an alternative language context.
Referring now to
A project documentation manager can be provided at 210 to support custom language components 210. The documentation manager 210 which will be described in more detail below with respect to
Proceeding to 220, custom language naming conventions are considered. In general, custom languages should not have names that collide with existing languages in the system. Custom language names can follow RFC 1766 naming convention and can be formatted internally in the system. This includes where the user can supply a custom name, and the system converts that name into a suitable naming convention in one example. Custom languages can optionally be based upon a base language or can be completely made up. Both the base language (or lack there of) and the provided custom name can factor into the RFC 1766 name that is generated by the system. For a custom language called “Midwestern” based upon English, the system can generate “en-Midwestern,” for example.
At 230, string identifiers are considered for custom language support. In this case, portions of a language can be designated or tagged to indicate that no translation of the tagged component is to occur. Thus, another use of the custom language components 200 would be for a potential “un-translated strings” custom language that could be used as the default language for all documentation (or components thereof) that does not need to be translated. For instance, technical descriptions of parts and part numbers could be valid for all languages and could then exist in a custom language that would not be sent off for translation and would then be used as the default language for the components that have been identified as such.
At 240, custom language applications are considered. As noted above in one example, custom languages may be designated in the same language where one set of documentation or components is verbose for one set of users and another set of documentation is less verbose for a different type of users. Another type of application 240 includes defining more than one dialect for a given language as a custom language. In India and China for example, various dialects exist from known base languages and could be provided as custom language documentation alternatives for those regions employing such dialects. Other types of custom languages can be developed in view of security considerations. For instance, depending on the identity of a user logged into a system, different sets of documentation can be provided depending on that particular user's security clearance or security privileges.
In general, custom language components 200 can be generated to address substantially any type of nuance associated with a particular user. This can include role-based documentation sets where depending on the type of user identified (e.g., manager, engineer, maintenance, security), a differing set of custom language documentation components are provided in view of such identification. Still other types of documentation may be context based where automatic components detect a given context (or alerted to a context) (e.g., maintenance or troubleshooting context, operator context, design context, and so forth), and select relevant custom language documentation 200 to support the detected context.
Turning now to
At 310, the project documentation manager 300 maintains the current language of the project. The current language specifies the language that the project documentation of the system is currently displayed in. For example, if an object in the system that had project documentation was queried for its project documentation, the requested project documentation returned would be in the current language. The documentation client is able to get and set the current language of the project. When the client sets the current language of the project, a Language Switch occurs.
At 320, the project documentation manager 300 maintains the default language of the project. The default language specifies the project documentation to display if the current language does not have an entry for the project documentation requested. The documentation client is able to get and set the default language of the project. When the client sets the default language of the project, a Language Switch occurs.
At 330, the project documentation manager 330 maintains the custom languages defined for a project or application. It tracks details of these languages so that they are recognized by the system as another permitted language. The information about these custom languages 330 is persisted in the database. Custom languages 330 are regenerated during an import process such that when an unknown language identifier is found during import, it can be assumed to be a custom language and is thus created.
The control components 420 can include various computer or network components such as servers, clients, programmable logic controllers (PLCs), communications modules, mobile computers, wireless components, control components and so forth which are capable of interacting across the network 440. Similarly, the term PLC as used herein can include functionality that can be shared across multiple components, systems, and/or networks 440. For example, one or more PLCs can communicate and cooperate with various network devices across the network 440. This can include substantially any type of control, communications module, computer, I/O device, sensor, Human Machine Interface (HMI)) such as the user interface 430 that communicate via the network 440 which includes control, automation, and/or public networks. The PLC can also communicate to and control various other devices such as Input/Output modules including Analog, Digital, Programmed/Intelligent I/O modules, other programmable controllers, communications modules, sensors, output devices, and the like, where the development tool 410 and user interface 430 can design/document various aspects for the control components 420.
The network 440 can include public networks such as the Internet, Intranets, and automation networks such as Control and Information Protocol (CIP) networks including DeviceNet and ControlNet. Other networks include Ethernet, DH/DH+, Remote I/O, Fieldbus, Modbus, Profibus, wireless networks, serial protocols, and so forth. In addition, the network devices can include various possibilities (hardware and/or software components). These include components such as switches with virtual local area network (VLAN) capability, LANs, WANs, proxies, gateways, routers, firewalls, virtual private network (VPN) devices, servers, clients, computers, configuration tools, monitoring tools, and/or other devices.
