Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system

Information

  • Patent Grant
  • 11746319
  • Patent Number
    11,746,319
  • Date Filed
    Monday, June 1, 2020
    4 years ago
  • Date Issued
    Tuesday, September 5, 2023
    a year ago
Abstract
Embodiments described herein generally relate to methods and systems for customizing protocols for use with a cell expansion system. Through a user interface, a user may create a custom task for loading, growing and/or harvesting cells. A custom task may comprise one or more steps, in which a user may add or omit steps, as desired. Data may be entered for settings associated with a custom task, in which embodiments provide for such data to be entered each time the custom task is performed. In another embodiment, the settings for a custom task may be configured, in which such settings may be stored and retrieved upon selection of the custom task. Customization and configuration of a custom task may occur using a diagram view of the cell expansion system, in which process settings are associated with graphical user interface elements.
Description
FIELD

Embodiments of the present disclosure relate to cell growth in cell expansion systems.


BACKGROUND

The use of stem cells in a variety of medical treatments and therapies is receiving growing attention. Cell expansion systems can be used to grow stem cells, as well as other types of cells, such as bone marrow cells which may include stem cells. Stem cells which are expanded from donor cells can be used to repair or replace damaged or defective tissues and are considered for treating a wide range of diseases. Cell expansion systems (CESs) are used to expand cells and may be used to expand donor stem cells from bone marrow. Stem cells may be grown in hollow fiber bioreactors in a cell expansion system.


SUMMARY

Embodiments of the present disclosure generally relate to providing processor-implemented methods and systems for customizing protocols or tasks for use with a cell expansion system. Aspects of particular embodiments provide for a user interface (UI) and the use of graphical user interface (GUI) elements for creating a custom or user-defined protocol or task. In embodiments, steps may be added and/or omitted from a custom or user-defined task. Further embodiments provide for a custom or user-defined task to be configured. In embodiments, UI or GUI elements associated with settings for particular steps of a custom protocol or task used with the cell expansion system are rendered and displayed in diagram windows on a display device. Such UI or GUI elements may be selected to configure one or more settings. In embodiments, configured settings for a custom or user-defined task are stored and available for subsequent retrieval in performing actions related to the task.


The disclosure relates to a processor-implemented method for customizing a task for use with a cell expansion system. The method includes the steps of providing a cell expansion system; providing a bioreactor in the cell expansion system; providing a user interface for customizing a first custom task; receiving, through the user interface, a first selection of the first custom task, wherein the first custom task comprises a first step; providing a first setting for the first step in a table view; receiving a second selection to add a second step to the first custom task; providing a second setting for the second step in the table view; receiving a third selection to configure the first step of the first custom task; determining the first setting is configurable; and providing a diagram view of the cell expansion system, comprising: associating the diagram view with the first step, providing the first setting as a first graphical user interface element, and, in response to determining the first setting is configurable, enabling the first graphical user interface element for selection.


In at least one embodiment, the receiving a second selection to add a second step includes receiving a type of step to add, in which the type of step comprises one or more from the group consisting of: wash out lines, wash out lines through membrane, wash rapidly, harvest cells, add bolus, and custom. In at least one embodiment, receiving a first selection of a first custom task comprises: receiving a touch event on a display area of the user interface of the cell expansion system, determining a location of the touch event, mapping the location of the touch event to the first graphical user interface element, and determining the first graphical user interface element is associated with the first setting. In at least one embodiment, the touch event is received on a touch screen. In at least one embodiment, displaying the diagram view of the cell expansion system further comprises: depicting an intracapillary side of the bioreactor, and depicting an extracapillary side of the bioreactor.


In at least one embodiment, the method further includes determining whether the first setting is associated with a numeric value; and, if the first setting is associated with the numeric value, providing a data entry pad in the diagram view to receive the numeric value. In at least one embodiment, the method further includes if the first setting is not associated with the numeric value, determining if the first setting is associated with a menu of selection options; and, if the first setting is associated with the menu of selection options, providing the menu of selection options in the diagram view. In at least one embodiment, the method further comprises: receiving data for configuring the first setting, storing the data received for configuring the first setting, receiving an indication to execute the first custom task, and executing the first custom task with the data received for configuring the first setting.


In at least one embodiment, the first setting comprises one or more from the group consisting of: intracapillary inlet, intracapillary inlet rate, intracapillary circulation rate, extracapillary inlet, extracapillary inlet rate, extracapillary circulation rate, rocker, and stop condition. In at least one embodiment, the enabling of the first graphical user interface element for selection comprises: associating a first visual indicia with the first graphical user interface element, and, in response to determining the first setting is configurable, associating a second visual indicia with the first graphical user interface element.


The disclosure also relates to a cell expansion system. The cell expansion system comprises: a cell expansion system, including a bioreactor; a processor coupled to the cell expansion system; a display device, in communication with the processor, operable to display data; and a memory, in communication with and readable by the processor, and containing a series of instructions that, when executed by the processor, cause the processor to: receive a first selection of a task; provide a task type, wherein the task type comprises one or more from the group consisting of: a predetermined task type and a user-defined type; receive a second selection of a first user-defined task, wherein the first user-defined task comprises a first process; provide one or more settings for the first process in a table view; provide first data associated with at least a first setting of the one or more settings for the first process; receive an indication to add a second process to the first user-defined task; add the second process to the first user-defined task; receive an indication to modify the first process; display a diagram view associated with the first process, wherein the displaying comprises: associate the diagram view with the first process, provide the first setting as a first graphical user interface element, and, in response to determining the first setting may be modified, enabling the first graphical user interface element for selection; receive second data associated with the first setting; receive an indication to execute the first user-defined task; and execute the first user-defined task, comprising: execute the first user-defined task using the received second data associated with the first setting.


In at least one embodiment, the system further comprises after executing the first user-defined task, receive a second indication to execute the first user-defined task; and execute the first user-defined task using the first data associated with the at least a first setting. In at least one embodiment, the system comprises: in response to receiving the indication to add the second process, retrieve a type of process to add; provide a selection window of the type of process to add; and receive a third selection of the type of process to add. In at least one embodiment, the type of process to add comprises one or more from the group consisting of: wash out lines, wash out lines through membrane, wash rapidly, harvest cells, add bolus, and custom. In at least one embodiment, the system comprises: receive a fourth selection to configure the first user-defined task; display a diagram view comprising the first and second processes; receive a fifth selection to configure the second process; configure the second process; and store the configuration of the first user-defined task. In at least one embodiment, the system comprises after adding the second process to the first user-defined task, receive an indication to omit the second process from the first user-defined task; and omit the second process from the first user-defined task. In at least one embodiment, the displaying the diagram view comprises depicting an intracapillary side of the bioreactor of the cell expansion system; and depicting an extracapillary side of the bioreactor.


The disclosure further provides for a non-transitory processor-readable storage medium storing executable instructions which when executed by a processor perform a method of customizing a task used with a cell expansion system. The method includes the steps of receiving an indication to create a first custom task for use with the cell expansion system, wherein the cell expansion system comprises a bioreactor; receiving a first selection of the first custom task, wherein the first custom task comprises a first process; providing a setting associated with the first process; receiving a second selection to add a second process to the first custom task; in response to receiving the second selection, retrieving a type of process to add; providing a selection window comprising the types of processes to add, wherein the types of processes to add comprise one or more from the group consisting of: wash out lines, wash out lines through membrane, wash rapidly, harvest cells, add bolus, and custom; receiving a third selection of the type of process to add; adding the selected type of process as the second process to the first custom task; receiving data associated with a first setting of the first process; and executing the first custom task with the data received for the first setting of the first process.


In at least one embodiment, the method includes receiving an indication to configure the first custom task; receiving a numeric value for configuring a second setting of the first process; and storing the numeric value in association with the first custom task. In at least one embodiment, the method includes: based on the numeric value received for the second setting, determining to calculate a second numeric value for a third setting of the first process; automatically calculating the second numeric value; providing the second numeric value for the third setting of the first process; and storing the second numeric value in association with the first custom task.


This Summary is included to provide a selection of concepts in a simplified form, in which such concepts are further described below in the Detailed Description. This Summary is not intended to be used in any way to limit the claimed subject matter's scope. Features, including equivalents and variations thereof, may be included in addition to those provided herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure may be described by referencing the accompanying figures. In the figures, like numerals refer to like items.



FIG. 1 illustrates a perspective view of a hollow fiber bioreactor in accordance with embodiments of the present disclosure.



FIG. 2 depicts a schematic of one embodiment of a cell expansion system.



FIG. 3 illustrates a perspective view of the cell expansion system with a pre-mounted fluid conveyance device in accordance with embodiments of the present disclosure.



FIG. 4 depicts a perspective view of the housing of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 5 illustrates a perspective view of the pre-mounted fluid conveyance device in accordance with embodiments of the present disclosure.



FIG. 6 depicts a perspective view of the air removal chamber in accordance with embodiments of the present disclosure.



FIG. 7 illustrates an example logical representation of an environment for interacting with a UI of a cell expansion system in accordance with embodiments of the present disclosure.



FIG. 8 depicts an example UI showing GUI elements and features for configuring the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 9A illustrates an example UI showing GUI elements and features for configuring display settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 9B depicts an example data entry window with the UI of FIG. 9A for entering data for configuring display settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 9C illustrates an example UI showing configuration aspects for display settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 9D depicts an example UT showing a language selection window for configuring display settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 10A illustrates an example UI providing GUI elements and features for configuring system settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 10B depicts an example data entry window with the UI of FIG. 10A for entering data for configuring system settings of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 11 illustrates an example UI for configuring settings of a protocol used with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 12A illustrates an example UI for configuring settings of a custom or user-defined task used with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 12B depicts a window for selecting a step for adding to a custom or user-defined task in accordance with embodiments of the present disclosure.



FIG. 12C illustrates an example UI for configuring a custom or user-defined task with multiple steps for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 13A depicts an example UI showing a diagram view or window for configuring a setting of a process used with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 13B illustrates an example data entry window with the example UI of FIG. 13A for providing data for configuring a protocol for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 13C depicts an example window of selection options with the example UI of FIG. 13A for configuring a protocol for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIGS. 14A, 14B, 14C, and 14D illustrate a flow diagram depicting the operational characteristics of a process for modifying the settings of a protocol for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIGS. 15A and 15B depict a flow diagram illustrating the operational characteristics of a process for configuring aspects of the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 16 illustrates a flow diagram showing the operational characteristics of a process for executing a configured task with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 17 depicts a flow diagram illustrating the operational characteristics of a process for mapping a location of a touch event, on a display area of the cell expansion system, to a UI element in accordance with embodiments of the present disclosure.



FIGS. 18A, 18B, 18C, and 18D illustrate a flow diagram showing the operational characteristics of a process for configuring the settings of a protocol used with the cell expansion system in accordance with embodiments of the present disclosure.



FIGS. 19A, 19B, 19C, and 19D depict a flow diagram illustrating the operational characteristics of a process for configuring the settings of a custom or user-defined task used with the cell expansion system in accordance with embodiments of the present disclosure.



FIGS. 20A and 20B illustrate a flow diagram depicting the operational characteristics of a process for modifying a protocol, from the perspective of a user or operator, for example, for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 21 depicts a flow diagram showing the operational characteristics of a process for creating a custom or user-defined task, from the perspective of a user or operator, for example, for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIGS. 22A, 22B, and 22C illustrate a flow diagram depicting the operational characteristics of a process for configuring a protocol for use with the cell expansion system, from the perspective of a user or operator, for example, in accordance with embodiments of the present disclosure.



FIG. 23 depicts an example data structure associated with a setting of a protocol step for use with the cell expansion system in accordance with embodiments of the present disclosure.



FIG. 24 illustrates an example processing system of the cell expansion system upon which embodiments of the present disclosure may be implemented.





DETAILED DESCRIPTION

The following Detailed Description provides a discussion of illustrative embodiments with reference to the accompanying drawings. The inclusion of specific embodiments herein should not be construed as limiting or restricting the present disclosure. Further, while language specific to features, acts, and/or structures, for example, may be used in describing embodiments herein, the claims are not limited to the features, acts, and/or structures described. A person of skill in the art will understand other embodiments, including improvements, that are within the spirit and scope of the present disclosure.


Embodiments of the present disclosure are generally directed to sterile methods for loading, growing, and harvesting cells in a hollow fiber cell growth chamber of a closed cell expansion system. In further embodiments, sterile methods are provided for loading, growing, and harvesting adherent cells, in particular mesenchymal stem cells, in the hollow fiber cell growth chamber of the closed cell expansion system. A closed system means that the contents of the system are not directly exposed to the atmosphere.


With reference now to FIG. 1, an example of a hollow fiber cell growth chamber 100 which may be used with the present disclosure is shown in front side elevation view. Cell growth chamber 100 has a longitudinal axis LA-LA and includes cell growth chamber housing 104. In at least one embodiment, cell growth chamber housing 104 includes four openings or ports: IC inlet port 108, IC outlet port 120, EC inlet port 128, and EC outlet port 132. It should be noted that like elements are represented by like numerals in all of the Figures.


According to embodiments of the present disclosure, fluid in a first circulation path enters cell growth chamber 100 through IC inlet port 108 at a first longitudinal end 112 of the cell growth chamber 100, passes into and through the intracapillary side (referred to in various embodiments as the intracapillary (“IC”) side or “IC space” of a hollow fiber membrane) of a plurality of hollow fibers 116, and out of cell growth chamber 100 through IC outlet port 120 located at a second longitudinal end 124 of the cell growth chamber 100. The fluid path between the IC inlet port 108 and the IC outlet port 120 defines the IC portion 126 of the cell growth chamber 100. Fluid in a second circulation path flows in the cell growth chamber 100 through EC inlet port 128, comes in contact with the extracapillary side or outside (referred to as the “EC side” or “EC space” of the membrane) of the hollow fibers 116, and exits cell growth chamber 100 via EC outlet port 132. The fluid path between the EC inlet port 128 and the EC outlet port 132 comprises the EC portion 136 of the cell growth chamber 100. Fluid entering cell growth chamber via the EC inlet port 128 is in contact with the outside of the hollow fibers 116. Small molecules (e.g., ions, water, oxygen, lactate, etc.) can diffuse through the hollow fibers from the interior or IC space of the hollow fiber to the exterior or EC space, or from the EC space to the IC space. Large molecular weight molecules such as growth factors are typically too large to pass through the hollow fiber membrane, and remain in the IC space of the hollow fibers. The media may be replaced as needed. Media may also be circulated through an oxygenator 232 (FIG. 2) to exchange gasses as needed. Cells can be contained within the first circulation path 202 and/or second circulation path 204 as described below, and can be on either the IC side and/or EC side of the membrane.


