The present invention generally relates to medical and hospital computer information systems. More specifically, it relates to computer systems and methods for use by physicians in treating patients and to tools for analyzing physician practice.
There has been an increasing need to reduce medical errors in hospitals and clinics. Responding to public concern over such errors, and seeking to standardize care around best practices to control quality and cost, hospitals are purchasing costly clinical information systems installed with a technology known in the industry as Computerized Physician Order Entry (CPOE). Current estimates are that 10% of US hospitals have CPOE systems and the number is expected to grow significantly in the next few years.
However, CPOE systems require a certain type of structured data to operate successfully. Manual entry of this data in the required format has proven very impracticable for busy healthcare professionals (hereinafter “physicians”) in the front-lines. Thus, the success of these systems has relied heavily upon pre-built templates referred to as order sets, a term known in the field of medical/hospital software development. Order sets, described in greater detail below, essentially offer templates of care for the most common diagnoses and procedures. Utilizing a checklist approach, they allow physicians to rapidly select the appropriate options for care in a structured data format. Order sets are critical to successful implementation of CPOE systems and are currently delivered to physicians through two mechanisms.
First, they can be pre-printed documents or “printed-on-demand” at the time of use. This creates a paper order set that is completed by hand. These paper order sets have demonstrated benefits for patient care through a “checklist effect”, reducing errors of omission and errors of commission through passive guidance to the physician. However, paper order sets cannot offer alerts or other sophisticated decision support. Furthermore, analyzing the patterns of clinical practice from paper order sets is extremely time-consuming for the hospital, requiring laborious manual chart reviews by trained Health Information Management personnel to extract and aggregate the relevant data.
Alternately, order sets may be delivered electronically as part of a Computerized Physician Order Entry (CPOE) system. CPOE systems can maintain libraries of hundreds of order sets and include active decision support and analytical tools for better understanding clinical practice. For example, a CPOE system can actively check an order set for deficiencies or potential safety concerns, and trigger an alert before the physician that requires a response to proceed. CPOE also allows for much easier aggregation and analysis of practice patterns to identify opportunities for improvements in patient care.
Current CPOE systems have two major deficiencies. First, making “front-end” changes to order sets or decision support rules can be exceedingly complex and costly. These objects often require a network of dedicated IT personnel to make modifications. Furthermore, it is often difficult and expensive to adapt order sets or decision support to local clinical practice at a particular institution. Second, similar challenges arise with the “back-end” analytical tools available in most current CPOE systems. They require extensive training to use and often do not include useful analytical reports that can easily be used by the typical staff available in a typical community hospital. Creating or modifying an analytical report can take weeks to months and cost thousands of dollars of staff time.
Thus, it would be desirable to have systems that can deliver order sets to physicians, but also integrate decision support and analytical reports in closed-loop processes that can be easily operated and modified by the staff available at a typical community hospital.
To achieve the foregoing, and in accordance with the purpose of the present invention, closed-loop processes and systems for creating a Custom Order Set and using the Order Set to get feedback from Physicians and make modifications to Orderables and Order Sets used in a hospital are described. A Physician can create her own Order Sets and submit them to the hospital for approval. If approved, they can be included in the hospital's Order Sets Library and used by other Physicians. A Physician can create a Framework of Order Sets. A Framework is intended to reflect how the Physician organizes clinical knowledge in her specialty and is intended to match the way the Physician thinks about a Clinical Encounter with a patient. The Physician selects Order Sets from categories within the Framework. These categories may be described as conceptual groups of Order Sets for a Physician in a particular specialty. These Order Sets are organized or blended together using a detailed process to form a Custom Order Set. A Custom Order Set provides a visual display of Order Sets based on Views and categories and provides various types of information by way of visual markups and text. The Physician can provide Feedback at several levels, such as at the Order Set or Orderable levels or make requests for new content.