Turning to
The GUI can include a display having one or more display objects for editing or viewing documentation objects including such aspects as configurable icons, buttons, sliders, input boxes, selection options, menus, tabs and so forth having multiple configurable dimensions, shapes, colors, text, data and sounds to facilitate operations with the development tool. In addition, the GUI can also include a plurality of other inputs or controls for adjusting and configuring one or more aspects. This can include receiving user commands from a mouse, keyboard, speech input, web site, remote web service or other device such as a camera or video input to affect or modify operations of the GUI.
Referring now to
A “Localize To” list box 520 includes possible languages that are supported by the language switching components noted above. Languages that have content can be placed at the top of the list before a visual separator for easy selection. Any custom languages present in the project can be placed below the separator at 530. At 540, a “Custom . . . ” button allows the user to manage their customized languages. A user can add a customized language to the list of languages that may be selected in the “Localize To” list box 520 or rename an already-created customized language.
Proceeding to 810 of
At 830, after a language editor has been selected for a component at 820, one or more custom languages are defined for a selected documentation object. This can include using a base language such as English and defining nuanced or tailored versions off of the base language which act as the custom languages. At 840, custom languages are applied as alternative documentation contexts or as un-translated strings. For alternative contexts, custom languages may be defined based on dialects, verboseness, user's roles, security considerations and so forth. Based on a detected or stipulated context by the user, a custom language comment or documentation object can be viewed that is related to the determined or specified context.
In an un-translated strings context, custom languages may be applied to string names in a system where no language translation should be applied to the string. Thus, a machine name or constant in English for example that was tagged or identified as a custom language name, that name would not be translated into German when the current or default language was switched to German. In this manner, custom language tags allow components of documentation to remain in a desired form outside of a general base language description.
With reference to
The system bus 918 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 11-bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), and Small Computer Systems Interface (SCSI).
The system memory 916 includes volatile memory 920 and nonvolatile memory 922. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 912, such as during start-up, is stored in nonvolatile memory 922. By way of illustration, and not limitation, nonvolatile memory 922 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 920 includes random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Computer 912 also includes removable/non-removable, volatile/non-volatile computer storage media.
It is to be appreciated that
A user enters commands or information into the computer 912 through input device(s) 936. Input devices 936 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 914 through the system bus 918 via interface port(s) 938. Interface port(s) 938 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 940 use some of the same type of ports as input device(s) 936. Thus, for example, a USB port may be used to provide input to computer 912 and to output information from computer 912 to an output device 940. Output adapter 942 is provided to illustrate that there are some output devices 940 like monitors, speakers, and printers, among other output devices 940 that require special adapters. The output adapters 942 include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 940 and the system bus 918. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 944.