The material used to make the hollow fiber membrane may be any biocompatible polymeric material which is capable of being made into hollow fibers. One material which may be used is a synthetic polysulfone-based material, according to an embodiment of the present disclosure. In order for the cells to adhere to the surface of the hollow fibers, the surface may be modified in some way, either by coating at least the cell growth surface with a protein such as fibronectin or collagen, or by exposing the surface to radiation. A gamma irradiated polysulfone-based membrane for cell expansion is described in WO 2010/034466. Gamma treating the membrane surface allows for attachment of adherent cells without additionally coating the membrane with fibronectin or the like. Bioreactors made of gamma treated membranes can be reused.


Referring now to FIG. 2, a schematic of one possible embodiment of a cell expansion system (CES) which may be used with the present disclosure is shown. In this embodiment and in all the examples or protocols below, the cells are grown in the IC space. CES 200 includes first fluid circulation path 202 (also referred to as the “intracapillary loop” or “IC loop”) and second fluid circulation path 204 (also referred to as the “extracapillary loop” or “EC loop”). First fluid flow path 206 is fluidly associated with cell growth chamber 100 to form first fluid circulation path 202. Fluid flows into cell growth chamber 100 through IC inlet port 108, through hollow fibers in cell growth chamber 100, and exits via IC outlet port 120. Pressure gauge 210 measures the pressure of media leaving cell growth chamber 100. Media flows through IC circulation pump 212 which can be used to control the rate of media flow. IC circulation pump 212 may pump the fluid in a first direction or second direction opposite the first direction. Exit port 120 can be used as an inlet in the reverse direction. Media entering the IC loop may enter through valve 214. As those skilled in the art will appreciate, additional valves and/or other devices can be placed at various locations to isolate and/or measure characteristics of the media along portions of the fluid paths. Accordingly, it is to be understood that the schematic shown represents one possible configuration for various elements of the CES and modifications to the schematic shown are within the scope of the one or more present embodiments.


With regard to the IC loop, samples of media can be obtained from sample port 216 or sample coil 218 during operation. Pressure/temperature gauge 220 disposed in first fluid circulation path 202 allows detection of media pressure and temperature during operation. Media then returns to IC inlet port 108 to complete fluid circulation path 202. Cells grown/expanded in cell growth chamber 100 can be flushed out of cell growth chamber 100 into harvest bag 299 through valve 298 or redistributed within the hollow fibers for further growth. This will be described in more detail below. In this example, cells are grown in the IC space.


Fluid in second fluid circulation path 204 enters cell growth chamber 100 via EC inlet port 128, and leaves cell growth chamber 100 via EC outlet port 132. Media in the EC loop is in contact with the outside of the hollow fibers in the cell growth chamber 100, thereby allowing diffusion of small molecules into and out of the hollow fibers.


Pressure/temperature gauge 224 disposed in the second fluid circulation path 204 allows the pressure and temperature of media to be measured before the media enters the EC space of the cell growth chamber 100. Pressure gauge 226 allows the pressure of media in the second fluid circulation path 204 to be measured after it leaves the cell growth chamber 100. With regard to the EC loop, samples of media can be obtained from sample port 230 or a sample coil (not shown) during operation.


After leaving EC outlet port 132 of cell growth chamber 100, fluid in second fluid circulation path 204 passes through EC circulation pump 228 to oxygenator 232. EC circulation pump 228 may also pump the fluid in opposing directions. Second fluid flow path 222 is fluidly associated with oxygenator 232 via oxygenator inlet port 234 and oxygenator outlet port 236. In operation, fluid media flows into oxygenator 232 via oxygenator inlet port 234, and exits oxygenator 232 via oxygenator outlet port 236. Oxygenator 232 adds oxygen to and removes bubbles from media in the CES. In various embodiments, media in second fluid circulation path 204 is in equilibrium with gas entering oxygenator 232. The oxygenator 232 can be any appropriately sized oxygenator or gas transfer device known in the art. Air or gas flows into oxygenator 232 via filter 238 and out of oxygenator or gas transfer device 232 through filter 240. Filters 238 and 240 reduce or prevent contamination of oxygenator 232 and associated media. Air or gas purged from the CES 200 during portions of a priming sequence can vent to the atmosphere via the oxygenator 232.


In the configuration depicted for CES 200, fluid media in first fluid circulation path 202 and second fluid circulation path 204 flows through cell growth chamber 100 in the same direction (a co-current configuration). The CES 200 can also be configured to flow in a counter-current conformation.


In accordance with at least one embodiment, media, such as cells (from bag 262), and fluid media from bag 246 can be introduced to first fluid circulation path 202 via first fluid flow path 206. Fluid containers, or media bags, 244 (e.g., Reagent) and 246 (e.g., IC Media) may be fluidly associated with either first fluid inlet path 242 via valves 248 and 250, respectively or second fluid inlet path 274 via valves 270 and 276. First and second sterile sealable input priming paths 208 and 209 are provided. Air removal chamber (ARC) 256 is fluidly associated with first circulation path 202. The air removal chamber 256 may include one or more ultrasonic sensors including an upper sensor 1268 and lower sensor 1264 to detect air, a lack of fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at certain measuring positions within the air removal chamber 256 (see FIG. 6). For example, ultrasonic sensors may be used near the bottom and/or near the top of the air removal chamber 256 to detect air, fluid, and/or an air/fluid interface at these locations. Embodiments provide for the use of numerous other types of sensors without departing from the spirit and scope of the present disclosure. For example, optical sensors may be used in accordance with embodiments of the present disclosure. Air or gas purged from the CES 200 during portions of the priming sequence or other protocols can vent to the atmosphere out air valve 260 via line 258 that is fluidly associated with air removal chamber 256.


Fluid container 262 (e.g., Cell Inlet Bag (or Saline Priming Fluid for priming air out of the system)) is fluidly associated with the first fluid circulation path 202 via valve 264.


EC media (from bag 268) or wash solution (from bag 266) may be added to either the first or second fluid flow path. Fluid container 266 may be fluidly associated with valve 270 that is fluidly associated with first fluid circulation path 202 via distribution valve 272 and first fluid inlet path 242. Alternatively, fluid container 266 can be fluidly associated with second fluid circulation path 204 via second fluid inlet path 274 and second fluid flow path 284 by opening valve 270 and closing distribution valve 272. Likewise, fluid container 268 is fluidly associated with valve 276 that may be fluidly associated with first fluid circulation path 202 via first fluid inlet path 242 and distribution valve 272. Alternatively, fluid container 268 may be fluidly associated with second fluid inlet path 274 by opening valve 276 and closing valve distribution 272.


An optional heat exchanger 252 may be provided for media reagent or wash solution introduction.


In the IC loop, fluid is initially advanced by the IC inlet pump 254. In the EC loop, fluid is initially advanced by the EC inlet pump 278. An air detector 280, such as an ultrasonic sensor, may also be associated with the EC inlet path 284.


In at least one embodiment, first and second fluid circulation paths 202 and 204 are connected to waste line 288. When valve 290 is opened, IC media can flow through waste line 288 and to waste bag 286. Likewise, when valve 292 is opened, EC media can flow through waste line 288 to waste bag 286.


Cells can be harvested via cell harvest path 296. Here, cells from cell growth chamber 100 can be harvested by pumping the IC media containing the cells through cell harvest path 296 and valve 298 to cell harvest bag 299.


Various components of the CES 200 can be contained or housed within an incubator machine or housing 304 (FIG. 3), wherein the incubator maintains cells and media at a desirable temperature.


With reference now to FIG. 3, an embodiment of a CES 200 is shown. The CES 200 includes a cell expansion housing or machine 304 that comprises a hatch or closable door 308 for engagement with a back portion 312 of the cell expansion machine 200. An interior space 316 within the cell expansion machine 304 includes features adapted for receiving and engaging a premounted fluid conveyance assembly 320. The premounted fluid conveyance assembly 320 is detachably-attachable to the cell expansion machine 200 to facilitate relatively quick exchange of a new or unused premounted fluid conveyance assembly 320 at a cell expansion machine 200 for a used premounted fluid conveyance assembly 320 at the same cell expansion machine 200. Advantageously, a single cell expansion machine 304 can be operated to grow or expand a first set of cells using a first premounted fluid conveyance assembly 320, and thereafter, used to grow or expand a second set of cells using a second premounted fluid conveyance assembly 320 without needing to be sanitized between interchanging the first premounted fluid conveyance assembly 320 for the second premounted fluid conveyance assembly 320. The premounted fluid conveyance assembly includes the bioreactor 100 and the oxygenator 232. Tubing guide slots are shown as 612 for receiving various media tubing connected to premounted fluid conveyance assembly 320.


Referring now to FIG. 4, the back portion 312 of a cell expansion machine 304 is shown prior to detachably-attaching a premounted fluid conveyance assembly 320. For clarity, the closable door 308 (shown in FIG. 3) is omitted from FIG. 4. The back portion 312 of the cell expansion machine 304 includes a number of different structures for working in combination with elements of a premounted fluid conveyance assembly 320. More particularly, the back portion 312 of the cell expansion machine 304 includes a plurality of peristaltic pumps for cooperating with pump loops 404 (FIG. 5), including the IC circulation pump 212, the EC circulation pump 228, the IC inlet pump 254, and the EC inlet pump 278. In addition, the back portion 312 of the cell expansion machine 104 includes a plurality of valves, including the IC circulation valve 214, the reagent valve 248, the IC media valve 250, the air removal valve 260, the cell inlet valve 264, the wash valve 270, the distribution valve 272, the EC media valve 276, the IC waste valve 290, the EC waste valve 292, and the harvest valve 298. Several sensors are also associated with the back portion 312 of the cell expansion machine 304, including the IC outlet pressure sensor 210, the combination IC inlet pressure and temperature sensors 220, the combination EC inlet pressure and temperature sensors 224, and the EC outlet pressure sensor 226. Also shown is the optical sensor 616 for the air removal chamber 256.


Referring still to FIG. 4, a shaft or rocker control 604 for rotating the bioreactor 100 is shown. Shaped fitting 608 associated with the shaft 604 allows for proper alignment of a shaft access aperture 324 (FIG. 5) of the tubing-organizer 300 of the premounted conveyance assembly with the back portion 312 of the cell expansion machine 304. Rotation of rocker control 604 imparts rotational movement to shaft fitting 508 (FIG. 5) and bioreactor 100. Thus, when an operator of the CES 200 attaches a new or unused premounted fluid conveyance assembly 320 to the cell expansion machine 304, the alignment is a relatively simple matter of properly orienting the shaft access aperture 324 of the premounted fluid conveyance assembly 320 with the shaped fitting 608.


Referring now to FIG. 5, a perspective view of a detachably-attachable premounted fluid conveyance assembly 320 is shown. The premounted fluid conveyance assembly 320 is detachably-attachable to the cell expansion housing 304 to facilitate relatively quick exchange of a new or unused premounted fluid conveyance assembly 320 at a cell expansion machine 304 for a used premounted fluid conveyance assembly 320 at the same cell expansion machine 304. As shown in FIG. 5, the bioreactor 100 is attached to a bioreactor coupling that includes a shaft fitting 508. The shaped fitting 508 includes one or more shaft fastening mechanisms, such as a biased arm or spring member 512 for engaging a shaft (shown in FIG. 4) of the cell expansion machine 304.


Referring still to FIG. 5, the premounted fluid conveyance assembly 320 typically includes tubing 408 and various tubing fittings 412 to provide the fluid paths shown in FIG. 2. Pump loops 404 are also provided for the pump. Although the various media are typically provided at the site where the cell expansion machine 304 is located, the premounted fluid conveyance assembly 320 typically includes sufficient tubing length to extend to the exterior of the cell expansion machine 304 and to enable welded connections to tubing associated with the media bags.


The air removal chamber or ARC will now be described with respect with FIG. 6. In accordance with at least one embodiment, the air removal chamber 256 is mounted in a substantially vertical orientation on the premounted fluid conveyance assembly 320, such that air or gas bubbles within the fluid rise upward away from the bottom 1212 toward the vent aperture 1224 preferably located at the top 1228 along the vertical direction of the air removal chamber 256, or at least vertically above the fluid entrance aperture 1220 and fluid exit aperture 1236.


Referring again to FIG. 6 in at least one embodiment a plurality of fluid level sensors is used in combination with the air removal chamber 256. In at least one embodiment, the sensors are located on the cell expansion machine 304 at 616. More particularly, while the air removal chamber 256 is connected to a premounted fluid conveyance assembly 320 that can be detachably-attached to the cell expansion machine 304, the fluid level sensors for the air removal chamber 256 form part of the cell expansion machine 304.


In accordance with at least one embodiment, at least two sensors are used with the air removal chamber 256 to provide “high” and “low” fluid level sensing capability. Accordingly, operating protocol for the CES 100 includes monitoring the fluid level within the air removal chamber 256 and adjusting the pumping rate of the peristaltic pumps as necessary to maintain an appropriate fluid level within the fluid containment chamber 1208 of the air removal chamber. This operating protocol may include increasing or decreasing the pumping rates associated with pumps on either one or both the upstream and downstream sides of the air removal chamber 256. The ARC as described below also functions as a stop indication for various protocols.


In at least one embodiment, a first fluid level sensor 1264 (or low level fluid sensor) is situated to detect a fluid level in the air removal chamber 256 at a level of approximately ¼ full, and a second fluid level sensor 1268 (or high level fluid sensor) is situated to detect a fluid level in the air removal chamber 256 at a level of approximately ¾ full. The position of the fluid level sensors 1264 and 1268 allow the fluid level within the air removal chamber 256 to be adjusted to ensure that air does not pass though the fluid exit aperture 1236 and enter the fluid exit tube 1240 at the bottom 1212 of the air removal chamber 256 because of too low a fluid level, and that fluid does not exit through vent aperture 1224 located at the top 1228 of the air removal chamber 256 because of too high a fluid level.


As will be recognized by those of skill in the art, any number of fluid containers (e.g., media bags) can be fluidly associated with the CES in any combination.


Protocols will now be described with respect to the schematic described in FIG. 2, in accordance with embodiments of the present disclosure.


The following is a definition section for the Protocols described below. Points A through H on the schematic of FIG. 2 are also described in the definition section below. In the protocols or examples described the definition section may be referenced for various descriptions.