The hospital or clinic can collect data on the usage of Orderables and Order Sets and use this data to analyze performance and make modifications to the Order Sets Library. By setting thresholds of utilization, the hospital can automatically determine which Orderables in an Order Set should be pre-selected (selected by default), which should be removed because of low usage, and which ones can be upgraded or downgraded, all based on utilization data collected by the system. Once the data has been analyzed, either automatically or manually, and modifications have been made to the Order Sets, they are delivered to the Physicians, through Frameworks and Custom Order Sets. In this manner, a closed-loop process: Delivery to Feedback to Analysis to Modification and back to Delivery, is enabled.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
Methods and systems for creating and using custom order sets are described in the various figures. Also described are methods and systems for using feedback on the Order Sets and other variables to improve hospital and physician performance. Throughout this description certain variables are used to describe the invention. These are Orderables, Order Sets, Quality Measures, and Physician.
Orderables are how physicians direct care inside hospitals. Orders cover the gamut of possible interventions from nursing care to diagnostics to administration of medications. An Orderable is a potential order that is presented to a Physician. By selecting and optionally modifying an Orderable, the Physician converts it into an Order that has medico-legal force. Examples of Orderables include “Aspirin 325 mg by mouth once daily” (medication orderable), “Left Ventricular Ejection Fraction not assessed due to previous assessment available in chart” (documentation orderable), and “Elevate head of bed>30 degrees” (nursing orderable).
An Order Set is a collection of Orderables along with associated instructions and reminders, typically related to a specific hospital unit or medical condition. Examples include an Intensive Care Unit (ICU) having a corresponding “ICU Admission Order Set”, while the Cardiology Department may have a “Congestive Heart Failure Order Set,” each containing a different set of medication, nursing, lab and other types of Orderables.
A Quality Measure is a goal state of the hospital that can be affected by Orderables. By selecting certain Orderables and not selecting others, a Physician can positively or negatively impact Quality Measures for the hospital. Examples include a hospital having a Quality Measure for “Time to Administration of Antibiotics in Community-Acquired Pneumonia.” The Physician's choice among antibiotic Orderables and timing of that selection will contribute positively or negatively to the hospital's performance on this Quality Measure. Finally, the term Physician refers to the individual physician user of the systems and methods of the various embodiments described below. Physician may include, more generally, other clinicians and health care providers, such as nurses.
In one embodiment, a hospital first creates their Quality Measures. The hospital defines traits of the Quality Measures and sets levels of validation. This allows decision support to be finely tailored to the local culture of the hospital. In one embodiment, a Quality Measure may have the following traits: Name, Type—lookup table defined by hospital (e.g. Quality, Safety, Revenue), Goal Value (%), Critical Value (%), and Required vs. Suggested.
A hospital may also create or import Order Sets which, as described above, are comprised of Orderables, together with associated Notes, Reminders or other informational elements that are not classified as Orderables. This is shown in
As described below, different order sets may be combined prior to presentation to the physician. When combining order sets, there can be interactions between Orderables [?] that can have implications for patient care. Thus, an Order Set may have pre-defined Negation Classes 216 and 218 as shown in
Having created the Order Sets, comprised of Orderables (which may or may not belong to a Class) and, optionally, Negation Classes, the hospital can then apply Hospital Quality Measures to which Orderables it believes should have one. A Quality Measure is applied to a specific Orderable rather than to an entire Order Set. This is shown in
At this point in step 102 (Creation process), the hospital has created multiple Hospital Order Sets (may be described as a library of Order Sets). Each Order Set may have optional Negation Classes and is composed of Orderables, each of which may have an optional Class and Quality Measure. This is shown as Order Set 1224 and Order Set 2226 of Order Sets 228 in
In addition to the content created by the Hospital individual Physicians can also create their own Order Sets made up of Orderables created by the Hospital or Orderables created by the Physicians (Physicians typically do not create Quality Measures). In one embodiment, this is done using Physician Order Sets. The System presents the physician with a blank Order Set template. The Physician then manually adds their Orderables to create a customized Physician Order Set. After creation of this Physician Order Set, the physician can either save it for their personal use, or submit the Order Set to the hospital for approval as a new Hospital Order Set that can be used by other Physicians. This is shown in
As noted, the physician can also define his own Orderables (e.g. nursing orderables, medication orderables). These can be combined with Hospital Order Sets (or more specifically, with Hospital Orderables), as described below.