Computer 912 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 944. The remote computer(s) 944 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically includes many or all of the elements described relative to computer 912. For purposes of brevity, only a memory storage device 946 is illustrated with remote computer(s) 944. Remote computer(s) 944 is logically connected to computer 912 through a network interface 948 and then physically connected via communication connection 950. Network interface 948 encompasses communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 950 refers to the hardware/software employed to connect the network interface 948 to the bus 918. While communication connection 950 is shown for illustrative clarity inside computer 912, it can also be external to computer 912. The hardware/software necessary for connection to the network interface 948 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
What has been described above includes various exemplary aspects. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these aspects, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. Accordingly, the aspects described herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Number | Name | Date | Kind |
---|---|---|---|
4510565 | Dummermuth | Apr 1985 | A |
4553205 | Porchia | Nov 1985 | A |
4616333 | Shimoni | Oct 1986 | A |
4718025 | Minor et al. | Jan 1988 | A |
4731735 | Borgendale et al. | Mar 1988 | A |
4773028 | Tallman | Sep 1988 | A |
4831529 | Miike et al. | May 1989 | A |
4975865 | Carrette et al. | Dec 1990 | A |
5003469 | Kamiyama et al. | Mar 1991 | A |
5051932 | Inoue et al. | Sep 1991 | A |
5274781 | Gibart | Dec 1993 | A |
5452201 | Pieronek et al. | Sep 1995 | A |
5568383 | Johnson et al. | Oct 1996 | A |
5611059 | Benton et al. | Mar 1997 | A |
5805442 | Crater et al. | Sep 1998 | A |
5812394 | Lewis et al. | Sep 1998 | A |
5870309 | Lawman | Feb 1999 | A |
5901323 | Milliken et al. | May 1999 | A |
5943675 | Keith et al. | Aug 1999 | A |
5950006 | Crater et al. | Sep 1999 | A |
5987239 | Kirsch | Nov 1999 | A |
5991793 | Mukaida et al. | Nov 1999 | A |
6092036 | Hamann | Jul 2000 | A |
6110214 | Klimasauskas | Aug 2000 | A |
6139201 | Carbonell et al. | Oct 2000 | A |
6198480 | Cotugno et al. | Mar 2001 | B1 |
6204782 | Gonzalez et al. | Mar 2001 | B1 |
6219649 | Jameson | Apr 2001 | B1 |
6233623 | Jeffords et al. | May 2001 | B1 |
6252589 | Rettig et al. | Jun 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6298393 | Hopsecger | Oct 2001 | B1 |
6298454 | Schleiss et al. | Oct 2001 | B1 |
6385496 | Irwin et al. | May 2002 | B1 |
6411987 | Steger et al. | Jun 2002 | B1 |
6505247 | Steger et al. | Jan 2003 | B1 |
6536029 | Boggs et al. | Mar 2003 | B1 |
6539271 | Lech et al. | Mar 2003 | B2 |
6559861 | Kennelly et al. | May 2003 | B1 |
6574639 | Carey et al. | Jun 2003 | B2 |
6584488 | Brenner et al. | Jun 2003 | B1 |
6618856 | Coburn et al. | Sep 2003 | B2 |
6633782 | Schleiss et al. | Oct 2003 | B1 |
6701324 | Cochran et al. | Mar 2004 | B1 |
6754668 | Noble et al. | Jun 2004 | B2 |
6754885 | Dardinski et al. | Jun 2004 | B1 |
6766214 | Wang et al. | Jul 2004 | B1 |
6795798 | Eryurek et al. | Sep 2004 | B2 |
6799148 | Ling et al. | Sep 2004 | B2 |
6847850 | Grumelart | Jan 2005 | B2 |
6847854 | Discenzo | Jan 2005 | B2 |
6865644 | Husted et al. | Mar 2005 | B2 |
6952727 | Lindner et al. | Oct 2005 | B1 |
6975913 | Kreidler et al. | Dec 2005 | B2 |
6976247 | Altfeld | Dec 2005 | B1 |
7043311 | Nixon et al. | May 2006 | B2 |
7050873 | Discenzo | May 2006 | B1 |
7069201 | Lindner et al. | Jun 2006 | B1 |
7152222 | Kumhyr et al. | Dec 2006 | B2 |
7181370 | Furem et al. | Feb 2007 | B2 |
7206646 | Nixon et al. | Apr 2007 | B2 |