Protocols Parameter Definitions














Parameter
Value
Explanations















VOLUME (mL)









VICL
189.1
IC Loop Volume, VBRIC + 2VBRICH + VEF


VECL
305.6
EC Loop Volume, VBREC + VGH


VICBL
29.3
Volume from bags to IC Loop, ARC volume is




assumed to be 10 mL, inlet bag length assumed




to be 3 mL


VECBL
18.5
Volume from bags to EC Loop, inlet bag length




assumed to be 3 mL


VICE
218.4
IC Exchange volume = VICL + VICBL


VECE
324.1
EC Exchange volume = VECL + VECBL


VABI
9
Point “A” on FIG. 2 to Bioreactor inlet




(includes header volume), excludes value




directly from ARC to T-junction


VABO
42.1
Point “A” of FIG. 2 to Bioreactor outlet




(includes header volume), excludes value




directly from ARC to T-junction


VAB
32.6
Volume from point “A” to point “B” of FIG. 2


VCD
3.8
Volume from point “C” to point “D” of FIG. 2


VARC
11.1
Volume used to flush ARC contents into IC




Loop = VARCA + VARCBS


VBRIC
138
Volume of the IC side of bioreactor, excludes




headers


VBRICH
4.5
Volume of IC header


VEF
42.1
Volume from Point “E” to Point “F”IC loop of




FIG. 2 excluding bioreactor


VBREC
266
Volume of the EC side of the bioreactor


VGH
39.6
Volume from Point “G” to Point “H”EC loop of




FIG. 2 excluding bioreactor


VFA
37.6
Volume from Point “F” to Point “A” IC loop of




FIG. 2 excluding bioreactor


VEA
4.5
Volume from Point “E” to Point “A” IC loop of




FIG. 2 excluding bioreactor


VARCA
4.1
Volume from the bottom sensor of the ARC to




Point “A” of FIG. 2


VARCBS
7
Volume of ARC between sensors


VARCF
2
Volume to fill above ARC top sensor


VFTO
40.2
(1 + LP %/100) * VICBL + 5 mL


VPICBR
157.4
Line volume being primed for IC side of




bioreactor


VPICCP
33
Line volume being primed for IC Circulation pump


VPECCP
4.6
Line volume being primed for EC Circulation pump


VPREL
20.9
Line volume being primed for Reagent/EC Media




loop


VPWIL
20
Line volume being primed for Wash/IC Media loop


VPECBR
308.3
Line volume being primed for Dist. Valve and




EC bioreactor


VICPARC
6.5
Volume from the bottom of the ARC to the IC




inlet pressure pod includes pressure pod.


VMTBS
18.6
Maximum volume to bottom ARC sensor


VMTTS
25.6
Maximum volume to top ARC sensor




(VMTBS + VARCBS)


VMTECS
33.1
Maximum volume to EC fluid sensor


VABO %
82.4%
=VABO * 100/(VABI + VABO)


AB %
17.2%
=VAB * 100/VICL


CD %
1.2%
=VCD * 100/VECE


SP %
20%
Pump error to be added to a volume from a




small pump


LP %
20%
Pump error to be added to a volume from a




large pump







POINTS ON HYDRAULIC LAYOUT AS SHOWN ON FIG. 2









A

T-junction immediately below the ARC where




IC fluid enters the IC loop.


B

Location in the IC Loop where fluid leaves




the loop on its way to the Waste Bag


C

T-junction where EC fluid enters the EC loop.


D

Location in the EC Loop where fluid leaves




the loop on its way to the Waste Bag.


E

Location in the IC Loop where the line meets




the IC Inlet header.


F

Location in the IC Loop where the line meets




the IC Outlet header.


G

Location in the EC Loop where the line meets




the EC Inlet of the bioreactor.


H

Location in the EC Loop where the line meets




the EC Outlet of the bioreactor.







PUMP RATES (mL/min)









QICA

IC Inlet Pump rate (mL/min)


QICC

IC Circulation Pump rate (mL/min)


QECA

EC Inlet Pump rate (mL/min)


QECC

EC Circulation Pump rate (mL/min)


QECCM
30
EC Circulation Pump rate to keep EC Loop well




mixed


QECCE
250
EC circulation pump rate to equilibrate EC loop


QICCM
20
IC Circulation Pump rate to keep IC Loop well




mixed while preventing air from entering the




bioreactor fibers (QICC + QICA = QICCM)


QICCE
100
IC circulation pump rate to equilibrate IC loop


QECAUF
50
EC Inlet rate to create ultra filtration


QARC
200
Max flow rate that does not cause air entrapment




when ARC fluid level is at low level sensor




when running


QFARC
40
IC Inlet pump rate (mL/min) used to fill ARC.


UFR400
60
Negative UFR required to insure zero TMP at the




bioreactor outlet when in co-




current flow and when IC Inlet rate = 400




mL/min and EC waste valve is closed.







TIME (min)









TCM
10
Time to equilibrate (condition) media





Note:


For all examples the initial position of the bioreactor 100 to define rocker control motion is as shown in FIG. 3 or parallel to the horizon.







Protocol 1: High Flux Cell Load in Bioreactor Example


In an embodiment, this protocol is to load the cells from cell inlet bag 262 into bioreactor 100 until the bag 262 is empty. This is a high flux load at a medium flow rate.


VICBL, is the volume from the bags such as cell inlet bag 262 to the IC loop 202. In this example, the VICBL is 29.3 mL assuming the volume of the air removal chamber (ARC) is 10 mL and the inlet bag 262 length, such as cell inlet bag 262, is 3 mL.


For a high flux cell load, VFTO of air is needed in the cell inlet bag. VFTO is defined as (1+LP %/100)*VICBL+5 mL. In this example, it is 40.2 mL. LP % is a percentage related to pump error volume and in this example may be 20%.


The High Flux Load Protocol conditions are:


1) Valve 264 is open.


2) Inlet Pump 254 pumps at 50 mL/min (can be within 20 to 100 mL/min range).


3) IC circulation pump 212 and EC inlet pump 278 are off.


4) EC circulation pump 228 is set at QECCM which is a rate selected to keep EC loop well mixed which in this example is 30 mL/min.


5) IC Valve 290 is open to waste.


6) The bioreactor 100 is rotated using the rocker control from −90° to 180° with 1 second rest at end points to distribute cells. Alternatively the bioreactor can be fixed.


7) The high flux cell load is stopped when air is detected in the air removal chamber or ARC by the lower air sensor 1264.


8) ARC valve 260 is open to vent ARC air to atmosphere.


9) The ARC is then filled with media (either reagent, IC media or wash solution by pump 254 to upper sensor 1268). IC media may be at least 60 mL of media with protein.


10) Cells are chased from the ARC by the fill media of item 9) above to the bioreactor 100 with larger chase volumes spreading the cells toward the IC outlet 120.


11) The chase is stopped at a selected IC volume which in this example is 47 mL.


The following is a brief summary of Protocol High Flux Load with chase step.


Protocol 1 High Flux Load


Purpose of protocol: Loads cells into the bioreactor from the cell inlet bag until the bag is empty. This protocol does not use IC circulation to distribute the cells.


Step 1: Load Bioreactor


Purpose of Step: Loads the cells from the cell inlet bag into the bioreactor.


Precondition: Need at least VFTO of air in cell inlet bag.















Input Range



















IC Source
Cell Inlet



EC Source
None



Stop Condition
ARC Stop



IC Inlet Rate
Default: 50



(mL/min)
Range: 20 to 100 mL/min



IC Circulation Rate
Default: 0



(mL/min)



EC Inlet Rate
Default: 0



(mL/min)



EC Circulation Rate
Default: QECCM



(mL/min)
Range: 10 to 300 mL/min



Outlet
EC Waste



Rocker Control
On or in motion (−90°, 180, 1 sec) (Def)




Range: full range




Fixed (0°) Range: full range (deg)



Output: IC volume
rate as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
ARC Stop as defined by Stop Condition



time of step











Step 2: Chase to Bioreactor


Purpose of Step: Chases the cells from the ARC to the bioreactor. Larger chase volumes spread the cells and move them towards the IC outlet.


Precondition: Fill ARC















Input Range



















IC Source
Reagent




IC Media (Default)




Wash




EC Media



EC Source
None



Stop Condition
IC volume: (VARCA + VARCBS + VEA)*3




Range: 1 to 200 mL



IC Inlet Rate
Default: Same as Step 1



(mL/min)



IC Circulation Rate
Default: Same as Step 1



(mL/min)



EC Inlet Rate
Default: 0



(mL/min)



EC Circulation Rate
Default: Same as Step 1



(mL/min)



Outlet
EC Waste



Rocker Control
Same as Step 1



Output: IC volume
Volume as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
Countdown in minutes as defined by



time of step
Stop Condition











Protocol 2: Load Cells into Bioreactor with Circulation Example


In an embodiment, this alternative protocol loads the cells from the IC inlet bag 262 until it is empty to the bioreactor 100. It uses the IC circulation loop 202 for the load. The cell inlet bag contains at least VFTO of air. The IC circulation pump 212 permits load from both the inlet 108 and outlet 120 of bioreactor 100.


The conditions for the Protocol Load Cells into Bioreactor with Circulation are:


1) Valve 264 is open.


2) Inlet pump 254 operates at 50 mL/min within a range of 200 to 100 mL/min.


3) IC circulation rate using pump 212 is VICL/min−QICA


VICL, is the IC loop 202 volume or

VBRIC+2VBRICH+VEF

VBRIC is the volume of the IC side of bioreactor 100 excluding headers. VBRICH is the volume of the headers. VEF is the volume of the IC loop from E to F on FIG. 2 excluding the bioreactor. QICA is the inlet pump rate. The range for the IC circulation rate is from 20 to 300 mL/min and depends on the IC inlet rate. In this example it is 139 mL/min.


4) EC inlet is 0 with default QECCM in a range from 10 to 300 mL/min.


5) The EC circulation rate is QECCM, for example 30 mL/min.


6) The outlet the EC waste through valve 292.


7) Rocker control for the bioreactor 100 is −90° to 180° for 1 second stops at the ends of rotation or optionally the bioreactor may be fixed.


8) The stop condition is air detection by the ARC by the lower air sensor 1264.


9) After stop condition ARC is filled with desired media to upper sensor 1268 and chase liquid chases the cells from the ARC to the loop. The stop condition for chase is the IC volume (VARCA+VARCBS)*2 in a range from 1 to 100. VARCA is the volume from the ARC to point A on FIG. 2 and VARCBS is the volume of the ARC between sensors 1268 and 1264.


10) To load the cells from the IC loop the IC circulation rate is −VABO% of QICA. −VABO% is VABO*100/VABI+VABO. VABO is the volume from point A to the bioreactor 100 outlet (point F) and in this example is 42.1 mL. QICA is the inlet pump rate as described above. VABI is the volume from point A to inlet 108 with VABO being the volume from point A to outlet 120.


11) The stop condition for the load is the IC volume 1.5×VEF. The range is 0.5 VEF to 2.0 VEF. VEF is the volume of the IC loop 202 from point E to F excluding the bioreactor.


Below is a summary of the circulation load.


Protocol 2 Load with Circulation


Purpose of protocol: Loads the cells into the bioreactor from the cell inlet bag until the bag is empty, and uses IC circulation to distribute the cells.


Step 1: Load IC Loop


Purpose of Step: Loads the cells into the system.


Precondition: Need at least VFTO of air in cell inlet bag.















Input Range



















IC Source
Cell Inlet



EC Source
None



Stop Condition
ARC Stop



IC Inlet Rate
Default: 50



(mL/min)
Range: 20 to 100 mL/min



IC Circulation Rate
Default: VICL/min − QICA



(mL/min)
Range: 20 to 300 mL/min



EC Inlet Rate
Default: 0



(mL/min)



EC Circulation Rate
Default: QECCM



(mL/min)
Range: 10 to 300 mL/min



Outlet
EC Waste



Rocker Control
On (−90°, 180°, 1 sec) (Def)




Range: Full Range (deg, time)




Fixed (0°) Range: full range (deg)



Output: IC volume
rate as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
ARC stop as defined by Stop Condition



time of step







Note:



QICAt + QICCt = nVICL







Step 2: ARC Chase


Purpose of Step: Chases the cells from the ARC into the IC loop.


Precondition: Fill ARC















Input Range



















IC Source
Reagent




IC Media (Default)




Wash




EC Media



EC Source
None



Stop Condition
IC volume: (VARCA + VARCBS)*2




Range: 1 to 100



IC Inlet Rate
Default: Same as Step 1



(mL/min)



IC Circulation Rate
Default: Same as Step 1



(mL/min)



EC Inlet Rate
Default: 0



(mL/min)



EC Circulation Rate
Default: Same as Step 1



(mL/min)



Outlet
EC Waste



Rocker Control
Same as Step 1



Output: IC volume
Volume as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
Countdown in minutes or manual stop as



time of step
defined by Stop Condition











Step 3: Load Bioreactor


Purpose of Step: Chases the cells from the IC loop into the bioreactor.















Input Range



















IC Source
Reagent




IC Media (Default)




Wash




EC Media



EC Source
None



Stop Condition
IC volume: 1.5 × VEF (Default)




Range: 0.5VEF to 2.0VEF



IC Inlet Rate
Default: Same as Step 1



(mL/min)



IC Circulation Rate
Default: −VABO % of QICA



(mL/min)



EC Inlet Rate
Default: 0



(mL/min)



EC Circulation Rate
Default: Same as Step 1



(mL/min)



Outlet
EC Waste



Rocker Control
Same as Step 1



Output: IC volume
Volume as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
Countdown in minutes as defined by



time of step
Stop Condition











Protocol 3: Bone Marrow Washout Example


In an embodiment, this protocol is to remove non-attached/non-adhered cells from the bioreactor. It is for 25 mL to 62 mL bone marrow load though it could be used for load above 10 mL. The bone marrow washout generally follows bone marrow load. It can also be a wash out protocol when the bioreactor is packed with a large number of cells though this protocol is typically done after an initial load. The types of cells removed include red blood cells, platelets and non-adherent bone marrow cells.


The protocol includes the following:


1) IC media introduced through valve 250. This may be approximately 500 mL with protein. Optionally wash or EC media could be introduced.


2) EC media is generally media without protein introduced through valve 276. Optionally wash or IC media could be introduced on EC side.


3) IC inlet rate (mL/min) through pump 254 is expressed as follows:






=

|




0
,




0
<
t


t
1








20
+


(


(

Q
/
2

)

-
20

)

×

(


(

t
-

t
1


)

/

t
1


)



,





t
1

<
t


t
2









(

Q
/
2

)

+


(

Q
/
2

)

×

(


(

t
-

t
2


)

/

(


t
3

-

t
2


)


)



,





t
2

<
t


t
3







0
,





t
3

<
t









In this example the maximum is 100 mL/min.


