Customizable machine translation service

Information

  • Patent Grant
  • 8831928
  • Patent Number
    8,831,928
  • Date Filed
    Wednesday, April 4, 2007
    17 years ago
  • Date Issued
    Tuesday, September 9, 2014
    10 years ago
Abstract
Embodiments of the present invention provide a system and method for providing a translation service. The method comprises providing a translation interface accessible via a network. The translation interface receives specialized data associated with a domain from a member. A text string written in a source language is received from the member via the translation interface. A domain-based translation engine is selected. The domain-based translation engine may be associated with a source language, a target language, and a domain. The text string is translated into the target language using, at least in part, the selected domain-based translation engine. The translated text string is transmitted to the member via the Internet. In some embodiments, a translation memory is generated based on the specialized data.
Description
CROSS-REFERENCES

The present application is related to U.S. patent application Ser. No. 11/223,823 filed Sep. 9, 2005 and entitled “Adapter for Allowing Both Online and Offline Training of a Text to Text System”; U.S. patent application Ser. No. 10/143,382 filed May 9, 2002 and entitled “Statistical Memory-Based Translation System”; and U.S. patent application Ser. No. 11/635,248 filed Dec. 5, 2006 and entitled “Systems and Methods for Identifying Parallel Documents and Sentence Fragments in Multilingual Document Collections,” all of which are herein incorporated by reference.


BACKGROUND

1. Field of Invention


The present invention relates generally to machine translation and more specifically to providing a customizable machine translation service.


2. Description of the Related Art


Machine translation techniques, including translation memories, statistical machine translation, linguistic models, and the like, typically require a training corpus or other pre-translated materials on which to base translations. This data set is typically very large and based on generic documents. Further, due to the size of the data set required, the translations typically reflect generic word usage or word usage in commonly-translated domains such as news, government documents, and the like.


Currently, online machine translation services are mostly generic (i.e., they are meant to translate texts in any given domain). For example, SDL, a provider of translation services, offers an online translation service at www.FreeTranslation.com. At this website, a user can enter an input text string in a source language and specify a target language. The translation service will translate the input text string into the specified target language and display an output string. However, this service and other similar services are not equipped to manage and exploit specialized translations.


Some translation memories are available online. For example, Wordfast provides a Very Large Translation Memory (VLTM) that can be accessed using a client. However, this project requires users to donate translation memories in order to expand. Further, domains are not separated from one another within the translation memory. Lingotek offers an online language search engine onto which users may upload translated content and later search for segments of the translated content.


Specialized translations typically include translations of documents generated by a niche or specialty. Technical documents generated within a niche often require specialized translations that require a translation engine to be trained on a specialized training set. For example, an automotive manufacturer may require translations of documents that use otherwise generic words in an atypical manner. An information technology supplier may use the same words in yet another manner. As such, there is a need for a translation service capable of being tuned/trained to a specialty/niche and equipped to manage and exploit specialized translations.


SUMMARY

A system and method for providing a translation service is provided. The exemplary method comprises providing a translation interface accessible via a network such as the Internet. The translation interface receives specialized data associated with a domain from a member. On the basis of this data, a domain-based translation engine or translation memory is made available. A text string written in a source language is received from the member via the translation interface. A previously developed domain-based translation engine is selected. In exemplary embodiments, the domain-based translation engine may be associated with a source language, a target language, and a domain. The text string may be translated into the target language using, at least in part, the selected domain-based translation engine. The translated text string may then be transmitted to the member via the Internet.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a networked environment in which various embodiments may be practiced;



FIG. 2 is a block diagram of a domain-based translation engine according to an embodiment of the present invention;



FIG. 3 is a block diagram of a customization engine according to an embodiment of the present invention;



FIG. 4 is a block diagram of a translation memory engine according to an embodiment of the present invention.



FIG. 5 is a flowchart of an exemplary process for generating a translation engine; and



FIG. 6 is a flowchart of an exemplary process for providing a translation service.





DETAILED DESCRIPTION

A service for providing specialized translations enables members associated with a specialized niche to use previously translated documents without having to purchase and install a translation engine on a local server. A translation engine is configured to translate an input text string written in a source language into a target language. In some embodiments, the translation engine may perform statistical machine translation (SMT) or another data-driven machine translation. Data-driven machine translations may include translation memory, heuristics-based, context-based, linguistics-based, a hybrid translation technique, or the like. The member may provide any amount of specialized data associated with a domain and/or language pair. The specialized data may be used as a translation memory or as training data in a data-driven machine translation engine. The member may select a translation engine and/or translation memory that the specialized translation service uses to translate an input string.


If the specialized translation service is based on a small amount of specialized data, the data may be used to generate a translation memory that can be accessed by the translation engine. In some embodiments, the translation memory may be returned to the user. If there is a large amount of specialized data, a customized translation engine may be generated. In some embodiments, the customized translation engine may be a data-driven translation engine trained on both a generic data set and the specialized data.



FIG. 1 depicts a networked environment 100 in which various embodiments of the present invention may be practiced. The environment 100 comprises a plurality of members 102A through 102N, and a translation service system 104 which comprises a plurality of domain-based translation engines 106A and 106B, a customization engine 108, and/or a translation memory engine 110 communicatively coupled via a network 112. The network 112 may comprise a private network and/or a public network. In some embodiments, the network 112 comprises the Internet. Any number of members 102 may be present in the environment 100.


The members 102A through 102N provide specialized data and/or input strings to be translated. For example, member 102A may be an automotive manufacturer while member 102N may be an information technology supplier. In exemplary embodiments, the member 102A may provide repair manuals that are previously translated into one or more target languages as specialized data. The member 102N may, however, provide no specialized data. Any member 102A through 102N may provide an input text string to one of the domain-based translation engines 106. In some embodiments, the member 102A may select multiple domain-based translation engines 106 if a plurality of domain-based translation engines 106 is available.


The translation service system 104 may comprise the plurality of domain-based translation engines 106, the customization engine 108, and/or the translation memory engine 110. The translation service system 104 may provide an online translation service, generate a customized domain-based translation engine, and/or generate a translation memory. The translation service system 104 may comprise one or more servers or other computing devices configured to communicate over the network 112 via a communications interface. The server(s) may comprise a processor configured to execute programs stored in a memory.


In some embodiments, member 102 may select whether to generate a translation memory and/or a domain-based translation engine using specialized data. If generating a translation memory is selected, the member 102 may receive the translation memory from the translation memory engine 110 and store the translation memory. The member may additionally transmitto or select a translation memory from the translation service system 104 from which a domain-based translation engine may be generated.


The translation service system 104 may provide a translation interface via, for example, a website. The translation interface may be configured to receive specialized data from the members 102A through 102N. Based on the amount of specialized data received and the instructions received from the member, the translation service system 104 may determine whether to generate a translation memory using the translation memory engine 110 and/or use the customization engine 108 to create a domain or member-specific translation engine, such as domain-based translation engine 106A.


In some embodiments of the present invention, the translation service system 104 may comprise an accounting engine (not shown). The accounting engine may calculate credits and/or debits based on the activities of members 102A through 102N. The member 102A may be associated with an account having a number of credits or debits based on usage. The debits may be charged in any way including pay-per-use, subscription, packages, and the like. For example, the member 102A may purchase a subscription for access to one or more domain-based translation engines 106. In another embodiment, the member 102A may pay a fee for services requested. Any combination and/or variation of billing may be used.


Various embodiments of the translation service system 104 may grant a credit to the member 102A. For example, if the member 102A provides specialized data that is accessed to translate an input string received from member 102N, the member 102A may receive a credit for future translations and/or currency. The specialized data may be associated with a translation memory and/or a domain-based translation engine 106 as discussed further herein.


The domain-based translation engine 106A comprises a translation engine that may be selected by the member 102A. The domain-based translation engine 106A may be associated with a language pair and/or a domain. A language pair is a pairing of two languages one of which is a source language and the other of which is a target language. In some embodiments, the language pair is bi-directional such that the source language may become the target language and vice versa. The domain is any specialty or niche that has some jargon or specialized usage of words. Domains may include, for example, information technology, automotive, literature, medicine, law, or the like. Additionally domains may be of any scope. For example, a domain may relate specifically to a product, such as a video game system or console. The domain-based translation engine 106A is configured to translate an input string associated with the domain from a source language into a target language. As such, the language pair may comprise any source language and any target language. The domain-based translation engine 106A may use no specialized data, or any amount of specialized data. The specialized data may also be used by the translation memory engine 110 to generate a translation memory that can be accessed by the domain-based translation engine 106A. The environment 100 may comprise a plurality of domain-based translation engines 106A and 106B.


The customization engine 108 is configured to process a large amount of specialized data to generate a domain-based translation engine 106 or a translation memory associated with the member 102A or a domain. In some embodiments, the customization engine 108 may generate a set of domain-specific parameters and merge the generated set of domain-specific parameters with a generic set of parameters. The customization engine 108 may, for example, receive a large amount of translated repair manuals from an automotive manufacturer. The translated auto repair manuals may be used to then generate a domain-based translation engine 106A specific to the automotive manufacturer and/or automotive repair manuals.


The translation memory engine 110 may generate a translation memory based on the specialized data. In some embodiments, the translation memory may be used to train a domain-based translation engine 106A. The translation memory may also be accessed by the domain-based translation engine 106A during translation or accessed by the customization engine 108 to train the domain-based translation engine 106A. In some embodiments, the translation memory may be stored at the member 102.



FIG. 2 is a block diagram of a domain-based translation engine 106A according to an embodiment of the present invention. The domain-based translation engine 106A may comprise a communications module 202 and a translation module 204. The domain-based translation engine 106A may access stored merged parameters in a merged parameters storage device 206 and/or optional translation memory storage device 208. The domain-based translation engine 106A may be associated with a language pair (e.g., English-Chinese) and a domain (e.g., automotive). In some embodiments, the domain-based translation engine 106A is configured to perform bi-directional translations.


The communications module 202 is configured to receive specialized data and/or input text strings from the member 102A. The communications module 202 may process or re-format the specialized data. If the communications module 202 receives an input text string, the communications module 202 may transmit the input text string to the translation module 204.


The translation module 204 is configured to translate the input text string from the source language to the target language. The translation module 204 may be configured to translate the input text string using a variety of data-driven machine translation techniques including heuristics-based, context-based, translation memory-based, linguistic-based, statistics-based, or any combination of these techniques. In the embodiment shown, the translation module 204 is configured to access a set of merged parameters stored in the merged parameters storage device 206 associated with a statistical machine translation system and the translation memory storage device 208. The translation memory may be based on specialized data received from the member 102A. The domain-based translation engine 106 may comprise fewer or additional modules or components according to various embodiments including modules for performing other types of data-driven machine translations.


The merged parameters storage device 206 stores merged parameters that comprise information derived from a set of generic training data and specialized data associated with the domain. The generic training data may be derived from parallel or comparable bilingual data such as translation memories, probabilistic and non-probabilistic word-based and phrase-based dictionaries, glossaries, Internet information, parallel corpora in multiple languages, comparable corpora in multiple languages, and human-created translations. The generic training data may be related to any domain and may comprise millions of sentences. The specialized data is derived from parallel or comparable bilingual data relating to the domain associated with the domain-based translation engine 106. The specialized data and the generic training data may be merged according to the system and method described in U.S. patent application Ser. No. 11/223,823 filed Sep. 9, 2005 and entitled “Adapter for Allowing Both Online and Offline Training of a Text to Text System.”