7206965 | Roddy et al. | Apr 2007 | B2 |
7218974 | Rumi et al. | May 2007 | B2 |
7228310 | O'Brien | Jun 2007 | B2 |
7249356 | Wilson et al. | Jul 2007 | B1 |
7272665 | Yamada et al. | Sep 2007 | B2 |
7275062 | Deitz et al. | Sep 2007 | B2 |
7286888 | Monette et al. | Oct 2007 | B2 |
7299367 | Hamm et al. | Nov 2007 | B2 |
7328078 | Sanford et al. | Feb 2008 | B2 |
7359930 | Jackson et al. | Apr 2008 | B2 |
7406453 | Mundie et al. | Jul 2008 | B2 |
7546577 | Do et al. | Jun 2009 | B2 |
7568184 | Roth | Jul 2009 | B1 |
7574417 | McGreevy et al. | Aug 2009 | B1 |
7584216 | Travieso et al. | Sep 2009 | B2 |
7616095 | Jones et al. | Nov 2009 | B2 |
7620885 | Moulckers et al. | Nov 2009 | B2 |
7627385 | McGreevy et al. | Dec 2009 | B2 |
7672740 | Baier et al. | Mar 2010 | B1 |
7684876 | Grgic | Mar 2010 | B2 |
7693585 | Kalan et al. | Apr 2010 | B2 |
7742833 | Herbst et al. | Jun 2010 | B1 |
7853555 | Peoples et al. | Dec 2010 | B2 |
20020019839 | Shiu | Feb 2002 | A1 |
20020026317 | Labrique et al. | Feb 2002 | A1 |
20020054055 | Sone | May 2002 | A1 |
20020069235 | Chen | Jun 2002 | A1 |
20020120744 | Chellis et al. | Aug 2002 | A1 |
20020133523 | Ambler et al. | Sep 2002 | A1 |
20020169907 | Candea et al. | Nov 2002 | A1 |
20020174263 | Codd et al. | Nov 2002 | A1 |
20020184601 | Fitzhenry et al. | Dec 2002 | A1 |
20020184610 | Chong et al. | Dec 2002 | A1 |
20030014130 | Grumelart | Jan 2003 | A1 |
20030041135 | Keyes et al. | Feb 2003 | A1 |
20030100958 | Cachat et al. | May 2003 | A1 |
20030101208 | Chauvel et al. | May 2003 | A1 |
20030130899 | Ferguson et al. | Jul 2003 | A1 |
20030172107 | Leyfer et al. | Sep 2003 | A1 |
20030182303 | Gibson | Sep 2003 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040181294 | Deitz et al. | Sep 2004 | A1 |
20040225649 | Yeo et al. | Nov 2004 | A1 |
20050071755 | Harrington et al. | Mar 2005 | A1 |
20050085928 | Shani | Apr 2005 | A1 |
20050198034 | Boyer | Sep 2005 | A1 |
20050198406 | Sichner | Sep 2005 | A1 |
20050203648 | Martin | Sep 2005 | A1 |
20050210337 | Chester et al. | Sep 2005 | A1 |
20060004827 | Stuart | Jan 2006 | A1 |
20060020928 | Holloway et al. | Jan 2006 | A1 |
20060026559 | Gunturi et al. | Feb 2006 | A1 |
20060067334 | Ougarov et al. | Mar 2006 | A1 |
20060161268 | Frensch et al. | Jul 2006 | A1 |
20060218102 | Gibson et al. | Sep 2006 | A1 |
20060259160 | Hood et al. | Nov 2006 | A1 |
20060259499 | Moulckers et al. | Nov 2006 | A1 |
20060291283 | Jin et al. | Dec 2006 | A1 |
20060294502 | Das et al. | Dec 2006 | A1 |
20070006039 | Fichter et al. | Jan 2007 | A1 |
20070027913 | Jensen et al. | Feb 2007 | A1 |
20070028070 | Avergun et al. | Feb 2007 | A1 |
20070038610 | Omoigui | Feb 2007 | A1 |
20070050348 | Aharoni et al. | Mar 2007 | A1 |
20070073744 | McVeigh et al. | Mar 2007 | A1 |
20070112447 | McGreevy et al. | May 2007 | A1 |
20070112801 | McGreevy et al. | May 2007 | A1 |
20070136533 | Church et al. | Jun 2007 | A1 |
20070142941 | McGreevy et al. | Jun 2007 | A1 |
20070156770 | Espelien | Jul 2007 | A1 |
20070244964 | Challenger et al. | Oct 2007 | A1 |
20070245339 | Bauman et al. | Oct 2007 | A1 |
20070282577 | Lind | Dec 2007 | A1 |
20070288795 | Leung et al. | Dec 2007 | A1 |
20070294078 | Kim et al. | Dec 2007 | A1 |
20080027678 | Miller | Jan 2008 | A1 |
20080082577 | Hood et al. | Apr 2008 | A1 |
20080098356 | Ericsson et al. | Apr 2008 | A1 |
20080126408 | Middleton | May 2008 | A1 |
20080127091 | Ericsson et al. | May 2008 | A1 |
20080263518 | Bank et al. | Oct 2008 | A1 |
20080313228 | Clark et al. | Dec 2008 | A1 |
20100146491 | Hirano et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0490864 | Jun 1992 | EP |
1109107 | Jun 2001 | EP |
1307823 | May 2003 | EP |
2347234 | Aug 2000 | GB |
2353616 | Feb 2001 | GB |
2004027531 | Apr 2004 | WO |
2005006130 | Jan 2005 | WO |
2005006130 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080127091 A1 | May 2008 | US |