4) IC circulation rate is expressed as follows: −AB %*QICA
AB %=VAB*100/VICL

VAB=volume from point A to B on FIG. 2

VICL=IC loop volume


5) EC inlet rate (mL/min)






=

|




20
+


(


(

Q
/
2

)

-
20

)

×

(

t
-

t
1


)






0
<
t


t
1







Q
/
2





t
1

<
t


t
2








(

Q
/
2

)

-


(

Q
/
2

)

×

(


(

t
-

t
2


)

/

(


t
3

-

t
2


)


)







t
2

<
t


t
3







0
,





t
3

<
t










6) The parameters for both the IC inlet and EC inlets rates are defined in the table following:













Parameter
Equation







V
User input − Total IC + EC volume to be pumped (mL).


Q
User input − Maximum IC inlet rate (mL/min).



Q > 40 mL/min.





t1 (minutes) = V × ((2 × (Q − 40))/(3 × Q2 − 40 × Q − 1600))


t2 (minutes) = 2 × t1;


t3 (minutes) = (5/2) × ((Q − 32)/(Q − 40)) × t1







7) EC circulation rate (mL/min)=QECCM of a range from 10 to 300 mL/min. QECCM=rate to keep EC loop well mixed in this example 30 mL/min.


8) Rocker control for bioreactor 100 is on with −90°, 180°, for 1 second pause at the ends.


9) The stop condition in this example is an inlet volume of 1000 mL with a range from 400 to 4000.


10) Maximum flow rate of output washout is 100 mL in range from 80 to 200.


Summary of the protocol is below.


Protocol 3 Bone Marrow Washout


Purpose of protocol: Meant for use following a bone marrow load (25 mL to 62 mL) and attachment phase, this protocol is recommended to remove any non-attached/non-adhered cells from the bioreactor. This is also a useful washout protocol for any occasion when the bioreactor is packed with a similar large number of cells. For bone marrow loads of 10 mL or less, Protocol Aggressive Washout is recommended. For bone marrow loads between 10 mL to 25 mL, this protocol is optional but may not be required.


Step 1: Bone Marrow Washout














Input Range







IC Source
IC Media(Default)



Wash



EC Media


EC Source
IC Media



Wash



EC Media (Default)


Stop Condition
Volume = 1000 Range: 400 to 4000


Washout Parameters
Maximum Flow Rate (MFR) = 100 Range:



80 to 200





IC Inlet Rate (mL/min)









=

|




0
,




0
<
t


t
1








20
+


(


(

Q


/


2

)

-
20

)

×

(


(

t
-

t
1


)



/



t
1


)



,





t
1

<
t


t
2









(

Q


/


2

)

+


(

Q


/


2

)

×

(


(

t
-

t
2


)



/



(


t
3

-

t
2


)


)



,





t
2

<
t


t
3







0
,





t
3

<
t











where





parameters





are





defined





in





table






following
.














IC Circulation Rate
Value: −AB% * QICA


(mL/min)






EC Inlet Rate (mL/min)




=

|




20
+


(


(

Q


/


2

)

-
20

)

×

(

t


/



t
1


)






0
<
t


t
1







Q


/


2





t
1

<
t


t
2








(

Q


/


2

)

+


(

Q


/


2

)

×

(


(

t
-

t
2


)



/



(


t
3

-

t
2


)


)







t
2

<
t


t
3







0
,





t
3

<
t














EC Circulation Rate
Default: QECCM


(mL/min)
Range: 10 to 300 mL/min


Outlet
IC Waste


Rocker
On (−90°, 180°, 1 sec)



Range: full range (deg, time)


Output: IC volume
Volume as defined by stop condition


Output: EC volume
Volume as defined by stop condition


Output: Remaining
Countdown in minutes as defined by stop


time of step
condition




















Parameter
Equation







V
User input − Total IC + EC volume to be pumped (mL).


Q
User input − Maximum IC inlet rate (mL/min).



Q > 40 mL/min.





t1 (minutes) = V × ((2 × (Q − 40))/(3 × Q2 − 40 × Q − 1600))


t2 (minutes) = 2 × t1;


t3 (minutes) = (5/2) × ((Q − 32)/(Q − 40)) × t1







Protocol 4: Aggressive Washout for Bone Marrow Loads Below 10 mL Example


In an embodiment, this protocol produces a small amount ultrafiltration into the hollow fiber of the bioreactor membrane 116 across the entire filter length. The purpose of the protocol is to remove non-adherent cells from the bioreactor.


The protocol includes:


1) IC source is IC media introduced through valve 250 by pump 254. Alternatively the IC source could be reagent, wash, or EC media. The IC media may be media with protein estimated in this example to be about 500 mL.


2) EC source is EC media introduced through valve 276 by pump 278. Alternatively the EC source could be reagent, IC media, or wash. This may be media without protein.


3) IC pump 254 is set at approximately 260 mL/min inlet rate from a range of 50 to 500 mL/min.


4) IC circulation rate is −AB %*QICA, in this example, −45 mL/min.


5) EC inlet rate is 40 mL/min from a range of 0 to 100 mL/min.


6) EC circulation rate is QECCM or the rate to keep the loop well mixed from a range of 10 to 300 mL/min, in this example 30 mL/min.


7) The IC source goes to waste.


8) The rocker control for the bioreactor 100 may be set at −90% to 180% for 1 second pause at the ends of the range of motion or optionally could be fixed.


9) The stop condition for the process may be based on time such as up to 60 minutes; IC volume as defined in the Bone Marrow Washout which may range from is from 0 to 4000 mL range; or the number of IC exchanges or number of times the IC source fluid is circulated. The number of IC exchanges may be 2.5 from a range of 0.5 to 5.0


Summary of the protocol is below.


Protocol 4 Aggressive Washout


Purpose of protocol: Removes non-adherent cells from the bioreactor. This protocol imposes a small ultrafiltration into the fiber across the entire fiber length.


Step 1: Aggressive Washout















Input Range



















IC Source
Reagent




IC Media (Default)




Wash




EC Media



EC Source
Reagent




IC Media




Wash




EC Media (Default)



Stop Condition
Time: (1 min) Range: 0.1 to 60 min




IC volume: (VICE) Range: 1 to 4000 mL




# of IC exchanges: 2.5 (default)




Range 0.5 to 5.0



IC Inlet Rate
Default: 260



(mL/min)
Range: 50 to 500 mL/min



IC Circulation Rate
Default: −AB % * QICA



(mL/min)



EC Inlet Rate
Default: 40



(mL/min)
Range: 0 to 100 mL/min



EC Circulation Rate
Default: QECCM



(mL/min)
Range: 10 to 300 mL/min



Outlet
IC Waste



Rocker Control
On (−90°, 180°, 1 sec) (Def)




Range: Full Range (deg, time)




Fixed (0°) Range: Full range (deg)



Output: IC volume
Volume as defined by Stop Condition



Output: EC volume
Volume as defined by Stop Condition



Output: Remaining
Countdown in minutes as defined by



time of step
Stop Condition











Protocol 5: IC or EC Washout Example


In an embodiment, this protocol is to replace media while growing adherent cells. The protocol washes out cellular debris and non-adherent cells. The replacement volume is the number of IC and EC exchanges to be performed or IC or EC volume exchanged.


VICE (IC exchange volume) equals IC loop volume plus volume from media, reagent or wash bags to IC loop.


VECE (EC exchange volume) equals EC loop volume plus volume from media, reagent or wash bags to EC loop.


The protocol includes the following.


1) The IC source is IC media introduced through valve 250 by pump 254. Reagent, EC media, or wash solution may optionally be used. The IC media may be media with protein. In this example the volume may be at least 550 mL.


2) The EC source is EC media introduced through valve 276 by pump 278. Reagent, IC media, or wash solution may optionally be used. The EC media may be media without protein. In this example the volume may be at least 810 mL.


3) The IC inlet rate is QECA (number of IC Exc*VICE)/(number of EC Exc*VECE)


QECA=EC inlet pump rate


VICE=IC exchange volume which in this example is 218.4 mL.


VECE=EC exchange volume which in this example is 324.1 mL.


4) IC circulation rate is −AB %*QICA


AB %=VAB (volume from point A to Bin FIG. 2)*100/VICL. VICL, is IC loop volume.


QICA=IC inlet pump 254 rate


5) The EC inlet rate is the lesser of Q100 or QMAX where

Q100=100(number of EC Exc*VECE)/(number of IC Exc*VICE) and

QMAX=300


6) The EC circulation rate is −CD %*QECA. CD %=VCD (or volume from point C to D, in this example 3.8 mL)*100/VECE.


7) The outlet for the media or washout fluid is either the IC, EC, or both waste 286.


8) The rocker control for the bioreactor 100 is −90° to 180° with 1 second pause at the end of the range of motion. Or alternatively, there is no rocker control motion.


9) The stop condition to end the process includes the number of IC exchanges (Exc.) which may be 2.5 or optionally within a range from 0.5 to 5. The stop condition also includes the number of EC exchanges which may be 2.5 or optionally within a range from 0.5 to 5.


A summary of this protocol is as follows.


Protocol 5 IC or EC Washout


Purpose of protocol: Meant for use when growing adherent cells to replace the media in both the IC loop and EC loop. This protocol provides some washout of cellular debris and non-adherent cells. The replacement volume is specified as the number of IC and EC exchanges to be performed.


Calculations:

    • One IC exchange volume (VICE) is equal to the IC Loop Volume plus the volume from bags to IC loop.
    • One EC exchange (VECE) is equal to the EC Loop Volume plus the volume from bags to EC Loop.


      Step 1: Washout















Input Range

















IC Source
Reagent



IC Media (Default)



Wash



EC Media


EC Source
Reagent



IC Media



Wash



EC Media (Default)


Stop Condition
# of IC Exchanges: 2.5 (default)



range: 0.5-5.0



# of EC Exchanges: 2.5 (default)



range: 0.5-5.0


IC Inlet Rate
Value: QECA (# of IC Exc. * VICE)/(# of


(ml/min)
EC Exc. * VECE)


IC Circulation Rate
Value: −AB % * QICA


(ml/min)


EC Inlet Rate
Initial value: the lesser of Q100 or Qmax;


(ml/min)
where Q100 = 100 (# of EC Exc. * VECE)/(#



of IC Exc. * VICE) and Qmax = 300.


EC Circulation Rate
Value: −CD % * QECA


(ml/min)


Outlet
EC Waste



IC Waste



IC&EC Waste (default)


Rocker Control
On (−90°, 180°, 1 sec) (Def)



Range: full range (deg, time)



Fixed (0°) Range: Full range (deg)


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
Volume as defined by Stop Condition


Output: Remaining
Countdown in minutes as defined by


time of step
Stop Condition










Protocol 6: Washout through the Membrane Example


In an embodiment, this protocol is to move small molecular components on the IC side to the EC side of the membrane 116. These molecules pass through the membrane by diffusion or ultrafiltration. These could include bi-products of the cell growth. IC components retained by the membrane are not removed from the IC loop. The small molecular weight elements are washed out of the EC side by replacement fluid.


The replacement volume is specified by the number of IC volumes−EC volumes exchanged.


The protocol includes:


1) The introduction of IC media or optionally other media to the IC side. This may be media with protein.


2) The introduction of EC media or optionally other media to the EC side. This may be media without protein.


3) The IC inlet rate as described for IC/EC washout.

QECA(number of IC Exc*VICE)/(number of EC Exc*VECE)

4) The IC circulation rate is defined by −VABO%*QICA.

VABO%=VABO*10VABIVABO

VABO is from point A to bioreactor outlet F on FIG. 2 and in this example is 42.1 mL.


VABI is from point A to bioreactor inlet E on FIG. 2 and in this example is 9 mL.


5) The EC inlet rate is the lesser of Q65 or QMAX where Q65 is defined the same as Q100 for IC/EC washout above.


6) The EC circulation rate is −CD %*QECA as described above for IC/EC washout.


7) The outlet is EC waste.


8) The rocker control is the same for IC/EC washout.


9) The stop condition is the number of IC and EC exchanges which may be 1 or within the range of 0.5 to 5.


The brief summary is as follows.


Protocol 6 IC/EC Washout through Membrane


Purpose of protocol: Replaces small molecule components on IC side, which pass through the membrane by either diffusion or by ultra filtration. IC components retained by the membrane are not removed from the IC loop. Components on EC side are washed out by fluid replacement. The replacement volume is specified as the number of IC and EC exchanges to be performed.


Calculations:

    • One IC exchange volume (VICE) is equal to the IC Loop Volume plus the volume from bags to IC loop.
    • One EC exchange (VECE) is equal to the EC Loop Volume plus the volume from bags to EC Loop.


      Step 1: Washout Through Membrane















Input Range

















IC Source
Reagent



IC Media (Default)



Wash



EC Media


EC Source
Reagent



IC Media



Wash



EC Media (Default)


Stop Condition
# of IC Exchanges: 1 (default) range: 0.5-5.0



# of EC Exchanges: 1 (default) range: 0.5-5.0


IC Inlet Rate
Value: QECA (# of IC Exc. * VICE)/(# of EC


(ml/min)
Exc. * VECE)


IC Circulation Rate
Value: −VABO % * QICA


(ml/min)


EC Inlet Rate
Initial value: the lesser of Q65 or Qmax; where


(ml/min)
Q65 = 100 (# of EC Exc. * VECE)/(# of IC



Exc. * VICE) and Qmax = 300.


EC Circulation Rate
Value: −CD % * QECA


(ml/min)


Outlet
EC Waste


Rocker
On (−90°, 180°, 1 sec) (def)



Range: full range (deg, time)



fixed (0°) Range: full range (deg)


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
Volume as defined by Stop Condition


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Protocol 7: Continuous Add of IC with Ultrafiltration Example


In an embodiment, this protocol adds generally IC fluid at a low flow rate and keeps large molecules on the IC side of the fiber. A similar protocol could be used to add fluid at low flow rate to the EC side. Excess IC fluid will be removed through ultrafiltration if the IC inlet pump 254 is used.


This protocol includes:


1) The IC media is introduced through valve 250 by pump 254 with other media being optional alternatives.


2) EC media may optionally be added but in the IC example the EC inlet flow rate is 0.


3) The IC inlet flow rate is 0.1 mL/min from a range of 0 to 10 mL/min.


4) The IC circulation rate through IC loop 202 is at a maximum of QICCM, 10×QICA. QICCM is the IC circulation pump rate to keep IC loop 202 well mixed without preventing air from entering filter 116. The inlet pump 254 rate QICA, plus the circulation pump 212 rate equals the QICCM which in this example is 20 mL/min.


5) The EC circulation rate is QECCM or the pump 228 rate to keep the EC loop 204 well mixed, for example 30 mL/min.


6) The outlet for the excess IC fluid is EC waste as the fluid enters the EC loop 204 through ultrafiltration through the membrane.


7) The rocker control for bioreactor 100 is fixed.


8) The stop condition is a manual stop by the operator although alternatively the stop could be based on selected time or selected IC or EC volume.