Returning now to
Another sub-process that occurs in step 104 is the Clinical Encounter. In a clinical encounter, the system is accessed by a Physician when consulting with a specific patient. The Physician is presented with a menu of Order Sets. This may include both Hospital Order Sets and their own Physician Order Sets. In one embodiment, this menu of Order Sets is organized using a Framework predefined for that Physician's particular specialty. An example of a Framework 502 (e.g., Hospitalist) is provided in
Another sub-process that occurs at step 104 is the combining of Order Sets that were selected during a Clinical Encounter into a Custom Order Set. After the Physician has selected the relevant Order Sets, they are combined or blended according to certain principles. This “blending” process to create a Custom Order Set is described in
At step 608 of
At step 618 the system checks whether Orderable X has an associated Quality Measure (see
If at step 632 the system determines that there are no subcategories, control goes to step 636 where the category count is incremented to Category N+1. At step 638 the system determines whether there is a Category N+1. If there is, control returns to step 604 where all the Orderables in Order Sets A, B, and C with Category N+1 are selected and the process is repeated. For example, Category N+1 may be Diagnosis or Condition (see Custom Order Set shown in
At the end of the process described in
As shown in
For Negation Classes, the following visual markups may be applied. If an Orderable has a Class that is equal to a Negation Class from another Order Set, the Orderable is highlighted with a warning flag, including an explanation of the conflict. For example, combining an Upper Gastrointestinal Bleed Order Set, which has a Negation Class=Anticoagulants, with an Acute Coronary Syndrome Order Set having an Orderable for Heparin (a medication of the Anticoagulant class) would cause the Heparin orderables to be highlighted with an explanation of the conflict with Upper Gastrointestinal Bleed. There may also be markups for subcategory classes. For example, if an Orderable, such as Precheck=Null, Negation Warning Flag=Null AND Quality Measure=Null, then the Orderable is hidden in a dropdown for that Subcategory.
The final visual product on the display is a “Custom Order Set” which may have numerous features. As noted, a Custom Order Set is organized in Categories or Views (e.g., Intervention). Each Category contains Orderables which were blended from multiple Order Sets. The Orderables are rank-ordered by appropriate Framework for Physician specialty. Orderables with Quality Measures have “red”, “yellow” or “green” traffic lights as appropriate. Orderables with Negation Class conflicts have warning flags with explanations. Orderables that are not pre-checked and have no flags or traffic lights are hidden in a drop-down menu (which can be accessed by clicking the “+” sign at the bottom each category (see
With the Custom Order Set displayed on the screen, the Physician may now reorganize the content of the Custom Order Set as needed using a user interface. This reorganization may be based on PROBLEM/INTERVENTION/SYSTEM as described in U.S. patent application Ser. No. 11/969,133, titled “Order Sets Having Different Views for CPOE Systems,” filed Jan. 3, 2008, incorporated by reference for all purposes. A SCROLL/PAGE VIEW technique may also be used where “Scroll” enables presentation of all Order Set Categories or Views sequentially in a single scroll view and “Page” enables presentation of only those Orderables in a given Category on a page. Physician selects Next or Previous Category to show pages of Orderables from the Custom Order Set. These options allow the Physician to further customize the view to their particular preferences given the needs of the clinical scenario and the Order Sets chosen.
At step 106 of
At step 108 of
One advantage of analytical reports 702 and the underlying data model described above is the opportunity for a hospital to improve care at key “transitions of care” points. Admission to a hospital, transfers between hospital units and/or discharges from an institution are all classic scenarios for order set use and are examples of “transitions of care”. These “transitions of care” are also major points in the current healthcare delivery system where medical errors and suboptimal quality can occur. Thus, a system that delivers order sets at these critical points and aggregates the above data about medical and nursing interventions at these key transitions can potentially have a significant impact on improving patient care.