The translation memory storage device 208 may comprise generic and/or data relating to the domain. The translation memory storage device 208 may further comprise specialized data received from the member 102A. In exemplary embodiments, the translation memory may be used by a statistical machine translation system as described in U.S. patent application Ser. No. 10/143,382 filed May 9, 2002 and entitled “Statistical Memory-Based Translation System.” While a hybrid statistical machine translation/translation memory translation engine is described herein, other data-driven machine translation techniques may be performed by the domain-based translation engine to generate a translation as is known in the art.



FIG. 3 is a block diagram of the customization engine 108 according to an embodiment. The customization engine is configured to generate a domain-based translation engine 106 based on specialized data. In some embodiments, the customization engine 108 may be combined with the domain-based translation engine 106.


A communications module 302 is configured to receive and transmit data via the network 112. The communications module 302 may receive specialized data from members 102A through 102N, domain-based translation engines 106, or other sources connected to the network 112. The communications module 302 may format and/or process the specialized data to generate domain parameters that can be processed by an adaptation module 308.


In exemplary embodiments, a specialized data storage device 304 may store specialized data comprising millions of words. The source of these words may be specialized data received from the members 102, data derived from other members, data derived from public sources, or any combination of sources. The specialized data storage device 304 may store specialized data as raw data, aligned words or segments, statistical machine translation parameters, a translation memory, or in any other format.


In exemplary embodiments, the adaptation module 308 is configured to generate a domain-based translation engine 106A based on the specialized data stored in the specialized data storage device 304, the translation memory storage device 208, and/or a set of stored generic parameters stored in a generic parameters storage device 310. In some embodiments, the adaptation module 308 may comprise an adapter as described in U.S. patent application Ser. No. 11/223,823 filed Sep. 9, 2005and entitled “Adapter for Allowing Both Online and Offline Training of a Text to Text System” for statistical machine translation. In other embodiments, the adaptation module 308 may generate a domain-based translation engine 106A using other techniques including, but not limited to, translation memory, heuristics-based, context-based, linguistics-based, or any hybrid translation technique.


The generic parameters stored in the generic parameters storage device 310 may be derived from a large bilingual corpus comprising approximately hundreds of millions of words according to one embodiment. In the depicted embodiment, the generic parameters stored in the generic parameters storage device 310 are shown as part of a statistical machine translation system. In other embodiments, however, the generic parameters may comprise a translation memory, a set of heuristics, linguistic-based and/or context-based data, or the like. The generic parameters may comprise any combination of the above.



FIG. 4 is a block diagram of the translation memory engine 110 according to an embodiment. The translation memory engine 110 is configured to generate a translation memory based on specialized data.


A communications module 402 is configured to receive and transmit data via the network 112. The communications module 302 may receive specialized data from members 102A through 102N, domain-based translation engines 106, or other sources connected to the network 112. The communications module 402 may format the specialized data.


In some embodiments, the translation memory engine 110 may comprise a translation memory module 404. The translation memory module 404 is configured to generate parallel data from a collection of documents. In exemplary embodiments, the documents may be stored in a variety of file formats and/or contain formatting.


The translation memory module 404 may find parallel or comparable documents in a collection according to the systems and methods described in U.S. patent application Ser. No. 11/635,248 filed Dec. 5, 2006 and entitled, “Systems and Methods for Identifying Parallel Documents and Sentence Fragments in Multilingual Document Collections,” which is incorporated herein by reference. Next, the translation memory module 404 may align the sentences of the parallel documents using prior art sentence alignment methods to generate a translation memory. The translation memories may be stored in a translation memory storage device 208. In some embodiments, the translation memory storage device 208 may be located at the member 102A.



FIG. 5 is a flowchart of process 500 for generating a domain-based translation engine 106A or a translation memory storage device 208 according to an embodiment of the present invention. The process 500 may be performed by the translation service system 104.


In step 502, specialized data is received by, for example, the translation service system 104. The received data may comprise specialized data received from a member, specialized data retrieved from public sources, or the like. The specialized data may be associated with a domain, a source language, and a target language. The specialized data may comprise parallel or comparable documents, an aligned bilingual corpus, a translation memory, a bilingual terminology list, a translation dictionary, a set of statistical machine translation parameters, or the like.


In some embodiments, the specialized data may be associated with the member 102A for the purpose of maintaining confidentiality of the data and/or managing credits to the member 102A for allowing the specialized data to be used by other domain-based translation engines. The member 102A may, for example, indicate that at least a portion of the specialized data requires a high level of confidentiality. This specialized data may then be used for translation memories and/or generating statistical machine parameters that only the member 102A may access. The member 102A may, alternatively or additionally, elect to share another portion of the specialized data. When this shared specialized data is used by the domain-based translation engine to translate an input string received from another member, the member 102A may receive a credit.


In step 504, a determination is made as to whether the member 102A requires the development of a domain-based engine and whether there is a sufficient amount of specialized data to generate a domain-based engine, such as the domain based translation engine 106A, by, for example, the adaptation module 308. To generate a domain-based translation engine, more than 50,000 words of parallel data may be required. The domain-based translation engine may be based on the data or a translation memory associated with a single member 102A. In some embodiments, the single member 102A may be associated with multiple sets of specialized data that may each be associated with a separate domain-based translation engine.


If there is insufficient data to generate a domain-based translation engine, a translation memory, such as the translation memory stored in the translation memory storage device 208, may be generated and/or updated based on the specialized data in step 506. The translation memory may be used along with merged parameters by a domain-based translation engine to translate input text strings as discussed, at least, in connection with FIG. 2. If there is sufficient data to generate a domain-based translation engine and the member 102A requires so, a domain-based translation engine is generated in step 508.



FIG. 6 is a flowchart of a process 600 for providing a translation service according to an embodiment of the present invention. The translation service may be free, subscription-based, usage fee-based, or any other fee-based scheme. In step 602, the translation memory may be generated based on specialized data and stored in the translation memory storage device 208. The translation memory engine 110 may generate the translation memory. Alternatively or additionally, in step 604, the domain-based translation engine may be generated. The domain-based translation engine may be generated according to the process 500 and may comprise the domain-based translation engine 106A. In some embodiments, the customization engine 108 may generate the domain-based translation engine. The domain-based translation engine may comprise, or have access to, the translation memory.


In step 606, an interface accessible via the Internet is provided. In step 608, a text string written in a source language is received. The text string may be of any length. In some embodiments, the text string is associated with a file format and/or comprises formatting that may be preserved when the text string is translated. In step 610, a selection indicating the domain-based translation engine and/or the translation memory is received. The selection may comprise a source language, a target language, and/or a domain. The selection may also comprise a sub-domain or member-specific domain.


A member-specific domain comprises a domain-based translation engine or translation memory generated using specialized data received from a specific member, referred to as an originating member. In exemplary embodiments, the member-specific domain may be accessed only by the originating member. In some embodiments, the originating member may identify other members 102 who are able to access the member-specific domain. In other embodiments, the member-specific domain may be open to any other member 102. In the embodiments where the member-specific domain is available to other members 102, the originating member may receive a credit if another member 102 selects the member-specific domain to translate an input text string. The credit may comprise points redeemable for additional translations, cash, or any other form of compensation.


In step 612, the text string is translated using the domain-based translation engine 106A. The domain-based translation engine 106A may use one or more techniques to translate the text string as discussed herein. In some embodiments, the translation service system 104 may indicate, through the use of annotations, highlighting, or other formatting, which technique is used. In some embodiments, the indication may represent a confidence level that the translation is accurate. This confidence level information may indicate a probability that the translation is correct. For example, a translated phrase within the text string that was translated using a translation memory is likely to be 100% correct while a translation based on the merged parameters is less likely to be correct. Thus, the translated text may be annotated to indicate the portions translated using the translation memory and the merged parameters, respectively. In other embodiments, the confidence level information may be calculated using other techniques known to those skilled in the art.


In step 614, the translated text string is transmitted to the member 102. The translated text string may comprise confidence level information, a timestamp, a domain-based translation engine identifier, or the like. The translated text string may be associated with a same or a different file format than that associated with the text string. In some embodiments, formatting within the text string may be included in the translated text string.


The above-described functions and components can be comprised of instructions that are stored on a storage medium. The instructions can be retrieved and executed by a processor. Some examples of instructions are software, program code, and firmware. Some examples of storage medium are memory devices, tape, disks, integrated circuits, and servers. The instructions are operational when executed by the processor to direct the processor to operate in accord with various embodiments. Those skilled in the art are familiar with instructions, processor(s), and storage medium.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The scope of the present disclosure is in no way limited to the languages used to describe exemplary embodiments. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments

Claims
  • 1. A method for providing a translation service comprising: receiving a text string written in a source language from a member via a translation interface;receiving specialized data associated with: a domain from the member via the translation interface, andan indication of confidentiality;generating a translation memory using the received specialized data;generating a set of domain-specific parameters for statistical machine translation using the received specialized data;merging the generated set of domain-specific parameters with a generic set of statistical machine translation parameters;generating a domain-based translation engine based on the received specialized data and generic data, the domain-based translation engine associated with a source language, a target language, and the domain;training the domain-based translation engine using the translation memory;receiving a selection of the generated domain-based translation engine from a plurality of domain-based translation engines, the selection received from the member via the translation interface;translating the text string into the target language using, at least in part, the selected domain-based translation engine, the merged parameters and translation memory being used by the domain-based translation engine for translating the text string; andtransmitting the translated text string to the member via the translation interface over a network.
  • 2. The method of claim 1, wherein the translation interface is accessible via the network, the translation interface configured to receive translation memory associated with the domain from another member.
  • 3. The method of claim 1, further comprising sending the generated translation memory to the member for storage.
  • 4. The method of claim 1, further comprising: translating a first portion of the text string using the translation memory;annotating the translation of the first portion of the text string with a first confidence level;translating a second portion of the text string using the merged parameters; andannotating the translation of the second portion of the text string with a second confidence level.
  • 5. The method of claim 1, further comprising: determining if the specialized data includes a sufficient amount of data for generating a domain-based translation engine; andgenerating the domain-based translation engine based on the determination that the specialized data includes a sufficient amount of data and a requirement received from the member to generate the domain-based translation engine using the specialized data.
  • 6. The method of claim 1, further comprising: translating a second text string received from a second member using, at least in part, specialized data received from the second member; andcrediting an account associated with the second member.
  • 7. The method of claim 1, further comprising receiving a payment from the member based on a subscription.
  • 8. The method of claim 1, further comprising receiving a payment from the member based on a usage fee.
  • 9. The method of claim 1, further comprising providing to the member confidence level information based on the merged parameters and associated with the translated text string.
  • 10. The method of claim 1, wherein translating the text string is performed using, at least in part, a data-driven machine translation technique.
  • 11. A domain-based translation engine comprising: a communications module configured to receive specialized data and to receive a source language text string written in a source language and to receive a target language text string written in a target language, from a member via a network;a translation module configured to translate the source language text string into the target language and to translate the target language text string into the source language using, at least in part, data-driven machine translation and the specialized data, wherein the domain-based translation engine is generated based on received domain data; anda customization engine configured to determine whether an amount of the specialized data is sufficient to generate the domain-based translation engine and generate a language memory using the specialized data if the amount of the specialized data is not sufficient or to generate the domain-based translation engine if the amount of the specialized data is sufficient.
  • 12. The domain-based translation engine of claim 11, wherein the translation module is communicatively coupled with a translation memory engine configured to generate translation memory used for training the domain-based translation engine and accessed by the domain-based translation engine to translate the input text string.
  • 13. A computer readable non-transitory medium having embodied thereon a program, the program being executable by a processor for performing a method for providing a translation service, the method comprising: receiving a text string written in a source language from a member via a translation interface;receiving translation memory from the member, the translation memory associated with the source language, a target language, and a domain;receiving specialized data associated with the domain, the source language, and the target language, the specialized data including a set of domain-based statistical machine translation parameters;merging the domain-based statistical machine translation parameters and a set of generic statistical machine translation parameters;determining if the specialized data includes a sufficient amount of data for generating a domain-based translation engine;receiving instructions from the member to generate the domain-based translation engine using the translation memory;generating the domain-based translation engine based on the determination that the specialized data includes a sufficient amount of data and a requirement received from the member to generate the domain-based translation engine using the specialized data;training the generated domain-based translation engine using both the translation memory and the specialized data;receiving a selection of the domain-based translation engine from the member;translating the text string into the target language using, at least in part, the selected domain-based translation engine, the received translation memory and the merged translation parameters accessed by the domain-based translation engine for translating the text string; andtransmitting the translated text string to the member via the translation interface over an Internet.
  • 14. The computer readable medium of claim 13, wherein the method further comprises: receiving specialized data associated with a domain from another member; andtraining the domain-based translation engine using the specialized data associated with the domain from another member and generic data.
  • 15. The computer readable medium of claim 13, wherein the method further comprises translating at least a portion of the text string using the received translation memory and another portion of the text string using the merged parameters.
  • 16. The computer readable medium of claim 13, wherein the method further comprises generating the domain-based translation engine using a customization engine based on the translation memory received from the member.
  • 17. The computer readable medium of claim 13, wherein the method further comprises: translating a second text string received from a second member from the target language to the source language using, at least in part, the domain-based translation engine; andcrediting an account associated with the member.
  • 18. The computer readable medium of claim 13, wherein the method further comprises providing confidence level information associated with the parameters used for translating the text string.
  • 19. The computer readable medium of claim 13, wherein specialized data is associated with an indication of confidentiality.
  • 20. A method comprising: receiving a plurality of documents from a member, a first document of the plurality of documents written in a first source language and a second document of the plurality of documents written in a second source language;receiving instructions from the member including instructions to use a first domain-based translation engine for translating the first document and instructions to use a second domain-based translation engine for translating the second document;receiving a set of domain-based statistical machine translation parameters;merging the domain-based statistical machine translation parameters and a set of generic statistical machine translation parameters;generating a first translation memory based on the first domain-based translation engine;sending the first translation memory to the member for storage;translating a first portion of the first document using the first translation memory based on the first domain-based translation engine and generic data;annotating the translation of the first portion of the first document with a first confidence level;translating a second portion of the first document using the merged parameters;annotating the translation of the second portion of the first document with a second confidence level; andgenerating a translation of the second document based on the second domain-based translation engine and generic data.
  • 21. The method of claim 20, further comprising generating the second domain-based translation engine based on a second translation memory and the plurality of documents.
  • 22. The method of claim 21, further comprising translating a text string received from another member using the second domain-based translation engine.
  • 23. The method of claim 20, wherein the first document is associated with a first format and the second document is associated with a second format.
US Referenced Citations (376)
Number Name Date Kind
4502128 Okajima et al. Feb 1985 A
4599691 Sakaki et al. Jul 1986 A
4615002 Innes Sep 1986 A
4661924 Okamoto et al. Apr 1987 A
4787038 Doi et al. Nov 1988 A
4791587 Doi Dec 1988 A
4800522 Miyao et al. Jan 1989 A
4814987 Miyao et al. Mar 1989 A
4942526 Okajima et al. Jul 1990 A
4980829 Okajima et al. Dec 1990 A
5020112 Chou May 1991 A
5088038 Tanaka et al. Feb 1992 A
5091876 Kumano et al. Feb 1992 A
5146405 Church Sep 1992 A
5167504 Mann Dec 1992 A
5181163 Nakajima et al. Jan 1993 A
5212730 Wheatley et al. May 1993 A
5218537 Hemphill et al. Jun 1993 A
5220503 Suzuki et al. Jun 1993 A
5267156 Nomiyama Nov 1993 A
5268839 Kaji Dec 1993 A
5295068 Nishino et al. Mar 1994 A
5302132 Corder Apr 1994 A
5311429 Tominaga May 1994 A
5387104 Corder Feb 1995 A
5408410 Kaji Apr 1995 A
5432948 Davis et al. Jul 1995 A
5442546 Kaji et al. Aug 1995 A
5477450 Takeda et al. Dec 1995 A
5477451 Brown et al. Dec 1995 A
5495413 Kutsumi et al. Feb 1996 A