Below is a summary of the Continuous Add with Ultrafiltration protocol.


Protocol 7 Continuous Add with Ultra Filtration


Purpose of protocol: Continuously adds fluid at a low flow rate to the IC loop and/or the EC loop. Large molecules may be concentrated in the IC loop if you use the IC Inlet pump for this task. This protocol uses ultrafiltration to remove excess IC fluid if you use the IC Inlet pump.


Step 1: Feed















Input Range

















IC Source
Cell Inlet



Reagent



IC Media (Default)



Wash



EC Media



None


EC Source
Reagent



IC Media



Wash



EC Media (Default)



None


Stop Condition
Time (1440 min) Range: 0.1 to 1440 minutes



Manual Stop (Default)



IC volume: (150 mL) Range: 1 to 4000 mL



EC volume: (150 mL) Range: 1 to 4000 mL


IC Inlet Rate
Default: 0.1


(ml/min)
Range: 0 to 10 mL/min


IC Circulation Rate
Default: Maximum of (QICCM, 10 × QICA)


(ml/min)
Range: −100 to 100 mL/min


EC Inlet Rate
Default: 0


(ml/min)
Range: 0 to 10 mL/min


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 10 to 300 mL/min


Outlet
EC Waste


Rocker Control
On (−90°, 180°, 1 sec) Range: full range



(deg, time)



Fixed (0°) (Def) Range: full range (deg)


Output: IC volume
Volume or rate as defined by Stop Condition


Output: EC volume
Volume or rate as defined by Stop Condition


Output: Remaining
Countdown in minutes or manual stop as defined


time of step
by Stop Condition










Protocol 8: Continuous Add with Active Removal Example


In an embodiment, this protocol uses a relatively low flow rate to continuously add to the IC and/or EC loops. Excess IC fluid is removed using EC waste through the membrane 116.


The protocol includes:


1) IC media is added through valve 250 and pump 254 to the IC circuit. Alternatively, other media could be provided continuously such as cell inlet, reagent, wash solution or EC media. If the addition of media or fluid is only for the EC side, there may be no input of fluid through the IC side.


2) Optionally or alternatively media may be added from an EC source to the EC side if only EC addition is desired. The addition may be EC media through valve 276 and pump 278. Alternatively there may be no EC input as the addition is only to the EC side. Reagent, IC media, or wash solution could also be added to the EC side.


3) On the IC side the IC inlet rate of pump 254 is 0.1 mL/min for low flow rate addition. This is selected from a range of 0 to 10 mL/min.


4) For IC addition the IC circulation rate is the maximum of QICCM or 10×QICA with QICCM being the rate of the IC circulation pump 212 to keep the IC loop well mixed and QICA being the rate of the inlet pump 254 in mL/min selected from a range from −100 to 100 mL/min. For example it may be 20 mL/min.


5) If the low flow addition is to the EC side the EC inlet rate may be selected to be 0.1 mL/min from a range of 0 to 20 mL/min.


6) For the EC addition the EC circulation rate is selected to be QECCM which is the rate of the circulation pump 228 in mL/min selected from a potential range of 0 to 100 mL/min, for example 30 mL/min.


7) The outlet in this example is EC waste.


8) The rocker control for the bioreactor 100 is off with no rotation.


9) The stop condition for the protocol is manually though it alternatively may be based on the time (for example 0.1 to 1440 minutes) or IC or EC volumes (for example IC or EC volumes may be from 1 to 4000 mL).


The brief summary of this protocol is set forth below.


Protocol 8 Continuous Add with Active Removal


Purpose of protocol: Continually adds a low flow rate to the IC and/or EC loops. A pump is used to remove excess IC fluid.


Step 1:















Input Range

















IC Source
Cell Inlet



Reagent



IC Media (Default)



Wash



EC Media



None


EC Source
Reagent



IC Media



Wash



EC Media (Default)



None


Stop Condition
Time



Manual Stop (Default)



IC volume:



EC volume:


IC Inlet Rate
Default: 0.1


(ml/min)
Range: 0 to 10 mL/min


IC Circulation Rate
Default: Maximum of (QICCM, 10 × QICA)


(ml/min)
Range: −100 to 100 mL/min


EC Inlet Rate
Default: 0.1


(ml/min)
Range: 0 to 20 mL/min


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 100 mL/min


Distribution Rate
Default: = (—) QICA


(ml/min)


Outlet
EC Waste (Default)


Rocker Control
On



Off (Default)



fixed


Output: IC volume
Volume or rate as defined by Stop Condition


Output: EC volume
Volume or rate as defined by Stop Condition


Output: Remaining
Countdown in minutes or manual stop as defined


time of step
by Stop Condition










Protocol 9: Reagent Add Example


In an embodiment, this protocol loads reagent from reagent bag 244 through valve 248 by pump 254 into the IC side until the bag is empty. The IC waste valve 290 is closed for circulation through circulation loop 202. The cell inlet bag 262 includes at VFTO of air which is defined as (1+LP %/100)*VICBL+5 mL, for example 38 ml. LP % is about a 20% pump error. VICBL is the volume from bag 244 to IC loop. The cell inlet bag has at least 10 mL of fluid.


The protocol includes:


1) Introduction of reagent through valve 248 by pump 254 to the IC loop 202.


2) Introduction of air, as pump 254 continues, from cell inlet bag 262.


3) Nothing is introduced on the EC side.


4) The IC inlet rate from pump 254 is 10 mL/min selected from a range of 0 to 100 mL/min.


5) The IC circulation rate from pump 212 is the maximum of the IC circulation pump rate 212 to keep the IC loop 202 well mixed or a value selected from the minimum of 300 or 10×QICA (IC inlet pump 254 rate), for example, 100 mL/min.


6) There is no EC inlet but the circulation rate is the rate of the circulation pump 228 to keep the EC loop well mixed, for example 30 mL/min.


7) The outlet is EC waste through valve 292. IC waste through valve 290 is an option.


8) The rocker control for the bioreactor 100 is fixed or stationary. Alternatively, the rocker control range of motion is from −90° to 180° with 1 second pauses at the end of the motion range.


9) The stop for the reagent load is when air reaches the lower sensor 1264 of the air removal chamber or ARC.


10) After air detection the ARC is filled to the upper sensor 1268 from the IC media or a bag such as wash solution or EC media bag that did not contain reagent. Valve 260 and vent are open to purge ARC air.


11) Media such as IC media through valve 250 and moved by pump 254 continues to chase any reagent from the ARC to the IC loop 202.


12) The stop condition for the chase of reagent is the IC volume (VARCA+VARCBS)*2.


VARCA is the volume from the bottom sensor of the ARC to point A on FIG. 2.


VARCBS is the volume of the ARC between top and bottom sensors. For example, the IC volume may be 22 mL. The range for this volume is between 0 to 100 mL.


The brief summary of this protocol is set forth below.


Protocol 9 Reagent Add


Purpose of protocol: Loads reagent from the reagent bag into the IC loop until the bag is empty. The IC waste valve is closed during this protocol.


Step 1: Load Reagent


Purpose of Step: Loads reagent into the system.


Precondition: Need at least VFTO of air in cell inlet bag.















Input Range



















IC Source
Cell Inlet




Reagent (Default)



EC Source
None



Stop Condition
ARC Stop



IC Inlet Rate
Default: 10



(ml/min)
Range: 0 to 100 mL/min



IC Circulation Rate
Default: Maximum of (QICCM, min(300,



(ml/min)
10 × QICA))




Range: −300 to 300 mL/min



EC Inlet Rate (ml/min)
Default: 0



EC Circulation Rate
Default: QECCM



(ml/min)
Range: 0 to 300 mL/min



Outlet
EC Waste (default)




IC Waste



Rocker Control
On (−90°, 180°, 1 sec)




Range: full range (deg, time)




Fixed (0°) (Default)




Range: full range (deg)



Output: IC volume
rate as defined by Stop Condition



Output: EC volume
N/A



Output: Remaining
ARC Stop as defined by Stop Condition



time of step











Step 2: ARC Chase


Purpose of Step: Chases reagent from the ARC into the IC Loop.















Input Range

















IC Source
IC Media (Default)



Wash



EC Media



Note: user cannot choose same bag used in step 1



because that bag is now empty


EC Source
None


Stop Condition
IC volume: (VARCA + VARCBS)*2



Range: 1 to 100 mL


IC Inlet Rate
Default: Same as Step 1


(ml/min)


IC Circulation Rate
Default: Same as Step 1


(ml/min)


EC Inlet Rate
Default: same as Step 1


(ml/min)


EC Circulation Rate
Same as Step 1


(ml/min)


Outlet
Same as step 1


Rocker
Same as Step 1


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
Volume as defined by Stop Condition


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Protocol 10: Bolus Add Example


In an embodiment, this protocol adds a selected volume of reagent into the IC loop. A bolus into the EC loop can also optionally be added. If the IC waste (valve 290) is closed ultrafiltration through the membrane 116 to the EC side will occur.


The protocol includes:


1) Reagent as the IC source is introduced through the pump 254. Alternatively other sources of media or wash could be used for a bolus amount.


2) No EC source. However, if bolus amount is to EC side only there would be no IC source and bolus amount would be introduced by pump 278.


3) For IC bolus, inlet would be 10 mL/min selected from a range up to the rate of the inlet pump.


4) The IC circulation rate is the maximum of QICCM as compared to the minimum of 300 or 10×QICA as described above with respect to the Reagent Add protocol. This is selected from the range of −300 to 300 mL/min. In this example it may be 100 mL/min.


5) If the bolus is to the EC side there is no IC inlet or source.


6) The EC circulation is QECCM or the rate of the circulation pump 228 to keep the EC loop 204 well mixed. In this example it may be 30 mL/min.


7) The outlet is EC waste through valve 292. Alternatively it could be to harvest through valve 298 or to IC waste through valve 290.


8) The rocker control is off or alternatively could be set for rotation as described previously.


9) The stop condition can be selected to be based on time up to 20 minutes or an IC volume selected to be 10 mL in a range up to 200 mL.


The Bolus Add protocol is summarized below.


Protocol 10 Bolus Add


Purpose of protocol: Quickly adds a selected volume of reagent into the IC loop; you can add an EC bolus at the same time. During the default condition the IC waste valve closed, which forces ultrafiltration.


Step 1: Bolus Add















Input Range

















IC Source
Reagent (Default)



IC Media



Wash



EC Media



None


EC Source
Reagent



IC Media



Wash



EC Media



None (Default)


Stop Condition
Time (1 min) Range: 0.1 to 20 min



IC volume: 10 (Default) Range: 1 to 200 mL



EC volume: (15 mL) Range: 1 to 300 mL


IC Inlet Rate
Default: 10


(ml/min)
Range: 0 to QARC mL/min


IC Circulation Rate
Default: Maximum of ((QICCM, min(300,


(ml/min)
10 × QICA))



Range: −300 to 300 mL/min


EC Inlet Rate
Default: 0


(ml/min)
Range: 0 to 300 mL/min


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 300 mL/min


Outlet
EC Waste (default)



IC Waste



Harvest


Rocker
On (−90°, 180°, 1 sec) Range: full range



(deg, time)



Fixed (0°) (Default) Range: full range (deg)


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
Volume as defined by Stop Condition


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Protocol 11: Harvest Cells Example


In an embodiment, the protocol relates to transferring cells once they are in suspension from the IC loop. Additional protocols described below relate to releasing the cells from the membrane 116 in the bioreactor to place them in suspension prior to harvest.


The protocol includes as follows:


1) Media is inputted from an IC source such as IC media through valve 250 and pump 254. Alternatively reagent, wash solution or EC media could be the IC source. The media may be harvest media. As the cells are non-adherent and have been reloaded from the membrane, no tryspin is recirculated after release from the membrane.


2) Similarly EC media is provided through valve 276 and pump 278. Wash solution, reagent or IC media could also be introduced.


3) The IC inlet rate is 400 mL/min selected from a range from 100 to 500 mL.


4) The IC circulation rate is −AB %*QICA with AB % is VAB*100/VICL. VAB is the volume from point A to point B on FIG. 2 and VICL, is the volume of the IC loop 202. QICA is the pump rate of the inlet pump 254. In this example it is 69 mL/min.


5) The EC inlet rate is UFR400 or the negative ultrafiltration rate required to have zero transmembrane pressure at the bioreactor outlet in co-current flow and IC inlet rate=400 mL/min and EC waste valve 292 is closed. The upper range is 100 mL/min and in this example it is 60 mL/min.


6) The EC circulation rate is QECCM as described previously in a range up to 300 mL/min, for example 30 mL/min.


7) The outlet for the suspended cells is the harvest bag which receives the IC outlet.


8) The rocker control for bioreactor rotation is from −90° to 180° with 1 second pauses at the end position.


9) The stop condition for the protocol is IC volume 2×VICL, for example 378 mL.


The brief summary of the Harvest Cell protocol is as follows.


Protocol 11 Harvest Cells


Purpose of protocol: Transfers cells in suspension from the IC loop, including cells in the bioreactor, to the harvest bag.


Step 1: Harvest Cells


Purpose of Step: Same as above















Input Range

















IC Source
Reagent



IC Media (Default)



Wash



EC Media


EC Source
Reagent



IC Media



Wash



EC Media (Default)


Stop Condition
IC volume: 2 × VICL (Default)



Range: 50 to 1000 mL


IC Inlet Rate
Default: 400


(ml/min)
Range: 100 to 500 mL/min


IC Circulation Rate
Value= −AB % * QICA


(ml/min)
Range: −AB % * QICA Minimum



to −AB % * QICA Maximum



Note: QICA Minimum and QICA Maximum



values refer to the IC Inlet Rate (ml/min) Range.


EC Inlet Rate
Default: UFR400


(ml/min)
Range: 0 to 100 mL/min


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 300 mL/min


Outlet
Harvest


Rocker Control
On (−90°, 180°, 1 sec.) (def) Range: full range



(deg, time)


Output: IC volume
Volume


Output: EC volume
N/A


Output: Remaining
Countdown in minutes or manual stop as defined


time of step
by Stop Condition










Protocol 12: Release Adherent Cells Example


In an embodiment, this protocol may be executed and followed prior to the Harvest Cell protocol.


The first part of the protocol may include a change of IC/EC media. For example, a media such as PBS may be used to remove protein, calcium or magnesium form the suspension.


The second part of the protocol relates to the addition of a reagent such as trypsin to release the cells from the membrane 116. This is followed by a chase to the IC loop as well as mixing the reagent in the IC loop.


The protocol includes as follows:


1) Addition of wash solution through valve 270, 212 and pump 254 to IC side. Reagent solution, EC media or IC media are optional alternatives if they contain a solution such as PBS. In this example, 1370 mL of PBS was used.