At the last step of
Below an example of automatic analysis based on these four variables is provided. This example describes one embodiment of automatic analysis, referred to as Autoanalysis with Integrated Feedback. In Autoanalysis, the System look at how often individual Orderables within an Order Set is used. The system then makes recommendations based on the actual utilization and utilization parameters, specifically percentages, set by the hospital. Three examples of how utilization percentages can drive autoanalysis are described. In one, referred to as Default selection of an Orderable, occurs if an orderable is used more than 90% of the time across all physicians. In this case the Orderable is prechecked and moved to the top of the relevant section. In another, referred to as Removal, if an Orderable is used less than 5% of the time across all physicians, the Orderable is removed from the Order Set. In the third, Downgrade, an Orderable that is used less than 20% of the time but greater than 5% across all physicians, the Orderable is moved to a dropdown menu section (e.g., “Other Orders”). This process is described in greater detail in
Along with the analysis and recommendations above, the System also presents the subjective feedback captured from users about that Orderable, along with common variants where physicians changed the original Orderable to a new value. Using this autoanalysis feature, hospital administrators can improve the usability and specificity of their content (e.g. Order Set Library) based on both objective data from clinical practice along with subjective data from physicians. From within the same System, hospital staff can choose to implement the recommendations or make their own modifications to Order Sets, Orderables or Quality Measures as appropriate. This returns the cycle to the beginning, that is, to step 104 where delivery processes take place, thus completing the closed-loop process.
At step 1008, the system examines usage of one Orderable. Specifically, for that Orderable, it determines the total number of times the Orderable has been selected or used by all physicians and divides this number by the total number of times the Order Set (in which the Orderable is contained) has been used. For example, if the Orderable has been used 27 times and the Order Set has been used 184 times (by all Physicians) for a particular time, it will divide 27 by 184, which equals 0.146. This number is then multiplied by 100 to obtain a percentage, in this case, 14.6%. This percentage value, X, is then used in subsequent steps.
At step 1010 the percentage value X is compared to one of the utilization threshold percentages, such as threshold A. If X is greater than A, the Orderable is selected as a default by the system at step 1012 (i.e., it is pre-checked). If X is not greater than A, control goes to step 1014 where the system determines whether X is greater than C and less than B (e.g., is it greater than 5% but less than 20%), in which case it is moved to a submenu or pull down menu at step 1016. This menu may be accessible, for example, by clicking a “+” sign in the Custom Order Set. If X is not within this range, control goes to step 1018 where the system determines if X is less than C. If it is, which implies that few physicians are using this Orderable, control goes to step 1020 where the Orderable is removed from the Order Set. Other operations or comparisons may be performed using X and other utilization thresholds indicated by step 1022 and step 1024 representing other actions that the system may take with respect to the Orderable. If no other operations take place or after the actions of steps 1012, 1016, 1020, and 1024, control goes to step 1026 where the system determines whether all the Orderables in the Order Set have been examined. If not, control returns to step 1008 where the utilization percentage of the next Orderable is determined.
CPU 1122 is also coupled to a variety of input/output devices such as display 1104, keyboard 1110, mouse 1112 and speakers 1130. In general, an input/output device may be any of: video displays, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, biometrics readers, or other computers. CPU 1122 optionally may be coupled to another computer or telecommunications network using network interface 1140. With such a network interface, it is contemplated that the CPU might receive information from the network, or might output information to the network in the course of performing the above-described method steps. Furthermore, method embodiments of the present invention may execute solely upon CPU 1122 or may execute over a network such as the Internet in conjunction with a remote CPU that shares a portion of the processing.
In addition, embodiments of the present invention further relate to computer storage products with a computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (ASICs), programmable logic devices (PLDs) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Therefore, the described embodiments should be taken as illustrative and not restrictive, and the invention should not be limited to the details given herein but should be defined by the following claims and their full scope of equivalents.
This application claims the benefit under 35 U.S.C. Section 119 of U.S. Provisional Patent Application No. 61/162,891, titled “System for Integrating Order Sets, Orderables, Physicians and Quality Measures”, filed Mar. 24, 2009, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61162891 | Mar 2009 | US |