5497319 Chong et al. Mar 1996 A
5510981 Berger et al. Apr 1996 A
5528491 Kuno et al. Jun 1996 A
5535120 Chong et al. Jul 1996 A
5541836 Church et al. Jul 1996 A
5541837 Fushimoto Jul 1996 A
5548508 Nagami Aug 1996 A
5644774 Fukumochi et al. Jul 1997 A
5675815 Yamauchi et al. Oct 1997 A
5687383 Nakayama et al. Nov 1997 A
5696980 Brew Dec 1997 A
5724593 Hargrave, III et al. Mar 1998 A
5752052 Richardson et al. May 1998 A
5754972 Baker et al. May 1998 A
5761631 Nasukawa Jun 1998 A
5761689 Rayson et al. Jun 1998 A
5768603 Brown et al. Jun 1998 A
5779486 Ho et al. Jul 1998 A
5781884 Pereira et al. Jul 1998 A
5794178 Caid et al. Aug 1998 A
5805832 Brown et al. Sep 1998 A
5806032 Sproat Sep 1998 A
5819265 Ravin et al. Oct 1998 A
5826219 Kutsumi Oct 1998 A
5826220 Takeda et al. Oct 1998 A
5845143 Yamauchi et al. Dec 1998 A
5848385 Poznanski et al. Dec 1998 A
5848386 Motoyama Dec 1998 A
5855015 Shoham Dec 1998 A
5864788 Kutsumi Jan 1999 A
5867811 O'Donoghue Feb 1999 A
5870706 Alshawi Feb 1999 A
5893134 O'Donoghue et al. Apr 1999 A
5903858 Saraki May 1999 A
5907821 Kaji et al. May 1999 A
5909681 Passera et al. Jun 1999 A
5930746 Ting Jul 1999 A
5966685 Flanagan et al. Oct 1999 A
5966686 Heidorn et al. Oct 1999 A
5983169 Kozma Nov 1999 A
5987402 Murata et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5991710 Papineni et al. Nov 1999 A
5995922 Penteroudakis et al. Nov 1999 A
6018617 Sweitzer et al. Jan 2000 A
6031984 Walser Feb 2000 A
6032111 Mohri Feb 2000 A
6047252 Kumano et al. Apr 2000 A
6064819 Franssen et al. May 2000 A
6064951 Park et al. May 2000 A
6073143 Nishikawa et al. Jun 2000 A
6077085 Parry et al. Jun 2000 A
6092034 McCarley et al. Jul 2000 A
6119077 Shinozaki Sep 2000 A
6119078 Kobayakawa et al. Sep 2000 A
6131082 Hargrave, III et al. Oct 2000 A
6161082 Goldberg et al. Dec 2000 A
6182014 Kenyon et al. Jan 2001 B1
6182027 Nasukawa et al. Jan 2001 B1
6205456 Nakao Mar 2001 B1
6206700 Brown et al. Mar 2001 B1
6223150 Duan et al. Apr 2001 B1
6233544 Alshawi May 2001 B1
6233545 Datig May 2001 B1
6233546 Datig May 2001 B1
6236958 Lange et al. May 2001 B1
6269351 Black Jul 2001 B1
6275789 Moser et al. Aug 2001 B1
6278967 Akers et al. Aug 2001 B1
6278969 King et al. Aug 2001 B1
6285978 Bernth et al. Sep 2001 B1
6289302 Kuo Sep 2001 B1
6304841 Berger et al. Oct 2001 B1
6311152 Bai et al. Oct 2001 B1
6317708 Witbrock et al. Nov 2001 B1
6327568 Joost Dec 2001 B1
6330529 Ito Dec 2001 B1
6330530 Horiguchi et al. Dec 2001 B1
6356864 Foltz et al. Mar 2002 B1
6360196 Poznanski et al. Mar 2002 B1
6389387 Poznanski et al. May 2002 B1
6393388 Franz et al. May 2002 B1
6393389 Chanod et al. May 2002 B1
6415250 van den Akker Jul 2002 B1
6460015 Hetherington et al. Oct 2002 B1
6470306 Pringle et al. Oct 2002 B1
6473729 Gastaldo et al. Oct 2002 B1
6473896 Hicken et al. Oct 2002 B1
6480698 Ho et al. Nov 2002 B2
6490549 Ulicny et al. Dec 2002 B1
6498921 Ho et al. Dec 2002 B1
6502064 Miyahira et al. Dec 2002 B1
6529865 Duan et al. Mar 2003 B1
6535842 Roche et al. Mar 2003 B1
6587844 Mohri Jul 2003 B1
6604101 Chan et al. Aug 2003 B1
6609087 Miller et al. Aug 2003 B1
6647364 Yumura et al. Nov 2003 B1
6691279 Yoden et al. Feb 2004 B2
6745161 Arnold et al. Jun 2004 B1
6745176 Probert, Jr. et al. Jun 2004 B2
6757646 Marchisio Jun 2004 B2
6778949 Duan et al. Aug 2004 B2
6782356 Lopke Aug 2004 B1
6810374 Kang Oct 2004 B2
6848080 Lee et al. Jan 2005 B1
6857022 Scanlan Feb 2005 B1
6885985 Hull Apr 2005 B2
6901361 Portilla May 2005 B1
6904402 Wang et al. Jun 2005 B1
6952665 Shimomura et al. Oct 2005 B1
6983239 Epstein Jan 2006 B1
6993473 Cartus Jan 2006 B2
6996518 Jones et al. Feb 2006 B2
6996520 Levin Feb 2006 B2
6999925 Fischer et al. Feb 2006 B2
7013262 Tokuda et al. Mar 2006 B2
7016827 Ramaswamy et al. Mar 2006 B1
7016977 Dunsmoir et al. Mar 2006 B1
7024351 Wang Apr 2006 B2
7031911 Zhou et al. Apr 2006 B2
7050964 Menzes et al. May 2006 B2
7085708 Manson Aug 2006 B2
7089493 Hatori et al. Aug 2006 B2
7103531 Moore Sep 2006 B2
7107204 Liu et al. Sep 2006 B1
7107215 Ghali Sep 2006 B2
7113903 Riccardi et al. Sep 2006 B1
7143036 Weise Nov 2006 B2
7146358 Gravano et al. Dec 2006 B1
7149688 Schalkwyk Dec 2006 B2
7171348 Scanlan Jan 2007 B2
7174289 Sukehiro Feb 2007 B2
7177792 Knight et al. Feb 2007 B2
7191115 Moore Mar 2007 B2
7194403 Okura et al. Mar 2007 B2
7197451 Carter et al. Mar 2007 B1
7206736 Moore Apr 2007 B2
7209875 Quirk et al. Apr 2007 B2
7219051 Moore May 2007 B2
7239998 Xun Jul 2007 B2
7249012 Moore Jul 2007 B2
7249013 Al-Onaizan et al. Jul 2007 B2
7283950 Pournasseh et al. Oct 2007 B2
7295962 Marcu Nov 2007 B2
7295963 Richardson et al. Nov 2007 B2
7302392 Thenthiruperai et al. Nov 2007 B1
7319949 Pinkham Jan 2008 B2
7340388 Soricut et al. Mar 2008 B2
7346487 Li Mar 2008 B2
7346493 Ringger et al. Mar 2008 B2
7349839 Moore Mar 2008 B2
7349845 Coffman et al. Mar 2008 B2
7356457 Pinkham et al. Apr 2008 B2
7369998 Sarich et al. May 2008 B2
7373291 Garst May 2008 B2
7383542 Richardson et al. Jun 2008 B2
7389222 Langmead et al. Jun 2008 B1
7389234 Schmid et al. Jun 2008 B2
7403890 Roushar Jul 2008 B2
7409332 Moore Aug 2008 B2
7409333 Wilkinson et al. Aug 2008 B2
7447623 Appleby Nov 2008 B2
7454326 Marcu et al. Nov 2008 B2
7496497 Liu Feb 2009 B2
7533013 Marcu May 2009 B2
7536295 Cancedda et al. May 2009 B2
7546235 Brockett et al. Jun 2009 B2
7552053 Gao et al. Jun 2009 B2
7565281 Appleby Jul 2009 B2
7574347 Wang Aug 2009 B2
7580828 D'Agostini Aug 2009 B2
7580830 Al-Onaizan et al. Aug 2009 B2
7587307 Cancedda et al. Sep 2009 B2
7620538 Marcu et al. Nov 2009 B2
7620632 Andrews Nov 2009 B2
7624005 Koehn et al. Nov 2009 B2
7624020 Yamada et al. Nov 2009 B2
7627479 Travieso et al. Dec 2009 B2
7680646 Lux-Pogodalla et al. Mar 2010 B2
7689405 Marcu Mar 2010 B2
7698124 Menezes et al. Apr 2010 B2
7698125 Graehl et al. Apr 2010 B2
7707025 Whitelock Apr 2010 B2
7711545 Koehn May 2010 B2
7716037 Precoda et al. May 2010 B2
7801720 Satake et al. Sep 2010 B2
7813918 Muslea et al. Oct 2010 B2
7822596 Elgazzar et al. Oct 2010 B2
7925494 Cheng et al. Apr 2011 B2
7957953 Moore Jun 2011 B2
7974833 Soricut et al. Jul 2011 B2
8060360 He Nov 2011 B2
8145472 Shore et al. Mar 2012 B2
8214196 Yamada et al. Jul 2012 B2
8244519 Bicici et al. Aug 2012 B2
8265923 Chatterjee et al. Sep 2012 B2
8275600 Bilac et al. Sep 2012 B2
8315850 Furuuchi et al. Nov 2012 B2
8615389 Marcu Dec 2013 B1
8655642 Fux Feb 2014 B2
8666725 Och Mar 2014 B2
8676563 Soricut et al. Mar 2014 B2
20010009009 Iizuka Jul 2001 A1
20010029455 Chin et al. Oct 2001 A1
20020002451 Sukehiro Jan 2002 A1
20020013693 Fuji Jan 2002 A1
20020040292 Marcu Apr 2002 A1
20020046018 Marcu et al. Apr 2002 A1
20020046262 Heilig et al. Apr 2002 A1
20020059566 Delcambre et al. May 2002 A1
20020078091 Vu et al. Jun 2002 A1
20020083029 Chun et al. Jun 2002 A1
20020087313 Lee et al. Jul 2002 A1
20020099744 Coden et al. Jul 2002 A1
20020111788 Kimpara Aug 2002 A1
20020111789 Hull Aug 2002 A1
20020111967 Nagase Aug 2002 A1
20020143537 Ozawa et al. Oct 2002 A1
20020152063 Tokieda et al. Oct 2002 A1
20020169592 Aityan Nov 2002 A1
20020188438 Knight et al. Dec 2002 A1
20020198699 Greene et al. Dec 2002 A1
20020198701 Moore Dec 2002 A1
20030009322 Marcu Jan 2003 A1
20030023423 Yamada et al. Jan 2003 A1
20030040900 D'Agostini Feb 2003 A1
20030061022 Reinders Mar 2003 A1
20030144832 Harris Jul 2003 A1
20030154071 Shreve Aug 2003 A1
20030158723 Masuichi et al. Aug 2003 A1
20030176995 Sukehiro Sep 2003 A1
20030182102 Corston-Oliver et al. Sep 2003 A1
20030191626 Al-Onaizan et al. Oct 2003 A1
20030204400 Marcu et al. Oct 2003 A1
20030216905 Chelba et al. Nov 2003 A1
20030217052 Rubenczyk et al. Nov 2003 A1
20030233222 Soricut et al. Dec 2003 A1
20040006560 Chan et al. Jan 2004 A1
20040015342 Garst Jan 2004 A1
20040024581 Koehn et al. Feb 2004 A1
20040030551 Marcu et al. Feb 2004 A1
20040035055 Zhu et al. Feb 2004 A1
20040044530 Moore Mar 2004 A1
20040068411 Scanlan Apr 2004 A1
20040098247 Moore May 2004 A1
20040102956 Levin May 2004 A1
20040102957 Levin May 2004 A1
20040111253 Luo et al. Jun 2004 A1
20040115597 Butt Jun 2004 A1
20040122656 Abir Jun 2004 A1
20040167768 Travieso et al. Aug 2004 A1
20040167784 Travieso et al. Aug 2004 A1
20040193401 Ringger et al. Sep 2004 A1
20040230418 Kitamura Nov 2004 A1
20040237044 Travieso et al. Nov 2004 A1
20040260532 Richardson et al. Dec 2004 A1
20050021322 Richardson et al. Jan 2005 A1
20050021517 Marchisio Jan 2005 A1
20050033565 Koehn Feb 2005 A1
20050038643 Koehn Feb 2005 A1
20050055199 Ryzchachkin et al. Mar 2005 A1
20050055217 Sumita et al. Mar 2005 A1
20050060160 Roh et al. Mar 2005 A1
20050075858 Pournasseh et al. Apr 2005 A1
20050086226 Krachman Apr 2005 A1
20050102130 Quirk et al. May 2005 A1
20050125218 Rajput et al. Jun 2005 A1
20050149315 Flanagan et al. Jul 2005 A1
20050171757 Appleby Aug 2005 A1
20050204002 Friend Sep 2005 A1
20050228640 Aue et al. Oct 2005 A1
20050228642 Mau et al. Oct 2005 A1
20050228643 Munteanu et al. Oct 2005 A1
20050267738 Wilkinson et al. Dec 2005 A1
20060004563 Campbell et al. Jan 2006 A1
20060015320 Och Jan 2006 A1
20060015323 Udupa et al. Jan 2006 A1
20060020448 Chelba et al. Jan 2006 A1
20060041428 Fritsch et al. Feb 2006 A1
20060095248 Menezes et al. May 2006 A1
20060111891 Menezes et al. May 2006 A1
20060111892 Menezes et al. May 2006 A1
20060111896 Menezes et al. May 2006 A1
20060129424 Chan Jun 2006 A1
20060142995 Knight et al. Jun 2006 A1
20060150069 Chang Jul 2006 A1
20060167984 Fellenstein et al. Jul 2006 A1
20060190241 Goutte et al. Aug 2006 A1
20070016400 Soricutt et al. Jan 2007 A1
20070016401 Ehsani et al. Jan 2007 A1
20070033001 Muslea et al. Feb 2007 A1
20070050182 Sneddon et al. Mar 2007 A1
20070078654 Moore Apr 2007 A1
20070078845 Scott et al. Apr 2007 A1
20070083357 Moore et al. Apr 2007 A1
20070094169 Yamada et al. Apr 2007 A1
20070112553 Jacobson May 2007 A1
20070112555 Lavi et al. May 2007 A1
20070112556 Lavi et al. May 2007 A1
20070122792 Galley et al. May 2007 A1
20070168202 Changela et al. Jul 2007 A1
20070168450 Prajapat et al. Jul 2007 A1
20070180373 Bauman et al. Aug 2007 A1
20070219774 Quirk et al. Sep 2007 A1
20070250306 Marcu et al. Oct 2007 A1
20070265825 Cancedda et al. Nov 2007 A1
20070265826 Chen et al. Nov 2007 A1
20070269775 Andreev et al. Nov 2007 A1
20070294076 Shore et al. Dec 2007 A1
20080052061 Kim et al. Feb 2008 A1
20080065478 Kohlmeier et al. Mar 2008 A1
20080114583 Al-Onaizan et al. May 2008 A1
20080154581 Lavi et al. Jun 2008 A1
20080183555 Walk Jul 2008 A1
20080215418 Kolve et al. Sep 2008 A1
20080249760 Marcu et al. Oct 2008 A1
20080270109 Och Oct 2008 A1
20080270112 Shimohata Oct 2008 A1
20080281578 Kumaran et al. Nov 2008 A1
20080307481 Panje Dec 2008 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090083023 Foster et al. Mar 2009 A1
20090106017 D'Agostini Apr 2009 A1
20090119091 Sarig May 2009 A1
20090125497 Jiang et al. May 2009 A1
20090234634 Chen et al. Sep 2009 A1