2) If the cells are on the EC side the alternative would be for EC introduction of PBS.


3) The IC inlet rate is


QECA (number of IC Exc*VICE/(number of EC Exc*VECE). VICE is the IC exchange volume VICL+VICBL. VECE is the EC exchange volume VECL+VECBL.


4) The IC circulation rate is −AB %*QICA as described in the definitions which in this example is −17 mL/min.


5) The EC inlet rate is the lesser of Q100 or QMAX where Q100=100 (number of EC Exc*VECE) (number of IC Exc.*VICE) and QMAX=300. In this example the EC inlet rate is 148 mL/min.


6) The EC circulation rate is −CD %*QECA as defined in the definitions.


7) The outlet can be IC waste or EC waste or both through valves 290 or 292.


8) The rocker control for bioreactor 100 is −90°, 180° with 1 second pause at the end of the range of motion, or alternatively fixed.


9) The stop condition for the wash is the number of IC and EC exchanges, in this example 2.5 each.


10) The wash is followed by the reagent introduction such as tryspin to release the cells. This is from the reagent bag 244 through valve 248 and pump 254. At least a volume VFTO is needed in the bag.


11) The IC inlet is 50 mL/min.


12) The IC circulation is 300 mL/min.


13) There is no EC inlet but circulation is QECCM or rate to keep EC loop mixed.


14) The rocker control is on as described above with chase.


15) The stop condition is the ARC stop or when the lower sensor 1264 detects air.


16) After air detection the ARC is filled with wash or alternatively IC or EC media to upper sensor 1268.


17) Mixing of the reagent continues in the IC loop for 4 minutes.


The protocol summary is as set forth below.


Protocol Release Adherent Cells


Purpose of protocol: Releases cells from the membrane, leaving the cells in the IC Loop.


Step 1:


Purpose of Step: Performs Protocol IC/EC Washout in preparation for adding reagent. For example, the system replaces IC/EC media with PBS to remove protein, Ca++, and Mg++ in preparation for adding trypsin.















Input Range

















IC Source
Reagent



IC Media



Wash (Default)



EC Media


EC Source
Reagent



IC Media



Wash (Default)



EC Media


Stop Condition
# of IC Exchanges: 2.5 (default) range: 0.5-5.0



# of EC Exchanges: 2.5 (default) range: 0.5-5.0


IC Inlet Rate
Value: QECA (# of IC Exc. * VICE)/(# of


(ml/min)
EC Exc. * VECE)


IC Circulation Rate
Value: −AB % * QICA


(ml/min)


EC Inlet Rate
Initial value: the lesser of Q100 or Qmax; where


(ml/min)
Q100 = 100 (# of EC Exc. * VECE)/(# of



IC Exc. * VICE) and Qmax = 300.


EC Circulation Rate
Value: −CD % * QECA


(ml/min)


Outlet
IC Waste



EC Waste



IC&EC Waste (default)


Rocker
On (−90°, 180°, 1 sec) (def) Range: full range



(deg, time)



Fixed (0°) Range: full range (deg)


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
Volume as defined by Stop Condition


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Parameters to be tested:
    • Check for any updates from Protocol IC/EC Washout.


      Step 2: Load Reagent


      Purpose of Step: Loads reagent into the system until the bag is empty.


      Precondition: Need at least VFTO of air in bag containing the reagent.















Input Range

















IC Source
Cell Inlet



Reagent (Default)


EC Source
None


Stop Condition
ARC Stop


IC Inlet Rate
Default: 50


(ml/min)
Range: 20 to 100 mL/min


IC Circulation Rate
Default: 300


(ml/min)
Range: 30 to 300 mL/min


EC Inlet Rate
Default: 0


(ml/min)


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 300 mL/min


Outlet
EC Waste


Rocker Control
On (−90°, 180°, 1 sec) (def) Range: full range



(deg, time)


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
N/A


Output: Remaining
ARC Stop as defined by Stop Condition


time of step










Step 3: ARC Chase


Purpose of Step: Chases the reagent into the IC Loop.















Input Range

















IC Source
IC Media



Wash (Default)



EC Media


EC Source
None


Stop Condition
IC volume: (VARCA + VARCBS)*2



Range: 1 to 100 mL


IC Inlet Rate
Default: Same as Step 2


(ml/min)


IC Circulation Rate
Default: Same as Step 2


(ml/min)


EC Inlet Rate
Default: 0


(ml/min)


EC Circulation Rate
Default: Same as Step 2


(ml/min)


Outlet
EC Waste


Rocker Control
Same as Step 2


Output: IC volume
Volume as defined by Stop Condition


Output: EC volume
N/A


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Step 4: Mix


Purpose of Step: Mixes the reagent within the IC Loop.















Input Range

















IC Source
None


EC Source
None


Stop Condition
Time: 4 minutes (default) Range: 0.1 to 20 minutes


IC Inlet Rate
Default: 0


(ml/min)


IC Circulation Rate
Same as step 2 (default)


(ml/min)
Range: 30 to 300 mL/min


EC Inlet Rate
Default: 0


(ml/min)


EC Circulation Rate
Same as step 2 (default)


(ml/min)
Range: 0 to 300 mL/min


Outlet
EC Waste


Rocker Control
Same as step 2


Output: IC volume
N/A


Output: EC volume
N/A


Output: Remaining
Countdown in minutes as defined by Stop Condition


time of step










Protocol 13: Condition Media


In an embodiment, this protocol oxygenates the EC media before the addition of cells to the IC side of the bioreactor 100. The initial steps of the protocol include:


1) The EC source is generally EC media without protein introduced through valve 276 by pump 278.


2) IC circulation is enough to prevent air introduction through the hollow fibers or QICCM. In this example, it is 20 mL/min.


3) The EC inlet rate is 0.1 mL/min.


4) The EC circulation rate is QECCE or the pump rate to equilibrate the EC loop. In this example it is 25 mL/min.


5) The outlet is EC waste through valve 292.


6) The rocker control is fixed with no rotation.


7) The stop for the high circulation rate conditioning is based on time from a range of 6 to 15 minutes.


8) A maintenance protocol is part of the condition media protocol.


9) The conditions for maintenance are the same as that outlined above, except that the EC circulation is reduced to QECCM which is the rate of the circulation pump to keep the EC loop mixed, for example 30 mL/min. Also, the stop for maintenance is a manual operator controlled stop. The maintenance is maintained until the operator desires cell load.


The summary of the protocol is as follows.


Protocol Condition Media


Purpose of protocol: Oxygenates the media to proper concentrations before loading the cells.


Step 1:


Purpose of Step: Accelerates the conditioning of the media using a high EC circulation rate.















Input Range



















IC Source
None



EC Source
Reagent




IC Media




Wash




EC Media (Default)



Stop Condition
Time: TCM Range: 6 to 15 minutes



IC Inlet Rate
Default: 0



(ml/min)



IC Circulation Rate
Default: QICCE



(ml/min)



EC Inlet Rate
Default: 0.1



(ml/min)



EC Circulation Rate
Default: QECCE



(ml/min)



Outlet
EC Waste



Rocker
Fixed (0°) Range: full range (deg)



Output: IC volume
N/A



Output: EC volume
N/A



Output: Remaining
Countdown in minutes



time of step











Step 2: Circulate


Purpose of Step: Maintains the system in a proper state until the operator is ready to load the cells.















Input Range



















IC Source
None



EC Source
Same as step 1



Stop Condition
Manual Stop



IC Inlet Rate
Default: 0



(ml/min)



IC Circulation Rate
Same as step 1



(ml/min)



EC Inlet Rate
Same as step 1



(ml/min)



EC Circulation Rate
Default: QECCM



(ml/min)
Range: 0 to 100 mL/min



Outlet
EC Waste



Rocker Control
Fixed (0°) Range: full range (deg)



Output: IC volume
Rate as defined by stop condition



Output: EC volume
Rate as defined by stop condition



Output: Remaining
manual stop as defined by stop condition



time of step











Protocol 14: Coating Bioreactor Example


In an embodiment, this protocol is directed to coating the IC side of the bioreactor with a reagent such as fibrenectin for cell attachment. Other reagents can be used. The protocol loads the reagent until the reagent bag is emptied, chases the reagent from the ARC, and circulates the reagent. In the protocol, the cell inlet bag contains VFTO or (1+LP %/100*VICBL+5 mL) as described in the definitions, according to embodiments. In this example, it is 40.2 mL.


The protocol includes:


1) Providing reagent from reagent bag through valve 248 and pump 254 to the IC side.


2) Cell inlet bag also may be open for fluid flow through valve 264.


3) There is no EC source or inlet rate.


4) The IC inlet rate is 10 mL/min.


5) The IC circulation rate is the maximum of (20, (min (300, 10×QICA)) with QICA being the inlet pump 254 rate. In this example, it is 100 mL/min.


6) EC circulation rate is QECCM as described previously as the circulation rate to keep to EC loop mixed. In this example, it is 30 mL/min.


7) The outlet is EC waste through valve 292.


8) The rocker control is off. Alternatively it could rotate from −90° to 180° with 1 second pauses at the end of the range of motion.


9) The stop condition for the reagent load is detection of air by lower sensor 1264 of the ARC.


10) After reagent load stop the ARC is loaded to upper sensor 1268 and gas evacuates through outlet 1224 and valve 260.


11) The chase can be IC media, wash or EC media provided through valve 270 if wash solution and pump 254 to the IC side.


12) The stop condition for the chase portion of the protocol is IC volume (VARCA+VARCBS)*2. VARCA is the volume from the bottom of the ARC to point A on FIG. 2. VARCBS is the volume of the ARC between sensors.


13) For circulation of the reagent, a low flow EC media is provided on the EC side. This may be media through valve 276 or from the reagent, IC media or wash bags through pump 278.


14) The EC inlet rate during circulation is 0.1 mL/min.


15) The IC inlet rate is QICCM which is the circulation pump 212 rate to keep the IC loop well mixed.


16) The EC circulation rate is QECCM which is the EC circulation pump 228 to keep the EC loop well mixed, in this example 30 mL/min.


17) The stop condition for circulation is either time selected or a manual stop.


The protocol is summarized below.


Protocol Coat Bioreactor


Purpose of Task: Coats the bioreactor membrane with a reagent.


Step 1: Load Reagent


Purpose of Step: Loads reagent into the system.


Precondition: Need at least VFTO of air in the cell inlet bag.















Input Range

















IC Source
Cell Inlet



Reagent (Default)


EC Source
None


Stop Condition
ARC Stop


IC Inlet Rate
Default: 10 mL/min


(ml/min)
Range: 0.1 to 100 mL/min


IC Circulation Rate
Default: Maximum of (20, (min(300, 10 ×


(ml/min)
QICA))



Range; −300 to 300 mL/min


EC Inlet Rate
Default: 0


(ml/min)


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 100 mL/min


Outlet
EC Waste


Rocker Control
On (−90°, 180°, 1 sec) Range: full range



(deg, time)



Fixed (0°) (Default) Range: full range (deg)


Output: IC volume
Volume or Rate as defined by stop condition


Output: EC volume
Volume or Rate as defined by stop condition


Output: Remaining
Countdown in minutes or manual stop as defined by


time of step
stop condition










Step 2: ARC Chase


Purpose of Step: Chases reagent from the ARC into the IC Loop.















Input Range

















IC Source
IC Media



Wash (Default)



EC Media


EC Source
None


Stop Condition
IC volume: (VARCA + VARCBS)*2



Range: 1 to 100 mL


IC Inlet Rate
Default: Same as Step 1


(ml/min)


IC Circulation Rate
Default: Same as Step 1


(ml/min)


EC Inlet Rate
Default: 0


(ml/min)


EC Circulation Rate
Default: Same as Step 1


(ml/min)


Outlet
EC Waste


Rocker Control
Same as Step 1


Output: IC volume
Volume as defined by stop condition


Output: EC volume
n/a


Output: Remaining
Countdown in minutes or manual stop as defined by


time of step
stop condition










Step 3: Circulate


Purpose of Step: Circulates reagent in the IC Loop.















Input Range



















IC Source
None



EC Source
Reagent




IC Media




Wash (Default)




EC Media



Stop Condition
Time (1 min) Range: 0.1 to 2880 minutes




Manual Stop (default)



IC Inlet Rate
Default: 0



(ml/min)



IC Circulation Rate
Default: QICCM



(ml/min)



EC Inlet Rate
Default: 0.1



(ml/min)



EC Circulation Rate
Default: QECCM



(ml/min)



Outlet
EC Waste



Rocker Control
Same as Step 1



Output: IC volume
n/a



Output: EC volume
Rate as defined by stop condition



Output: Remaining
Manual stop as defined by stop condition



time of step











Protocol 15: Cell Attachment Example


In an embodiment, the purpose of this protocol is to enable adherent cells to adhere to the IC side of the membrane while allowing flow on the EC side. The cells are already in the IC side.


The protocol includes as follows:


1) Only an EC source and EC circulation is used. There is no IC source, IC inlet rate or IC circulation rate.


2) The EC inlet is EC media with options for reagent, IC media, or wash. The media flows though valve 276 as EC media, and through pump 278.


3) The EC inlet rate is low 0.1 mL/min flow.


4) The EC circulation rate QECCM as described above which in this example is 30 mL/min.


5) The outlet is the EC waste through valve 290.


6) The rocker control is fixed or stationary.


7) The stop condition is a manual stop. Alternatively the stop could be based on time or EC volume.


The brief summary of the protocol is as shown below.


Protocol Cell Attachment


Purpose of protocol: Enables adherent cells to attach to the membrane while allowing flow on the EC loop. The pump flow rate to the IC loop flow is set to zero.


Step 1: Cell Attachment















Input Range

















IC Source
None


EC Source
Reagent



IC Media



Wash



EC Media (Default)


Stop Condition
Time: (1440 min) Range: 0.1 to 2880 minutes



Manual Stop (Default)



EC volume: (150 mL) Range: 1 to 4000 mL


IC Inlet Rate
Default: 0


(ml/min)


IC Circulation Rate
Default: 0


(ml/min)


EC Inlet Rate
Default: 0.1


(ml/min)
Range: 0.1 to 10 mL/min


EC Circulation Rate
Default: QECCM


(ml/min)
Range: 0 to 100 mL/min


Outlet
EC Waste


Rocker Control
Fixed (0°) (Default) Range: 0° to 180°


Output: IC volume
Volume or rate as defined by Stop Condition


Output: EC volume
Volume or rate as defined by Stop Condition


Output: Remaining
Countdown in minutes or manual stop as defined by


time of step
Stop Condition










Protocol 16: User-Defined Task Example


In an embodiment, this protocol allows the user to define the task. The setting options are as follows:













Setting
Setting Options







IC Inlet
Cell



Reagent



IC Media



Wash



EC Media



None


IC Inlet Rate
0 to 500 mL/min


IC Circulation Rate
−300 to 300 mL/min


EC Inlet
Reagent



IC Media



Wash



EC Media



None


EC Circulation Rate
−300 to 300 mL/min


Outlet
EC Waste



IC Waste



Synchronization


Rocker Control
In Motion (−180° to 270°, 0 to 15 seconds)



Stationary (−180° to 270°)


Stop Condition
Manual



Time (0.1 to 1440 min)



IC Volume (1 to 4000 mL)



EC volume (1 to 4000 mL)









Having described various protocols for use with the cell expansion system, embodiments further relate to processor-implemented methods and systems for configuring and customizing protocols, and other settings, of the cell expansion system, through the use of UIs and GUI elements. For example, a user or operator, may select a UI element or GUI element, such as a button or other control, associated with a particular setting, including a system setting, display setting, and/or protocol setting. Such selection may be made, according to embodiments, by touching a location on a touch screen or other display area of a display device. Settings associated with the selected GUI element may then be configured through the input of data, for example. In embodiments, such configurations are stored.


The system provides for further user customizations by allowing a user or operator to create one or more custom or user-defined tasks and to add steps to the custom tasks, in accordance with embodiments of the present disclosure. For example, such added steps may be selected from a list of pre-defined processes, including Wash Out Lines, Wash Out Lines Through Membrane, Wash Rapidly, Harvest Cells, Add Bolus, and Custom, in which the Custom step provides for an added step to be a custom step itself, according to embodiments. Steps may also be omitted from a task, and configured settings may be reset to the factory default settings, according to other embodiments, through the selection of an applicable GUI element.


The configurability and customization capabilities of the cell expansion system allow the system to be adapted to a user or operator's desired settings and preferences, according to embodiments of the present disclosure. Through the use of UIs, GUI elements, and process diagram views or windows for configuring and customizing settings and system components, the system provides a visual tool for the configuration and customization of the system. Such capabilities provide an efficient way to configure and customize the system and protocols used therewith.


Turning to FIG. 7, an example logical environment 700 for interacting with a UI of a cell expansion system is shown in accordance with embodiments disclosed herein. A cell expansion system 702 housing a fluid conveyance device accessed by opening the door of the cell expansion system with handle 704 is shown according to an embodiment. The cell expansion system 702 is capable of being interacted with by a user or operator 708, for example. The cell expansion system 702 comprises a UI 706 for displaying, and allowing interaction with, information and data related to the cell expansion system 702. In embodiments of the present disclosure, a UI, such as UI 706, for example, may be any interface for providing information to a user or operator 708 or for receiving input from a user or operator 708. A UL such as UI 706, for example, may include application windows, rendered by a processor, such as the processor discussed with reference to FIG. 24 below, for an application, such as a configuration and/or customization application, according to embodiments.


UI 706 provides, in embodiments, for interaction by a user or operator 708, for example, with the cell expansion system 702 through the use of input devices, output devices, logical modules, e.g., software, and hardware, e.g., physical elements. UI 706 allows the user or operator 708 to operate and control the cell expansion system 702 and to view, or otherwise receive, the result(s) of such operation and control, according to embodiments herein. Such operation and control may include, for example, configuring and/or customizing settings of the cell expansion system, including protocols for use with the system. As discussed with respect to FIG. 24 below, the cell expansion system 702, including UI 706, is driven by a processor, memory, etc.


Logical environment 700 is not limited to any particular implementation but, rather, encompasses any environment upon which the functionality of environment 700 may be practiced. For example, user or operator 708 may be a single user or operator or multiple users or operators. Further, in other embodiments, cell expansion system 702 may be interacted with by another device, program, machine, etc. Logical environment 700 represents an example way of practicing embodiments disclosed herein but is not intended to limit the scope of the present disclosure. For example, logical environment 700 may be considered with respect to the specific components present, e.g., processor, or may be considered with respect to the corresponding modules.


While FIG. 7 shows example environment 700 for operating, configuring, and/or customizing the cell expansion system according to embodiments, FIG. 8 illustrates an example UI 800 comprising GUI elements for making configuration selections in accordance with further embodiments of the present disclosure. UI 800 is displayed on the user interface 706 of the cell expansion system 702, for example. UI 800 may be retrieved in response to a user selecting to configure the cell expansion system, in which a screen entitled, “Configuration Selection” 802 with configure icon 803, appears to allow the user to make configuration selections. The screen name, “Configuration Selection” 802, and configure icon 803 are offered as an example for purposes of illustration. Numerous types of titles, names, headings, and/or icons may be used in accordance with embodiments without departing from the spirit and scope of the present disclosure. As shown in UI 800, GUI elements 804, 806, 808, and 810 allow a selection to be made to configure an aspect of the cell expansion system, such as of cell expansion system 702 shown in FIG. 7. For example, a selection may be made to configure display settings 804, system settings 806, default settings for tasks or protocols 808, and/or any other type of configuration aspect 810 related to the cell expansion system 702, according to embodiments. GUI elements shown in FIG. 8 may include, for example, buttons, controls, icons, boxes, radio buttons, checkboxes, menus, drop-down menus, windows, including pop-up windows, etc. In embodiments, UI 800 provides a status bar 812 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 816, rocker control 818, other controls (as shown by ellipsis 820), and door icon 822 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments. Further, in an embodiment, temperature window 824 displays relevant temperatures, including, for example, the actual temperature of the air inside the incubator and the temperature set point. In addition, pressure window 826 provides the current pressure measurements at the IC and EC inlets and outlets, as well as the inlet and outlet differential pressures, according to an embodiment. Other GUI elements include a “Task” GUI element 828 for displaying the task selection screen, a “Configuration” GUI element 830 for displaying another configuration screen, and an “About” configuration GUI element 832 for displaying information regarding the cell expansion system, including, for example, identification information for the device, version information, etc., according to embodiments. In addition, other types of GUI elements may be included to assist a user to navigate the system and UIs, as shown by ellipsis 834 and the “Other” GUI element 836. Further, the “Configuration Selection” screen may be closed with selection of the “Close” GUI element 814.


While FIG. 8 provides configuration selection options, FIG. 9A illustrates an example UI 900 for configuring display settings of the cell expansion system, in accordance with embodiments of the present disclosure. For example, UI 900 provides for changing the format of the date display, changing the format of the time display, setting the current date and time, selecting a language for the display of text, and selecting a decimal separator type. The screen name “Configuration: Display” 902 and icon 904 indicate that the UI provides for configuring display settings. Any type of screen name and configuration icons may be used in accordance with embodiments herein. The screen name 902 and icon 904 are offered for purposes of illustration. UI 900 allows for configuration of the date 906, time 922, local preferences 948, and other 962 display settings as shown by ellipsis 960. UI 900 allows a user, for example, to select the date format 908, such as whether the date used with display settings for the system includes a “MM-DD-YYYY” 910 format, a “DD-MM-YYYY” 912 format, or a “YYYY-MM-DD” 914 format, in which “M” refers to “month,” “D” refers to “day” of the month, and “Y” refers to “year.” The hatching at button 910 indicates that button 910 has been selected, such as by touching this button using the touch screen of the cell expansion system, according to embodiments. The use of hatching in the Figures herein is offered for purposes of illustration only. Any type of visual indicia may be used without departing from the spirit and scope of the present disclosure. Further, a user may select to enter the current date 916, including the month 904, day 918, and year 920.


In addition, UI 900 allows for a selection of the time format 924, in which a user, for example, may select a 12 hour format 926 or a 24 hour format 928. The current time 930 may also be entered using UI 900 by providing data for the hour 932, minute 934, and second 946 fields.


Turning to FIG. 9B, for example, a user has selected to enter the current date for the display settings of the system, in which an arrow at 904 indicates a selection of the current date. In response to receiving the selection to configure the date, the system determines that a numeric value is associated with the current date setting. In response to such determination, the system provides a data entry pad 976 to allow for the input of one or more numeric values for entering the current date, according to embodiments. After providing numeric values through the use of the data entry pad or data entry window 976, UI 900, as shown in FIG. 9C, displays the filled-in current date 904, 918, and 920.


In addition, a selection may be made to provide or modify the current time 930, in which a data entry window or data entry pad or other means may also be provided for receiving entry of numeric values for the associated time fields 932, 934, and 946. FIG. 9C shows the results of the system receiving numeric values for the time fields 932, 934, and 946. Further, in embodiments where a 12-hour clock is used, a selection may be made, or data may be provided, for example, to designate whether the indicated time is for the “a.m.” (ante meridiem) period or for the “p.m.” (post meridiem) period.


Returning to FIG. 9A, UI 900 also provides for a configuration of “Local Preferences” 948, in which a selection may be made as to whether numeric values use a “period” 952 or “comma” 954 decimal separator 950. Further, the language 956 used for displaying the text used in displaying data and information using the display area of UI 706 may also be selected, according to embodiments. For example, while “English” 958 is shown as the default language, GUI element 958 may be selected, as shown by the “arrow” pointer on the “English” 958 GUI element of FIG. 9D.


In response to receiving the selection, the system determines that a menu, list, or window of selection options should be provided in UI 900, as shown in FIG. 9D, according to embodiments of the present disclosure. In an embodiment, such selection options are dynamically determined. In another embodiment, such selection options are predetermined or pre-defined. The language selection window 978 displays various GUI elements for different language options. The languages listed in menu 978 are offered for purposes of illustration only. Any number and/or type of languages may be offered depending on the system characteristics in accordance with embodiments disclosed herein. Further, the language choices may be displayed in any language without departing from the spirit and scope of the present disclosure. While the language selection window 978 of FIG. 9D shows the options using English text, other embodiments provide for the language choices to each be written in their respective languages.


Returning to FIG. 9A, UI 900 provides for the configurations to be saved 966 and stored by the system, according to an embodiment, in which the system stores and applies the configured changes. In such an embodiment, the configuration screen then closes. In another embodiment, a selection may be made to “Cancel” the configuration of display settings by selecting the “Cancel” button 964, in which the Configuration: Display window closes and returns to another screen, for example. Further, UI 900 provides a status bar 968 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 970, rocker control 972, other controls (as shown by ellipsis 974), and door icon 976 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments.


While FIGS. 9A, 9B, 9C, and 9D illustrate UI 900 for configuring display settings, FIGS. 10A and 10B depict UI 1000 for configuring system settings, in accordance with embodiments of the present disclosure. For example, UI 1000 provides for turning the incubator on or off, changing the temperature set point of the system, turning the alarm sound on or off, setting the low-temperature alarm for the system, etc. The screen name “Configuration: System” 1002 and icon 1003 indicate that the HI provides for configuring system settings. Any type of screen name and configuration icons may be used in accordance with embodiments herein. The screen name 1002 and configure icon 1003 are offered for purposes of illustration. In configuring system settings, a selection may be made to turn the incubator 1004 “on” 1006 or “off” 1005. The temperature set point 1008 of the system may also be set 1010 by selecting GUI element 1010, in which the temperature set point is the point at which the temperature of the system incubator is set, according to an embodiment. In an embodiment, a default temperature set point is provided. However, this numeric value may be configured by selecting, or touching in an embodiment using a touch screen, the temperature set point field 1010. For example, an “arrow” pointer is shown as selecting the temperature set point field 1010 in FIG. 10B. As shown in UI 1000 of FIG. 10B, the system, in response to receiving the selection of the temperature set point field 1010, determines that a numeric value is associated with the temperature set point field 1010. After determining that a numeric value is associated with field 1010, the system provides a data entry window or data entry pad 1042 for receiving an input of data for the desired temperature set point. After receiving such data, the system updates the temperature set point field 1010, in accordance with embodiments disclosed herein.


Returning to FIG. 10A, the low-temperature alarm 1012 may be configured by turning it “on” 1014 or “off” 1013. In an embodiment, the alarm is shown as being turned “off” 1013 in FIG. 10A through the use of hatching. This selection (and others shown) are offered for purposes of illustration only. The difference from the set point 1016 may also be set by selecting field 1018. In response to receiving the selection of the difference from set point field 1018, the system determines that a numeric value is associated with the field 1018. After determining that a numeric value is associated with field 1018, the system provides a data entry window or data entry pad such as shown in FIG. 10B at data entry pad 1042, for example, for receiving an input of data for the desired difference from set point. After receiving such data, the system updates the difference from set point field 1018, in accordance with embodiments disclosed herein. Next, as shown in FIG. 10A, the system alarm sound 1020 may be turned “on” 1022 or “off” 1024 by selecting the appropriate button for such desired configuration. The selected button changes color to “black” or another designated color or visual indicia to show selection, according to embodiments. The “on” button 1022 is shown as being selected in FIG. 10A. Any type of visual indicia change may be used in accordance with embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. Further, other system settings 1028 may be configured as shown by ellipsis 1026.


After making desired configurations, such changes may be saved by selecting the “Save” button 1030, in which the system responds to such selection by saving and applying the changes. The configuration screen then closes, according to embodiments. In another embodiment, a selection may be made to “Cancel” 1032 the configuration of display settings by selecting the “Cancel” button 1032, in which the Configuration: System window closes and returns to another screen. Further, UI 1000 provides a status bar 1005 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 1034, rocker control 1036, other controls (as shown by ellipsis 1038), and door icon 1040 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments.


Turning to FIG. 11, UI 1100 provides for configuring a task or protocol for use with the cell expansion system, in accordance with embodiments of the present disclosure. As shown, UI 1100 appears with screen name “Configure Confirmation: Task A,” for example, after the system receives a selection to configure a system task or protocol. In embodiments, “Task A” refers to a predetermined or pre-defined task, such as “Release Adherent Cells with Harvest,” for example. Such selection may be initially made as shown by selecting button 808 in FIG. 8 and then selecting a particular type of predetermined or pre-defined protocol, such as “Release and Harvest,” and then selecting “Release Adherent Cells with Harvest,” according to an embodiment. In another embodiment, UI 1100 appears after an initial configuration of a task or protocol is made, and the system is providing a confirmation of the desired configuration. Other embodiments provide for selecting the configuration of protocols through other buttons or GUI elements, for example. The screen name, “Configure Confirmation: Task A” 1102 is offered as an example for purposes of illustration. Numerous types of titles, names, headings, and/or icons may be used in accordance with embodiments of the present disclosure without departing from the spirit and scope of the present disclosure.