20090241115 Raffo et al. Sep 2009 A1
20090326912 Ueffing Dec 2009 A1
20090326913 Simard et al. Dec 2009 A1
20100005086 Wang et al. Jan 2010 A1
20100017293 Lung et al. Jan 2010 A1
20100042398 Marcu et al. Feb 2010 A1
20100138210 Seo et al. Jun 2010 A1
20100138213 Bicici et al. Jun 2010 A1
20100174524 Koehn Jul 2010 A1
20110029300 Marcu et al. Feb 2011 A1
20110066643 Cooper et al. Mar 2011 A1
20110082684 Soricut et al. Apr 2011 A1
20110191410 Refuah et al. Aug 2011 A1
20120096019 Manickam et al. Apr 2012 A1
20120253783 Castelli et al. Oct 2012 A1
20120278302 Choudhury et al. Nov 2012 A1
20120323554 Hopkins et al. Dec 2012 A1
20140019114 Travieso et al. Jan 2014 A1
Foreign Referenced Citations (13)
Number Date Country
202005022113.9 Feb 2014 DE
0469884 Feb 1992 EP
0715265 Jun 1996 EP
0933712 Aug 1999 EP
0933712 Jan 2001 EP
07244666 Jan 1995 JP
10011447 Jan 1998 JP
11272672 Oct 1999 JP
2004501429 Jan 2004 JP
2004062726 Feb 2004 JP
2008101837 May 2008 JP
5452868 Jan 2014 JP
WO03083709 Oct 2003 WO
Non-Patent Literature Citations (289)
Entry
Knight, K. and Chander, I., “Automated Postediting of Documents,”1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 779-784.
Knight, K. and Luk, S., “Building a Large-Scale Knowledge Base for Machine Translation,” 1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 773-778.
Knight, Kevin, “Connectionist Ideas and Algorithms,” Nov. 1990, Communications of the ACM, vol. 33, No. 11, pp. 59-74.
Knight, Kevin, “Decoding Complexity in Word-Replacement Translation Models”, 1999, Computational Linguistics, 25(4).
Knight et al., “Filling Knowledge Gaps in a Broad-Coverage Machine Translation System”, 1995, Proc. of the14th International Joint Conference on Artificial Intelligence, Montreal, Canada, vol. 2, pp. 1390-1396.
Knight, Kevin, “Integrating Knowledge Acquisition and Language Acquisition,” May 1992, Journal of Applied Intelligence, vol. 1, No. 4.
Knight et al., “Integrating Knowledge Bases and Statistics in MT,” 1994, Proc. of the Conference of the Association for Machine Translation in the Americas.
Knight, Kevin, “Learning Word Meanings by Instruction,”1996, Proc. of the D National Conference on Artificial Intelligence, vol. 1, pp. 447-454.
Knight, K. and Graehl, J., “Machine Transliteration”, 1997, Proc. of the ACL-97, Madrid, Spain.
Knight, K. et al., “Machine Transliteration of Names in Arabic Text,” 2002, Proc. of the ACL Workshop on Computational Approaches to Semitic Languages.
Knight, K. and Marcu, D., “Statistics-Based Summarization—Step One: Sentence Compression,” 2000, American Association for Artificial Intelligence Conference, pp. 703-710.
Knight, K. et al., “Translation with Finite-State Devices,” 1998, Proc. of the 3rd AMTA Conference, pp. 421-437.
Knight, K. and Hatzivassiloglou, V., “Two-Level, Many-Paths Generation,” D 1995, Proc. of the 33rd Annual Conference of the ACL, pp. 252-260.
Knight, Kevin, “Unification: A Multidisciplinary Survey,” 1989, ACM Computing Surveys, vol. 21, No. 1.
Koehn, P. and Knight, K., “ChunkMT: Statistical Machine Translation with Richer Linguistic Knowledge,” Apr. 2002, Information Sciences Institution.
Koehn, P. and Knight, K., “Estimating Word Translation Probabilities from Unrelated Monolingual Corpora Using the EM Algorithm,” 2000, Proc. of the 17th meeting of the AAAI.
Koehn, P. and Knight, K., “Knowledge Sources for Word-Level Translation Models,” 2001, Conference on Empirical Methods in Natural Language Processing.
Kurohashi, S. and Nagao, M., “Automatic Detection of Discourse Structure by Checking Surface Information in Sentences,” 1994, Proc. of COL-LING '94, vol. 2, pp. 1123-1127.
Langkilde-Geary, Irene, “An Empirical Verification of Coverage and Correctness for a General-Purpose Sentence Generator,” 1998, Proc. 2nd Int'l Natural Language Generation Conference.
Langkilde-Geary, Irene, “A Foundation for General-Purpose Natural Language Generation: Sentence Realization Using Probabilistic Models of Language,” 2002, Ph.D. Thesis, Faculty of the Graduate School, University of Southern California.
Langkilde, Irene, “Forest-Based Statistical Sentence Generation,” 2000, Proc. of the 1st Conference on North American chapter of the ACL, Seattle, WA, pp. 170-171.
Langkilde, I. and Knight, K., “The Practical Value of N-Grams in Generation,” 1998, Proc. of the 9th International Natural Language Generation Workshop, pp. 248-255.
Langkilde, I. and Knight, K., “Generation that Exploits Corpus-Based Statistical Knowledge,” 1998, Proc. of the COLING-ACL, pp. 704-710.
Mann, G. and Yarowsky, D., “Multipath Translation Lexicon Induction via Bridge Languages,” 2001, Proc. of the 2nd Conference of the North American Chapter of the ACL, Pittsburgh, PA, pp. 151-158.
Manning, C. and Schutze, H., “Foundations of Statistical Natural Language Processing,” 2000, The MIT Press, Cambridge, MA [redacted].
Marcu, D. and Wong, W., “A Phrase-Based, Joint Probability Model for Statistical Machine Translation,” 2002, Proc. of ACL-2 conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 133-139.
Marcu, Daniel, “Building Up Rhetorical Structure Trees,” 1996, Proc. of the National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference, vol. 2, pp. 1069-1074.
Marcu, Daniel, “Discourse trees are good indicators of importance in text,” 1999, Advances in Automatic Text Summarization, The MIT Press, Cambridge, MA.
Marcu, Daniel, “Instructions for Manually Annotating the Discourse Structures of Texts,” 1999, Discourse Annotation, pp. 1-49.
Marcu, Daniel, “The Rhetorical Parsing of Natural Language Texts,” 1997, Proceedings of ACLIEACL '97, pp. 96-103.
Marcu, Daniel, “The Rhetorical Parsing, Summarization, and Generation of Natural Language Texts,” 1997, Ph.D. Thesis, Graduate Department of Computer Science, University of Toronto.
Marcu, Daniel, “Towards a Unified Approach to Memory- and Statistical-Based Machine Translation,” 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 378-385.
Melamed, I. Dan, “A Word-to-Word Model of Translational Equivalence,” 1997, Proc. of the 35th Annual Meeting of the ACL, Madrid, Spain, pp. 490-497.
Melamed, I. Dan, “Automatic Evaluation and Uniform Filter Cascades for Inducing N-Best Translation Lexicons,” 1995, Proc. of the 3rd Workshop on Very Large Corpora, Boston, MA, pp. 184-198.
Melamed, I. Dan, “Empirical Methods for Exploiting Parallel Texts,” 2001, MIT Press, Cambridge, MA [table of contents].
Meng et al. “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval,” 2001, IEEE Workshop on Automatic Speech Recognition and Understanding. pp. 311-314.
Milke et al., “A full-text retrieval system with a dynamic abstract generation function,” 1994, Proceedings of SI-GIR '94, pp. 152-161.
Mikheev et al., “Named Entity Recognition without Gazeteers,” 1999, Proc. of European Chapter of the ACL, Bergen, Norway, pp. 1-8.
Monasson et al., “Determining computational complexity from characteristic ‘phase transitions’,” Jul. 1999, Nature Magazine, vol. 400, pp. 133-137.
Mooney, Raymond, “Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning,” 1996, Proc. of the Conference on Empirical Methods in Natural Language Processing, pp. 82-91.
Niessen,S. and Ney, H, “Toward hierarchical models for statistical machine translation of inflected languages,” 2001, Data-Driven Machine Translation Workshop, Toulouse, France, pp. 47-54.
Och, F. and Ney, H, “Improved Statistical Alignment Models,” 2000, 38th Annual Meeting of the ACL, Hong Kong, pp. 440-447.
Och et al., “Improved Alignment Models for Statistical Machine Translation,” 1999, Proc. of the Joint Conf. of Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 20-28.
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation,” 2001, IBM Research Report, RC22176(WQ102-022).
Pla et al., “Tagging and Chunking with Bigrams,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 614-620.
Rapp, Reinhard, Automatic Identification of Word Translations from Unrelated English and German Corpora, 1999, 37th Annual Meeting of the ACL, pp. 519-526.
Rapp, Reinhard, “Identifying Word Translations in Non-Parallel Texts,” 1995, 33rd Annual Meeting of the ACL, pp. 320-322.
Resnik, P. and Yarowsky, D. “A Perspective on Word Sense Disambiguation Methods and Their Evaluation,” 1997, Proceedings of SIGLEX '97, Washington, D.C., pp. 79-86.
Resnik, Philip, “Mining the Web for Bilingual Text,” 1999, 37th Annual Meeting of the ACL, College Park, MD, pp. 527-534.
Knight, Kevin, “Integrating Knowledge Acquisition and Language Acquisition”, May 1992, Journal of Applied Intelligence, vol. 1J, No. 4.
Abney, Stephen, “Parsing by Chunks,” 1991, Principle-Based Parsing: Computation and Psycholinguistics, vol. 44, pp. 257-279.
Al-Onaizan et al., “Statistical Machine Translation,” 1999, JHU Summer Tech Workshop, Final Report, pp. 1-42.
Al-Onaizan, Y. and Knight, K., “Named Entity Translation: Extended Abstract”, 2002, Proceedings of HLT-02, San Diego, CA.
Al-Onaizan, Y. and Knight, K., “Translating Named Entities Using Monolingual and Bilingual Resources,” 2002, Proc. of the 40th Annual Meeting of the ACL, pp. 400-408.
Al-Onaizan et al., “Translating with Scarce Resources,” 2000, 17th National Conference of the American Association for Artificial Intelligence, Austin, TX, pp. 672-678.
Alshawi et al., “Learning Dependency Translation Models as Collections of Finite-State Head Transducers,” 2000, Computational Linguistics, vol. 26, pp. 45-60.
Arbabi et al., “Algorithms for Arabic name transliteration,” Mar. 1994, IBM Journal of Research and Development, vol. 38, Issue 2, pp. 183-194.
Barnett et al., “Knowledge and Natural Language Processing,” Aug. 1990, Communications of the ACM, vol. 33, Issue 8, pp. 50-71.
Bangalore, S. and Rambow, O., “Corpus-Based Lexical Choice in Natural Language Generation,” 2000, Proc. of the 38th Annual ACL, Hong Kong, pp. 464-471.
Bangalore, S. and Rambow, O., “Exploiting a Probabilistic Hierarchical Model for Generation,” 2000, Proc. of 18th conf. on Computational Linguistics, vol. 1, pp. 42-48.
Bangalore, S. and Rambow, 0., “Evaluation Metrics for Generation,” 2000, Proc. of the 1st International Natural Language Generation Conf., vol. 14, pp. 1-8.
Bangalore, S. and Rambow, 0., “Using TAGs, a Tree Model, and a Language Model for Generation,” May 2000, Workshop TAG+5, Paris.
Baum, Leonard, “An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes”, 1972, Inequalities 3:1-8.
Bikel et al., “An Algorithm that Learns What's in a Name,” 1999, Machine Learning Journal Special Issue on Natural Language Learning, vol. 34, pp. 211-232.
Brants, Thorsten, “TnT—A Statistical Part-of-Speech Tagger,” 2000, Proc. of the 6th Applied Natural Language Processing Conference, Seattle.
Brill, Eric. “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging”; 1995, Computational Linguistics, vol. 21, No. 4, pp. 543-565.
Brown et al., “A Statistical Approach to Machine Translation,” Jun. 1990, Computational Linguistics, vol. 16, No. 2, pp. 79-85.
Brown, Ralf, “Automated Dictionary Extraction for “Knowledge-Free” Example-Based Translation,” 1997, Proc. of 7th Int'l Cont. on Theoretical and Methodological Issues in MT, Santa Fe, NM, pp. 111-118.
Brown et al., “The Mathematics of Statistical Machine Translation: Parameter D Estimation,” 1993, Computational Linguistics, vol. 19, Issue 2, pp. 263-311.
Brown et al., “Word-Sense Disambiguation Using Statistical Methods,” 1991, Proc. of 29th Annual ACL, pp. 264-270.
Carl, Michael. “A Constructivist Approach to Machine Translation,” 1998, New Methods of Language Processing and Computational Natural Language Learning, pp. 247-256.
Chen, K. and Chen, H., “Machine Translation: An Integrated Approach,” 1995, Proc. of 6th Int'l Cont. on Theoretical and Methodological Issue in MT, pp. 287-294.
Chinchor, Nancy, “MUC-7 Named Entity Task Definition,” 1997, Version 3.5.
Clarkson, P. and Rosenfeld, R., “Statistical Language Modeling Using the CMU-Cambridge Toolkit”, 1997, Proc. ESCA Eurospeech, Rhodes, Greece, pp. 2707-2710.
Corston-Oliver, Simon, “Beyond String Matching and Cue Phrases: Improving Efficiency and Coverage in Discourse Analysis”, 1998, The MAI Spring Symposium on Intelligent Text Summarization, pp. 9-15.
Dagan, I. and Itai, A., “Word Sense Disambiguation Using a Second Language Monolingual Corpus”, 1994, Computational Linguistics, vol. 20, No. 4, pp. 563-596.
Dempster et al., “Maximum Likelihood from Incomplete Data via the EM Algorithm”, 1977, Journal of the Royal Statistical Society, vol. 39, No. 1, pp. 1-38.
Diab, M. and Finch, S., “A Statistical Word-Level Translation Model for Comparable Corpora,” 2000, In Proc.of the Conference on Content Based Multimedia Information Access (RIAO).
Elhadad, M. and Robin, J., “An Overview of SURGE: a Reusable Comprehensive Syntactic Realization Component,” 1996, Technical Report 96-03, Department of Mathematics and Computer Science, Ben Gurion University, Beer Sheva, Israel.
Elhadad, M. and Robin, J., “Controlling Content Realization with Functional Unification Grammars”, 1992, Aspects of Automated Natural Language Generation, Dale et al. (eds)., Springer Verlag, pp. 89-104.
Elhadad et al., “Floating Constraints in Lexical Choice”, 1996, ACL, 23(2): 195-239.
Elhadad, Michael, “FUF: The Universal Unifier User Manual Version 5.2”, 1993, Department of Computer Science, Ben Gurion University, Beer Sheva, Israel.
Elhadad. M., and Robin, J., “SURGE: a Comprehensive Plug-in Syntactic Realization Component for Text Generation”, 1999 (available at http://www.cs.bgu.ac.il/-elhadad/pub.html).
Elhadad, Michael, “Using Argumentation to Control Lexical Choice: A Functional Unification Implementation”, 1992, Ph.D. Thesis, Graduate School of Arts and Sciences, Columbia University.
Fung, Pascale, “Compiling Bilingual Lexicon Entries From a Non-Parallel English-Chinese Corpus”, 1995, Proc, of the Third Workshop on Very Large Corpora, Boston, MA, pp. 173-183.
Fung, P. and Vee, L., “An IR Approach for Translating New Words from Nonparallel, Comparable Texts”, 1998, 36th Annual Meeting of the ACL, 17th International Conference on Computational Linguistics, pp. 414-420.
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1991, 29th Annual Meeting of the ACL, pp. 177-183.
Germann, Ulrich: “Building a Statistical Machine Translation System from Scratch: How Much Bang for the Buck Can We Expect?” Proc. of the Data-Driven MT Workshop of ACL-01, Toulouse, France, 2001.
Germann et al., “Fast Decoding and Optimal Decoding for Machine Translation”, 2001, Proc. of the 39th Annual Meeting of the ACL, Toulouse, France, pp. 228-235.
Diab, Mona, “An Unsupervised Method for Multilingual Word Sense Tagging Using Parallel Corpora: A Preliminary Investigation”, 2000, SIGLEX Workshop on Word Senses and Multi-Linguality, pp. 1-9.
Grefenstette, Gregory, “The World Wide Web as a Resource for Example-Based Machine Translation Tasks”, 1999, Translating and the Computer 21, Proc. of the 21 st International Cant. on Translating and the Computer. London, UK, 12 pp.
Hatzivassiloglou, V. et al., “Unification-Based Glossing”,. 1995, Proc. of the International Joint Conference on Artificial Intelligence, pp. 1382-1389.
Ide, N. and Veronis, J., “Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art”, Mar. 1998, Computational Linguistics, vol. 24, Issue 1, pp. 2-40.
Imamura, Kenji, “Hierarchical Phrase Alignment Harmonized with Parsing”, 2001, in Proc. of NLPRS, Tokyo.
Jelinek, F., “Fast Sequential Decoding Algorithm Using a Stack”, Nov. 1969, IBM J. Res. Develop., vol. 13, No. 6, pp. 675-685.
Jones, K. Sparck, “Experiments in Relevance Weighting of Search Terms”, 1979, Information Processing & Management, vol. 15, Pergamon Press Ltd., UK, pp. 133-144.
Knight, K. and Yamada, K., “A Computational Approach to Deciphering Unknown Scripts,” 1999, Proc. of the ACL Workshop on Unsupervised Learning in Natural Language Processing.
Knight, K. and Al-Onaizan, Y., “A Primer on Finite-State Software for Natural Language Processing”, 1999 (available at http://www.isLedullicensed-sw/carmel).
Knight, Kevin, “A Statistical MT Tutorial Workbook,” 1999, JHU Summer Workshop (available at http://www.isLedu/natural-language/mUwkbk.rtf).
Knight, Kevin, “Automating Knowledge Acquisition for Machine Translation,” 1997, AI Magazine 18(4).
Rich, E. and Knight, K., “Artificial Intelligence, Second Edition,” 1991, McGraw-Hili Book Company [redacted].
Richard et al., “Visiting the Traveling Salesman Problem with Petri nets and application in the glass industry,” Feb. 1996, IEEE Emerging Technologies and Factory Automation, pp. 238-242.
Robin, Jacques, “Revision-Based Generation of Natural Language Summaries Providing Historical Background: Corpus-Based Analysis, Design Implementation and Evaluation,” 1994, Ph.D. Thesis, Columbia University, New York.
Sang, E. and Buchholz, S., “Introduction to the CoNLL-2000 Shared Task: Chunking,” 20002, Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 127-132.
Schmid, H., and Walde, S., “Robust German Noun Chunking With a Probabilistic Context-Free Grammar,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 726-732.
Selman et al., “A New Method for Solving Hard Satisfiability Problems,” 1992, Proc. of the 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 440-446.
Schutze,Hinrich, “Automatic Word Sense Discrimination,” 1998, Computational Linguistics, Special Issue on Word Sense Disambiguation, vol. 24, Issue 1, pp. 97-123.
Sobashima et al., “A Bidirectional Transfer-Driven Machine Translation System for Spoken Dialogues,” 1994, Proc. of 15th Conference on Computational Linguistics, vol. 1, pp. 64-68.
Shapiro, Stuart (ed.), “Encyclopedia of Artificial Intelligence, 2nd edition”, vol. D 2,1992, John Wiley & Sons Inc; “Unification article”, K. Knight, pp. 1630-1637.
Soricut et al., “Using a large monolingual corpus to improve translation accuracy,” 2002, Lecture Notes in Computer Science, vol. 2499, Proc. of the 5th Conference of the Association for Machine Translation in the Americas on Machine Translation: From Research to Real Users, pp. 155-164.
Stalls, B. and Knight, K., “Translating Names and Technical Terms in Arabic Text,” 1998, Proc. of the COLING/ACL Workkshop on Computational Approaches to Semitic Language.
Sun et al., “Chinese Named Entity Identification Using Class-based Language Model,” 2002, Proc. of 19th International Conference on Computational Linguistics, Taipei, Taiwan, vol. 1, pp. 1-7.
Sumita et al., “A Discourse Structure Analyzer for Japanese Text,” 1992, Proc. of the International Conference on Fifth Generation Computer Systems, vol. 2, pp. 1133-1140.
Taylor et al., “The Penn Treebank: An Overview,” in A. Abeill (ed.), D Treebanks: Building and Using Parsed Corpora, 2003, pp. 5-22.
Tiedemann, Jorg, “Automatic Construction of Weighted String Similarity Measures,” 1999, In Proceedings of the Joint SIGDAT Conference on Emperical Methods in Natural Language Processing and Very Large Corpora.
Tillmann et al., “A DP based Search Using Monotone Alignments in Statistical Translation,” 1997, Proc. of the Annual Meeting of the ACL, pp. 366-372.
Tillman, C. and Xia, F., “A Phrase-Based Unigram Model for Statistical Machine Translation,” 2003, Proc. of the North American Chapter of the ACL on Human Language Technology, vol. 2, pp. 106-108.
Veale, T. and Way, A., “Gaijin: A Bootstrapping, Template-Driven Approach to Example-Based MT,” 1997, Proc. of New Methods in Natural Language Processing (NEMPLP97), Sofia, Bulgaria.
Vogel, S. and Ney, H., “Construction of a Hierarchical Translation Memory,” 2000, Proc. of Cooling 2000, Saarbrucken, Germany, pp. 1131-1135.
Vogel et al., “The CMU Statistical Machine Translation System,” 2003, Machine Translation Summit IX, New Orleans, LA.
Vogel et al., “The Statistical Translation Module in the Verbmobil System,” 2000, Workshop on Multi-Lingual Speech Communication, pp. 69-74.
Wang, Ye-Yi, “Grammar Interference and Statistical Machine Translation,” 1998, Ph.D Thesis, Carnegie Mellon University, Pittsburgh, PA.
Watanbe et al., “Statistical Machine Translation Based on Hierarchical Phrase Alignment,” 2002, 9th International Conference on Theoretical and Methodological Issues in Machin Translation (TMI-2002), Keihanna, Japan, pp. 188-198.
Witbrock, M. and Mittal, V., “Ultra-Summarization: A Statistical Approach to Generating Highly Condensed Non-Extractive Summaries,” 1999, Proc. of SIGIR '99, 22nd International Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 315-316.
Wang, Y. and Waibel, A., “Decoding Algorithm in Statistical Machine Translation,” 1996, Proc. of the 35th Annual Meeting of the ACL, pp. 366-372.
Wu, Dekai, “Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora,” 1997, Computational Linguistics, vol. 23, Issue 3, pp. 377-403.
Wu, Dekai, “A Polynomial-Time Algorithm for Statistical Machine Translation,” 1996, Proc. of 34th Annual Meeting of the ACL, pp. 152-158.
Yamada, K. and Knight, K., “A Decoder for Syntax-based Statistical MT,” 2001, Proceedings of the 40th Annual Meeting of the ACL, pp. 303-310.
Yamada, K. and Knight, K. “A Syntax-based Statistical Translation Model,” D 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 523-530.
Yamamoto et al., “A Comparative Study on Translation Units for Bilingual Lexicon Extraction,” 2001, Japan Academic Association for Copyright Clearance, Tokyo, Japan.
Yarowsky, David, “Unsupervised Word Sense Disambiguation Rivaling Supervised Methods,” 1995, 33rd Annual Meeting of the ACL, pp. 189-196.
Callan et al., “TREC and TIPSTER 'Experiments with Inquery,” 1994, Information Processing and Management, vol. 31, Issue 3, pp. 327-343.
Cohen, Yossi, “Interpreter for FUF,” (available at ftp:/lftp.cs.bgu.ac.il/ pUb/people/elhadad/fuf-life.lf).
Mohri, M. and Riley, M., “An Efficient Algorithm for the N-Best-Strings Problem,” 2002, Proc. of the 7th Int. Conf. on Spoken Language Processing (ICSLP'02), Denver, CO, pp. 1313-1316.
Nederhof, M. and Satta, G., “IDL-Expressions: A Formalism for Representing and Parsing Finite Languages in Natural Language Processing,” 2004, Journal of Artificial Intelligence Research, vol. 21, pp. 281-287.
Och, F. and Ney, H., “Discriminative Training and Maximum Entropy Models for Statistical Machine Translation,” 2002, Proc. of the 40th Annual Meeting of the ACL, Philadelphia, PA, pp. 295-302.
Resnik, P. and Smith, A., “The Web as a Parallel Corpus,” Sep. 2003, Computational Linguistics, Special Issue on Web as Corpus, vol. 29, Issue 3, pp. 349-380.
Russell, S. And Norvig, P., “Artificial Intelligence: A Modern Approach,” 1995, Prentice-Hall, Inc., New Jersey [redacted—table of contents].
Ueffing et al., “Generation of Word Graphs in Statistical Machine Translation,” 2002, Proc. of Empirical Methods in Natural Language Processing (EMNLP), pp. 156-163.
Kumar, R. and L1, H., “Integer Programming Approach to Printed Circuit Board Assembly Time Optimization,” 1995, IEEE Transactions on Components, Packaging, and Manufacturing, Part B: Advance Packaging, vol. 18, No. 4. pp. 720-727.
Yamada-K., “A Syntax-Basaed Statistical Translation Model,” 2002 PhD Disseration, pp. 1-141.
Al-Onaizan et al., “Translation with Scarce Resources,” 2000 Univ. of Southern Calif., pp. 1-7.
Imamura et al., “Feedback Cleaning of Machine Translation Rules Using Automatic Evaluation,” 2003 Computational Linguistics, pp. 447-454.
Lee-Y.S.,“Neural Network Approach to Adaptive Learning: with an Application to Chinese Homophone Disambiguation,” IEEE pp. 1521-1526.
Rayner et al.,“Hybrid Language Processing in the Spoken Language Translator,” IEEE, pp. 107-110.
Rogati et al., “Resource Selection for Domain-Specific Cross-Lingual IR,” ACM 2004, pp. 154-161.
Patent Cooperation Treaty International Preliminary Report on Patentability and The Written Opinion, International application No. PCT/US2008/004296, Oct. 6, 2009, 5 pgs.
Koehn, P., et al, “Statistical Phrase-Based Translation,” Proceedings of HLT-NAACL 2003 Main Papers , pp. 48-54 Edmonton, May-Jun. 2003.
Abney, S.P., “Stochastic Attribute Value Grammars”, Association for Computional Linguistics, 1997, pp. 597-618.
Fox, H., “Phrasal Cohesion and Statistical Machine Translation” Proceedings of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, Jul. 2002, pp. 304-311. Association for Computational Linguistics. <URL: http://acl.ldc.upenn.edu/W/W02/W02-1039.pdf>.
Tillman, C., et al, “Word Reordering and a Dynamic Programming Beam Search Algorithm for Statistical Machine Translation” <URL: http://acl.ldc.upenn.edu/J/J03/J03-1005.pdf>.
Wang, W., et al. “Capitalizing Machine Translation” In HLT-NAACL '06 Proceedings Jun. 2006. <http://www.isi.edu/natural-language/mt/hlt-naacl-06-wang.pdf>.
Langlais, P. et al., “TransType: a Computer-Aided Translation Typing System” EmbedMT '00 ANLP-NAACL 2000 Workshop: Embedded Machine Translation Systems, 2000, pp. 46-51. <http://acl.ldc.upenn.edu/W/W00/W00-0507.pdf>.
Ueffing et al., “Using Pos Information for Statistical Machine Translation into Morphologically Rich Languages,” In EACL, 2003: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, pp. 347-354.
Frederking et al., “Three Heads are Better Than One,” In Proceedings of the 4th Conference on Applied Natural Language Processing, Stuttgart, Germany, 1994, pp. 95-100.
Och et al., “Discriminative Training and Maximum Entropy Models for Statistical Machine Translation,” In Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, 2002.
Yasuda et al., “Automatic Machine Translation Selection Scheme to Output the Best Result,” Proc of LREC, 2002, pp. 525-528.
Agbago, A., et al., “True-casing for the Portage System,” In Recent Advances in Natural Language Processing (Borovets, Bulgaria), Sep. 21-23, 2005, pp. 21-24.
Alshawi, Hiyan, “Head Automata for Speech Translation”, Proceedings of the ICSLP 96, 1996, Philadelphia, Pennslyvania.
Ambati, “Dependency Structure Trees in Syntax Based Machine Translation,” Spring 2008 Report <http://www.cs.cmu.edu/˜vamshi/publications/DependencyMT—report.pdf>, pp. 1-8.
Arun, A., et al., “Edinburgh System Description for the 2006 TC-STAR Spoken Language Translation Evaluation,” in TC-STAR Workshop on Speech-to-Speech Translation (Barcelona, Spain), Jun. 2006, pp. 37-41.
Ballesteros, L. et al., “Phrasal Translation and Query Expansion Techniques for Cross-Language Information Retrieval,” SIGIR 97, Philadelphia, PA, © 1997, pp. 84-91.
Bannard, C. and Callison-Burch, C., “Paraphrasing with Bilingual Parallel Corpora,” In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (Ann Arbor, MI, Jun. 25-30, 2005). Annual Meeting of the ACL Assoc. for Computational Linguistics, Morristown, NJ, 597-604. DOI=http://dx.doi.org/10.3115/1219840.
Berhe, G. et al., “Modeling Service-baed Multimedia Content Adaptation in Pervasive Computing,” CF '04 (Ischia, Italy) Apr. 14-16, 2004, pp. 60-69.
Boitet, C. et al., “Main Research Issues in Building Web Services,” Proc. of the 6th Symposium on Natural Language Processing, Human and Computer Processing of Language and Speech, © 2005, pp. 1-11.
Brill, Eric, “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging”, 1995, Assocation for Computational Linguistics, vol. 21, No. 4, pp. 1-37
Callison-Burch, C. et al., “Statistical Machine Translation with Word- and Sentence-aligned Parallel Corpora,” In Proceedings of the 42nd Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 1.
Cheng, P. et al., “Creating Multilingual Translation Lexicons with Regional Variations Using Web Corpora,” In Proceedings of the 42nd Annual Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 53.
Cheung et al., “Sentence Alignment in Parallel, Comparable, and Quasi-comparable Corpora”, In Proceedings of LREC, 2004, pp. 30-33.
Covington, “An Algorithm to Align Words for Historical Comparison”, Computational Linguistics, 1996, 22(4), pp. 481-496.
Eisner, Jason, “Learning Non-Isomorphic Tree Mappings for Machine Translation,” 2003, in Proc. of the 41st Meeting of the ACL, pp. 205-208.
Fleming, Michael et al., “Mixed-Initiative Translation of Web Pages,” AMTA 2000, LNAI 1934, Springer-Verlag, Berlin, Germany, 2000, pp. 25-29.
Franz Josef Och, Hermann Ney, “Improved Statistical Alignment Models” ACLOO:Proc. of the 38th Annual Meeting of the Association for Computational Lingustics, ′Online! Oct. 2-6, 2000, pp. 440-447, XP002279144 Hong Kong, China Retrieved from the Internet: <URL:http://www-i6.informatik.rwth-aachen.de/Colleagues/och/ACLOO.ps> 'retrieved on May 6, 2004! abstract.
Fuji Ren and Hongchi Shi, “Parallel Machine Translation: Principles and Practice,” Engineering of Complex Computer Systems, 2001 Proceedings, Seventh IEEE Int'l. Conference, pp. 249-259, 2001.
Fung et al, “Mining Very-non parallel corpora: Parallel Sentence and lexicon extraction via bootstrapping and EM”, In EMNLP 2004.
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1993, Computational Linguisitcs, vol. 19, No. 1, pp. 177-184.
Galley et al., “Scalable Inference and Training of Context-Rich Syntactic Translation Models,” Jul. 2006, in Proc. of the 21st International Conference on Computational Linguistics, pp. 961-968.
Galley et al., “What's in a translation rule?”, 2004, in Proc. of HLT/NAACL '04, pp. 1-8.
Gaussier et al, “A Geometric View on Bilingual Lexicon Extraction from Comparable Corpora”, In Proceedings of ACL 2004, July.
Gildea, D., “Loosely Tree-based Alignment for Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL Assoc. for Computational Linguistics, Morristown, NJ, 80-87. DOI=http://dx.doi.org/10.3115/1075096.1075107.
Grossi et al, “Suffix Trees and Their Applications in String Algorithms”, In. Proceedings of the 1st South American Workshop on String Processing, Sep. 1993, pp. 57-76.
Habash, Nizar, “The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation,” University of Maryland, Univ. Institute for Advance Computer Studies, Sep. 8, 2004.
Huang et al., “Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality,” Jun. 4-9, 2006, in Proc. of the Human Language Techology Conference of the North Americna Chapter of the ACL, pp. 240-247.
Ikel, D., Schwartz, R., and Weischedei, R., “An Algorithm that learns What's in a Name,” Machine Learning 34, 211-231 (1999).
Klein et al., “Accurate Unlexicalized Parsing,” Jul. 2003m, in Proc. of the 41st Annual Meeting of the ACL, pp. 423-430.
Koehn, Philipp, “Noun Phrase Translation,” A PhD Dissertation for the University of Southern California, pp. xiii, 23, 25-57, 72-81, Dec. 2003.
Kupiec, Julian, “An Algorithm for Finding Noun Phrase Correspondecnes in Bilingual Corpora,” In Proceedings of the 31st Annual Meeting of the ACL, 1993, pp. 17-22.
Lita, L., et al., “tRuEcasing,” Proceedings of the 41st Annual Meeting of the Assoc. for Computational Linguistics (In Hinrichs, E. and Roth, D.—editors), pp. 152-159.
Llitjos, A. F. et al., “The Translation Correction Tool: English-Spanish User Studies,” Citeseer © 2004, downloaded from: http://gs37.sp.cs.cmu.edu/ari/papers/Irec04/fontll, pp. 1-4.
McCallum, A. and Li, W., “Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-enhanced Lexicons,” In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, 2003, vol. 4 (Edmonton, Canada), Assoc. for Computational Linguistics, Morristown, NJ, pp. 188-191.
McDevitt, K. et al., “Designing of a Community-based Translation Center,” Technical Report TR-03-30, Computer Science, Virginia Tech, © 2003, pp. 1-8.
Metze, F. et al., “The NESPOLE! Speech-to-Speech Translation System,” Proc. of the HLT 2002, 2nd Int'l. Conf. on Human Language Technology (San Francisco, CA), © 2002, pp. 378-383.
Mohri, Mehryar, “Regular Approximation of Context Free Grammars Through Transformation”, 2000, pp. 251-261, “Robustness in Language and Speech Technology”, Chapter 9, Kluwer Academic Publishers.
Nagao, K. et al., “Semantic Annotation and Transcoding: Making Web Content More Accessible,” IEEE Multimedia, vol. 8, Issue 2 Apr.-Jun. 2001, pp. 69-81.
Norvig, Peter, “Techniques for Automatic Memoization with Applications to Context-Free Parsing”, Compuational Linguistics,1991, pp. 91-98, vol. 17, No. 1.
Och et al. “A Smorgasbord of Features for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages.
Och, F., “Minimum Error Rate Training in Statistical Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 160-167. DOI= http://dx.doi.org/10.3115/1075096.
Och, F. and Ney, H., “A Systematic Comparison of Various Statistical Alignment Models,” Computational Linguistics, 2003, 29:1, 19-51.
Perugini, Saviero et al., “Enhancing Usability in CITIDEL: Multimodal, Multilingual and Interactive Visualization Interfaces,” JCDL '04, Tucson, AZ, Jun. 7-11, 2004, pp. 315-324.
Petrov et al., “Learning Accurate, Compact and Interpretable Tree Annotation,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 433-440.
Qun, Liu, “A Chinese-English Machine Translation System Based on Micro-Engine Architecture,” An Int'l. Conference on Translation and Information Technology, Hong Kong, Dec. 2000, pp. 1-10.
Ruiqiang, Z. et al., “The NiCT-ATR Statistical Machine Translation System for the IWSLT 2006 Evaluation,” submitted to IWSLT, 2006.
Kumar, S. and Byrne, W., “Minimum Bayes-Risk Decoding for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages.
Shirai, S., “A Hybrid Rule and Example-based Method for Machine Translation,” NTT Communication Science Laboratories, pp. 1-5.
Tanaka, K. and Iwasaki, H. “Extraction of Lexical Translations from Non-Aligned Corpora,” Proceedings of COLING 1996.
Taskar, B., et al., “A Discriminative Matching Approach to Word Alignment,” In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (Vancouver, BC, Canada, Oct. 6-8, 2005). Human Language Technology Conference. Assoc. for Computational Linguistics, Morristown, NJ.
Tomas, J., “Binary Feature Classification for Word Disambiguation in Statistical Machine Translation,” Proceedings of the 2nd Int'l. Workshop on Pattern Recognition, 2002, pp. 1-12.
Uchimoto, K. et al., “Word Translation by Combining Example-Based Methods and Machine Learning Models,” Natural LanguageProcessing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114.
Uchimoto, K. et al., “Word Translation by Combining Example-Based Methods and Machine Learning Models,” Natural LanguageProcessing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114. (English Translation).
Varga et al., “Parallel Corpora for Medium Density Languages”, In Proceedings of RANLP 2005, pp. 590-596.
Yamamoto et al, “Acquisition of Phrase-level Bilingual Correspondence using Dependency Structure” In Proceedings of COLING-2000, pp. 933-939.
Zhang et al., “Synchronous Binarization for Machine Translations,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 256-263.
Zhang et al., “Distributed Language Modeling for N-best List Re-ranking,” In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (Sydney, Australia, Jul. 22-23, 2006). ACL Workshops. Assoc. for Computational Linguistics, Morristown, NJ, 216-223.
Document, Wikipedia.com, web.archive.org (Feb. 24, 2004) <http://web.archive.org/web/20040222202831 /http://en.wikipedia.org/wikiiDocument>, Feb. 24, 2004.
Identifying, Dictionary.com, wayback.archive.org (Feb. 28, 2007) <http://wayback.archive.org/web/200501 01 OOOOOO*/http:////dictionary.reference.com//browse//identifying>, Feb. 28, 2005 <http://web.archive.org/web/20070228150533/http://dictionary.- reference.com/browse/identifying>.
Cohen et al., “Spectral Bloom Filters,” SIGMOD 2003, Jun. 9-12, 2003, ACM pp. 241-252.
Cohen, “Hardware-Assisted Algorithm for Full-text Large-Dictionary String Matching Using n-gram Hashing,” 1998, Information Processing and Management, vol. 34, No. 4, pp. 443-464.
Gupta et al., “Kelips: Building an Efficient and Stable P2P DHT thorough Increased Memory and Background Overhead,” 2003 IPTPS, LNCS 2735, pp. 160-169.
Bangalore, S. and Rambow, O., ““Using TAGs, a Tree Model, and a Language Model for Generation,”” May 2000,Workshop TAG+5, Paris.
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1993, Computational Linguisitcs, vol. 19, No. 1, pp. 75-102.
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation”, Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Jul. 2002.
Celine, Volume discounts on large translation project, naked translations, http://www.nakedtranslations.com/en/2007/volume-discounts-on-large-translation-projects/, Aug. 1, 2007, retrieved Jul. 16, 2012.
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation”, Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Jul. 2002, pp. 311-318.
Shaalan et al., “Machine Translation of English Noun Phrases into Arabic”, (2004), vol. 17, No. 2, International Journal of Computer Processing of Oriental Languages, 14 pages.
Isahara et al., “Analysis, Generation and Semantic Representation in CONTRAST—A Context-Based Machine Translation System”, 1995, Systems and Computers in Japan, vol. 26, No. 14, pp. 37-53.
Proz.com, Rates for proofreading versus Translating, http://www.proz.com/forum/business—issues/202-rates—for—proofreading—versus—translating.html, Apr. 23, 2009, retrieved Jul. 13, 2012.
Celine, Volume discounts on large translation project, naked translations, http://www.nakedtranslations.com/en/2007/volume-discounts-on-large-transl- ation-projects/, Aug. 1, 2007, retrieved Jul. 16, 2012.
Graehl, J and Knight, K, May 2004, Training Tree Transducers, In NAACL-HLT (2004), pp. 105-112.
Niessen et al, “Statistical machine translation with scarce resources using morphosyntactic information”, Jun. 2004, Computational Linguistics, vol. 30, issue 2, pp. 181-204.
Liu et al., “Context Discovery Using Attenuated Bloom Filters in Ad-Hoc Networks,” Springer, pp. 13-25, 2006.
First Office Action mailed Jun. 7, 2004 in Canadian Patent Application 2408819, filed May 11, 2001.
First Office Action mailed Jun. 14, 2007 in Canadian Patent Application 2475857, filed Mar. 11, 2003.
Office Action mailed Mar. 26, 2012 in German Patent Application 10392450.7, filed Mar. 28, 2003.
First Office Action mailed Nov. 5, 2008 in Canadian Patent Application 2408398, filed Mar. 27, 2003.
Second Office Action mailed Sep. 25, 2009 in Canadian Patent Application 2408398, filed Mar. 27, 2003.
First Office Action mailed Jan. 3, 2005 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Second Office Action mailed Nov. 9, 2006 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Third Office Action mailed Apr. 30, 2008 in European Patent Application No. 03716920.8, filed Mar. 27, 2003.
Office Action mailed Oct. 25, 2011 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Office Action mailed Jul. 24, 2012 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Final Office Action mailed Apr. 1, 2013 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005.
Office Action mailed May 13, 2005 in Chinese Patent Application 1812317.1, filed May 11, 2001.
Office Action mailed Apr. 21, 2006 in Chinese Patent Application 1812317.1, filed May 11, 2001.
Office Action mailed Jul. 19, 2006 in Japanese Patent Application 2003-577155, filed Mar. 11, 2003.
Office Action mailed 2007 in Chinese Patent Application 3805749.2, filed Mar. 11, 2003.
Office Action mailed Feb. 27, 2007 in Japanese Patent Application 2002-590018, filed May 13, 2002.
Office Action mailed Jan. 26, 2007 in Chinese Patent Application 3807018.9, filed Mar. 27, 2003.
Office Action mailed Dec. 7, 2005 in Indian Patent Application 2283/DELNP/2004, filed Mar. 11, 2003.
Office Action mailed Mar. 31, 2009 in European Patent Application 3714080.3, filed Mar. 11, 2003.
Agichtein et al., “Snowball: Extracting Information from Large Plain-Text Collections,” ACM DL '00, the Fifth Acm Conference on Digital Libraries, Jun. 2, 2000, San Antonio, TX, USA.
Satake, Masaomi, “Anaphora Resolution for Named Entity Extraction in Japanese Newspaper Articles,” Master's Thesis [online], Feb. 15, 2002, School of Information Science, JAIST, Nomi, Ishikaw, Japan.
Office Action mailed Aug. 29, 2006 in Japanese Patent Application 2003-581064, filed Mar. 27, 2003.
Office Action mailed Jan. 26, 2007 in Chinese Patent Application 3807027.8, filed Mar. 28, 2003.
Office Action mailed Jul. 25, 2006 in Japanese Patent Application 2003-581063, filed Mar. 28, 2003.
Huang et al., “A syntax-directed translator with extended domain of locality,” Jun. 9, 2006, In Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, pp. 1-8, New York City, New York, Association for Computational Linguistics.
Melamed et al., “Statistical machine translation by generalized parsing,” 2005, Technical Report 05-001, Proteus Project, New York University, http://nlp.cs.nyu.edu/pubs/.
Galley et al., “Scalable Inference and Training of Context-Rich Syntactic Translation Models,” Jul. 2006, In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pp. 961-968.
Huang et al., “Statistical syntax-directed translation with extended domain of locality,” Jun. 9, 2006, In Proceedings of AMTA, pp. 1-8.
Huang et al. Automatic Extraction of Named Entity Translingual Equivalence Based on Multi-Feature Cost Minimization. In Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-Language Name Entry Recognition.
Non-Final, May 9, 2013, U.S. Appl. No. 11/454,212, filed Jun. 15, 2006.
Final, May 7, 2013, U.S. Appl. No. 11/272,460, filed Nov. 9, 2005.
Non-Final, Oct. 3, 2012, U.S. Appl. No. 11/272,460, filed Nov. 9, 2005.
Non-Final, Nov. 8, 2006, U.S. Appl. No. 10/403,862, filed Mar. 28, 2003.
Allowance, May 15, 2013, U.S. Appl. No. 10/884,175, filed Jul. 2, 2004.
Allowance, Jul. 23, 2012, U.S. Appl. No. 11/087,376, filed Mar. 22, 2005.
Allowance, Jun. 12, 2012, U.S. Appl. No. 11/087,376, filed Mar. 22, 2005.
Final, Aug. 29, 2012, U.S. Appl. No. 11/250,151, filed Oct. 12, 2005.
Allowance, Oct. 25, 2012, U.S. Appl. No. 11/592,450, filed Nov. 2, 2006.
Non-final, Jul. 17, 2013, U.S. Appl. No. 11/640,157, filed Dec. 15, 2006.
Final, Dec. 4, 2012, U.S. Appl. No. 11/640,157, filed Dec. 15, 2006.
Allowance, Feb. 11, 2013, U.S. Appl. No. 11/698,501, filed Jan. 26, 2007.
Non-Final, Jul. 2, 2012, U.S. Appl. No. 12/077,005, filed Mar. 14, 2008.
Non-Final, Mar. 29, 2013, U.S. Appl. No. 12/077,005, filed Mar. 14, 2008.
Final, Jul. 16, 2013, U.S. Appl. No. 11/811,228, filed Jun. 8, 2007.
Non-Final, Feb. 20, 2013, U.S. Appl. No. 11/811,228, field Jun. 8, 2007.
Non-Final, Aug. 22, 2012, U.S. Appl. No. 12/510,913, file Jul. 28, 2009.
Final, Apr. 11, 2013, U.S. Appl. No. 12/510,913, filed Jul. 28, 2009.
Allowance, Oct. 9, 2012, U.S. Appl. No. 12/572,021, filed Oct. 1, 2009.
Non-Final, Jun. 19, 2012, U.S. Appl. No. 12/572,021, filed Oct. 1, 2009.
Non-Final, Jun. 27, 2012, U.S. Appl. No. 12/720,536, filed Mar. 9, 2010.
Advisory, Jun. 12, 2013, U.S. Appl. No. 12/720,536, filed Mar. 9, 2010.
Final, Apr. 24, 2013, U.S. Appl. No. 12/720,536, filed Mar. 9, 2010.
Final, Jun. 11, 2013, U.S. Appl. No. 12/820,061, filed Jun. 21, 2010.
Non-Final, Feb. 25, 2013, U.S. Appl. No. 12/820,061, filed Jun. 21, 2010.
Non-Final, Aug. 1, 2012, U.S. Appl. No. 13/089,202, filed Apr. 18, 2011.
Final, Apr. 8, 2013, U.S. Appl. No. 13/089,202, filed Apr. 18, 2011.
Notice of Allowance mailed Dec. 10, 2013 in Japanese Patent Application 2007-536911, filed Oct. 12, 2005.
Makoushina, J. “Translation Quality Assurance Tools: Current State and Future Approaches.” Translating and the Computer, 29, 1-39, retrieved at <<http://www.palex.ru/fc/98/Translation%20Quality%Assurance%20Tools.pdf>>.
Specia et al. “Improving the Confidence of Machine Translation Quality Estimates,” MT Summit XII, Ottawa, Canada, 2009, 8 pages.
Related Publications (1)
Number Date Country
20080249760 A1 Oct 2008 US