UI 1100 allows for the configuring of default settings for each task or protocol. When the default settings for a particular task or protocol, e.g., a first task, are configured, the system replaces the factory default settings for the task, e.g., the first task, with the settings that are configured. In embodiments, the system also stores the newly configured settings. In embodiments, each time a task, e.g., first task, is subsequently selected, the system automatically populates the settings for the first task with the configured default settings. Embodiments also allow the default settings to be reset, or restored, back to the factory default settings by selection of the “Reset” button or GUI element 1156 of FIG. 11. Selecting “Reset” 1156 restores all of the settings for a selected task back to the factory default settings for that task, according to embodiments. In embodiments, the restoration of the factory default settings is stored upon selection of the “Save” GUI element 1158.


Further, UI 1100 of FIG. 11 shows the number of steps 1112 included in the particular task or protocol listed 1102. For example, UI 1100 shows “step 1” 1114, “step 2” 1116, and other steps 1120, as shown by ellipsis 1118. Any number of steps, or a single step, may be included according to embodiments of the present disclosure. Further, other steps not shown in UI 1100 may be included, as shown by the ability to use buttons or other controls 1104, 1106, 1110, and 1111 for moving between screens displaying other steps, in embodiments. Ellipsis 1108 represents other buttons or controls which may be used for moving between screens in accordance with embodiments of the present disclosure. While not shown in FIG. 11, the title of a particular step may be displayed by the step number. For example, for the “Release Adherent Cells with Harvest” protocol, “step 1” 1114 may list “Wash Out Lines,” “step 2” 1116 may list “Load Reagent,” and “step 3” 1120 may list “Chase ARC,” according to an embodiment of the present disclosure.


Further, one or more settings for a particular step may be configured by selecting the appropriate “Configure” GUI element, such as configure button 1148 for step 1, configure button 1150 for step 2, configure button 1154 for another step 1120, or any other number of configure buttons as shown by ellipsis 1152 for associated steps shown by ellipsis 1118. Such settings to configure include, for example, IC Inlet 1122, IC Inlet Rate 1124, IC Inlet Rate 1126, EC Inlet 1128, EC Inlet Rate 1130, EC Circulation Rate 1132, Outlet 1134, Rocker 1136, Stop Condition 1138, Estimated Fluid Needed 1140, Omit or Include Step 1142, and other settings 1146 as shown by ellipsis 1144, according to embodiments of the present disclosure. In embodiments, the “Omit or Include Step” 1142 indicates whether a particular step is included or omitted from the task. While sample data and selected options, e.g., “Wash” or “Reagent,” are shown in FIG. 11 for particular settings, in which such data and selected options may represent factory default settings according to embodiments, these data and selected options are shown for purposes of illustration. The data and selected options shown in FIG. 11 are examples only.


After making desired configurations, such changes may be saved by selecting the “Save” button 1158, in which the system responds to such selection by saving and applying the changes. The configuration screen then closes, according to embodiments. In an embodiment, the configuration screen 1100 shows the changes applied to the settings (after any configurations are made) when configuration screen 1100 appears in response to another later selection to configure the protocol or task, for example. In yet another embodiment, changes applied to the settings are shown after the configuration screen closes by automatically displaying an updated UI 1100 following the saving and closing of the configuration screen. In another embodiment, a selection may be made to “Cancel” 1160 the configuration of display settings by selecting the “Cancel” button 1160, in which the Configure Confirmation: Task A window closes and returns to another screen. Further, UI 1100 provides a status bar 1162 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 1164, rocker control 1166, other controls (as shown by ellipsis 1168), and door icon 1170 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments.


While FIG. 11 illustrates example UI 1100 for configuring a task or protocol, with associated processes or steps, for a predetermined or pre-defined task, FIGS. 12A, 12B, and 12C depict example UI 1200 for configuring a custom or user-defined task, in accordance with embodiments of the present disclosure. A custom or user-defined task may be created according to embodiments. The system provides, in embodiments, for multiple custom or user-defined tasks, such as Custom 1, Custom 2, Custom 3, Custom 4, Custom 5, etc. In an embodiment, a custom or user-defined task allows a user or operator to enter all of the settings for a task manually. The factory default settings and setting options for a step, e.g., a first step, of a custom or user-defined task comprise the following, according to an embodiment:














Setting
Factory Default
Setting Options







IC Inlet
None
Cell, Reagent, IC Media, Wash,




EC Media, None


IC Inlet Rate
0 mL/min
0 to 500 mL/min


IC Circulation Rate
0 mL/min
−300 to 300 mL/min


EC Inlet
None
Reagent, IC Media, Wash, EC




Media, None


EC Inlet Rate
0 mL/min
0 to 300 mL/min


EC Circulation Rate
0 mL/min
−300 to 300 mL/min


Outlet
EC Waste
EC Waste, IC Waste,




Synchronization


Rocker Control
Stationary (0°)
In Motion (−180 to 270°, 0 to 15




sec), Stationary (−180 to 270°)


Stop Condition
Manual
Manual, Time (0.1 to 1440 min),




IC Volume (1 to 4000 mL), EC




Volume (1 to 4000 mL)









Upon receiving the factory default settings, a user may manually enter data and/or make selections from selection options for a particular setting(s). In an embodiment, such selection options are provided in the form of a menu, list, window, etc. In a further embodiment, such selection options are predetermined or pre-defined. Further, a step or multiple steps may be added to a custom or user-defined task, in which the settings of each step may be modified. The system provides for a user to select a type of step to add, in which such steps include, in embodiments: Wash Out Lines, Wash Out Lines Through Membrane, Wash Rapidly, Harvest Cells, Add Bolus, and Custom. Factory default settings provided for each selected step may then be used or modified, according to embodiments. The system, in embodiments, does not save the manually entered settings but, instead, provides for the settings to be entered each time the particular custom task is performed.


In other embodiments, the settings for a custom or user-defined task, such as for Custom 1, may be configured. Configured settings may be saved, and such settings may then be used when the particular configured custom task is subsequently selected or executed, for example. As shown in FIG. 12A, a custom task, such as custom task 1, may be configured. UT 1200 may be retrieved in response to a user selecting to configure a custom task of the cell expansion system, in which a screen entitled, “Configure Confirmation: Custom Task 1” 1202 appears to allow the user to make configurations. The screen name, “Configure Confirmation: Custom Task 1” 1202 is offered as an example for purposes of illustration. Numerous types of titles, names, and/or headings may be used in accordance with embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. UI 1200 appears with screen name “Configure Confirmation: Custom Task 1,” for example, after the system receives a selection to configure a system task or protocol. Such selection may be initially made as shown by selecting button 808 in FIG. 8, then selecting “Custom,” and then selecting the Custom Task desired, such as “Custom Task 1.” The Configure Confirmation screen then appears for the selected custom task. In another embodiment, UI 1200 appears after an initial configuration to a custom or user-defined task or protocol is made, and the system is providing a confirmation of the desired configuration. Other embodiments provide for selecting the configuration of protocols, including custom protocols, through other buttons or GUI elements, for example.


As shown in FIG. 12A, UI 1200 lists the number of steps 1212 in the custom or user-defined task and displays the step(s), as shown by custom “step 1” 1214 in UI 1200. Where other steps are included, such steps may appear in the Configure Confirmation window UI 1200, or in other embodiments, such steps may be viewed by using the buttons or controls 1204, 1206, 1210, and 1211 to move between screens. Ellipsis 1208 represents other buttons or controls which may be used for moving between screens in accordance with embodiments of the present disclosure. By selecting “configure” button 1248, settings associated with “step 1” 1214 of custom task 1 may be configured. Such settings to configure include, for example, IC Inlet 1222, IC Inlet Rate 1224, IC Inlet Rate 1226, EC Inlet 1228, EC Inlet Rate 1230, EC Circulation Rate 1232, Outlet 1234, Rocker 1236, Stop Condition 1238, Estimated Fluid Needed 1240, and other settings 1246 as shown by ellipsis 1242, according to embodiments of the present disclosure. While sample data and selected options, e.g., “EC Waste,” are shown in FIG. 12A for particular settings, in which such data and selected options may represent factory default settings according to embodiments, these data and selected options are shown for purposes of illustration only. The data and selected options are examples only.


Embodiments also allow for the default settings to be reset, or restored, back to the factory default settings by selection of the “Reset” button or GUI element 1256 of FIG. 12A. Selecting “Reset” 1256 restores all of the settings for a selected custom task back to the factory default settings for the custom or user-defined task, according to embodiments. Any configurations made may be saved and stored by the system by selecting the “Save” button 1252, according to an embodiment, in which the system stores and applies the configured changes. In such an embodiment, the configuration screen then closes. In another embodiment, a selection may be made to “Cancel” the configuration of display settings by selecting the “Cancel” button 1254, in which the Configure Confirmation window closes and returns to another screen. Further, UI 1200 provides a status bar 1258 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 1260, rocker control 1262, other controls (as shown by ellipsis 1264), and door icon 1266 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments.


According to embodiments, a step may be added to Custom Task 1, for example, by selecting the button, “Add Step” 1268. In response to receiving a selection of add step GUI element 1268, the system provides a window or menu 1269 of options for the added step type, as shown in UI 1200 of FIG. 12B. For example, a selection may be made from the following options: Wash Out Lines 1270, Wash Out Lines Through Membrane 1272, Wash Rapidly 1274, Harvest Cells 1276, Add Bolus 1278, Custom 1280, and other step 1282. Further, a selection may be made to “Cancel” 1284 the addition of a step by selecting the Cancel button 1284, in which the selection menu or window 1269 closes. While options 1270, 1272, 1274, 1276, 1278, 1280, 1282, and 1284 are depicted in selection window 1269, any types of GUI element types may be used without departing from the spirit and scope of the present disclosure. The options presented in window 1269 are offered for purposes of illustration. Following a selection of a step from window 1269, FIG. 12C shows an updated UI 1200, including added custom “step 2” 1286 and data for settings 1222, 1224, 1226, 1228, 1230, 1232, 1234, 1236, 1238, 1240, and 1246. Further, the added step, shown as custom “step 2” 1286, may be configured through selection of the configure button 1288. Further, other step(s) may be added through selection of the “add step” button 1268, according to embodiments. The settings shown in FIGS. 12A, 12B, and 12C are shown in a table view. Other types of views may be used in accordance with embodiments of the present disclosure. The table view of UI 1200 is shown for purposes of illustration.


After selecting to configure a step or process of a task or protocol, a diagram view of the cell expansion system is provided as shown with UI 1300 in FIG. 13A, according to embodiments of the present disclosure. The diagram view 1300 depicts the cell expansion system, including the intracapillary (IC) and extracapillary (EC) sides of the bioreactor 1305, according to embodiments. Arrows, or other icons, in UI 1300 show the bi-directional flow between the IC and EC sides of the bioreactor. The diagram view 1300 may include designated colors or other visual indicia representing the various sides of the bioreactor, according to embodiments. Further, GUI elements, such as buttons, are associated with various settings. In embodiments, visual indicia, and changes thereof, may be used to show selections of the GUI elements associated with various settings, in which the settings include, according to embodiments: IC Inlet 1304, IC Inlet Rate 1306, IC Circulation Rate 1308, Outlet IC and EC Waste 1316, EC Circulation Rate 1314, EC Inlet Rate 1312, and EC Inlet 1310. In further embodiments, changes in visual indicia may be used to show those settings capable of being modified or configured. In embodiments, settings may be configured only for settings that are available for the selected task. If a setting cannot be configured, the button, or other GUI element, associated with the setting is not enabled, in accordance with embodiments. For example, the GUI elements 1304, 1306, and 1308 associated with settings IC Inlet, IC Inlet Rate, and IC Circulation Rate, respectively, are shown as enabled in UI 1300. Embodiments also provide for changes in visual indicia to show the status of a task when the system is performing the task, for example.


As noted, UI 1300 appears with screen name “Configure Defaults: Task A” 1302 upon selection of a step to configure. As shown in FIG. 13A, a custom or user-defined task, such as custom task 1, may be configured through the use of the diagram view depicted in UT 1300. The diagram view depicted in UI 1300 may also be referred to as a configure defaults screen, according to an embodiment. UI 1300 further includes text indicating the step or process being configured 1304, in which the example shown in UI 1300 indicates that the “Wash Out Lines: Step 1/5” 1304 is being configured. Text 1304 is offered for purposes of illustration. Any other steps or text may be used in accordance with embodiments of the present disclosure. While the diagram view depicts the cell expansion system in UI 1300, a tabular view of the setting data may also be selected with icon 1303, according to embodiments. Further, UI 1300 provides for the rocker setting 1318 to be configured, in which the rocker setting determines the position and movement of the bioreactor during a step or process. In an embodiment, the rocker setting 1318 may be designated as stationary. In another embodiment, the rocker setting 1318 may be designated as in motion, in which the range of degrees of motion determines the clockwise or counter-clockwise movement direction of the bioreactor 1305. Further, the rocker includes a dwell time setting which indicates the amount of time the system rests at the start and end positions. Rocker GUI element 1318 may be selected to set any of these settings 1320, according to embodiments. Further, stop condition GUI element 1322 provides for determining how and when the cell expansion system stops the performance of a current task or step of a task. For example, the stop condition setting options include, according to embodiments: manual, time, IC volume, EC volume, exchange, and empty air removal chamber (ARC). As shown in FIG. 13A, UI 1300 has a stop condition 1322 of Exchange 1324, for example.


Diagram view 1300 of FIG. 13A further illustrates buttons to include 1326 or omit 1328 the step depicted, according to embodiments. A user or operator may also desire to configure a previous step 1330 or a next step 1332 and move to the configuration screens for these respective steps by selecting previous step button 1330 or next step button 1332, respectively. After making desired configurations to the setting or settings of the noted step, the “confirm” GUI element 1334 may be selected to confirm the configurations and close the diagram view of UI 1300. UI 1300 provides a status bar 1336 including information related to the system, including the date and time and status of the system performance, such as “Idle.” Further, alarm 1338, rocker control 1340, other controls (as shown by ellipsis 1342), and door icon 1344 (for indicating when the door of cell expansion system 702 is open, for example) also provide information regarding the cell expansion system, according to embodiments.


In the embodiment shown in FIG. 13A, the GUI element associated with the IC Inlet Rate setting 1306 is selected, as shown by the arrow, or pointer, at GUI element 1306 in UI 1300. In response to selection of GUI element 1306, the system determines that the IC Inlet Rate is associated with a numeric value and provides a data entry window 1346 or data entry pad 1346 in the diagram view 1300 depicted in FIG. 13B. As shown in FIG. 13B, GUI element 1306 is depicted as selected, as shown by the change of a visual indicator, e.g., a first indicator, associated with GUI element 1306 in FIG. 13B as compared to a visual indicator, e.g., a second indicator, associated with GUI element 1306 in FIG. 13A. After providing data using data entry window 1346, GUI element 1306 is updated to reflect the received data, according to embodiments.


In another embodiment, GUI element 1304 is selected, as shown by the change of a visual indicator, e.g., second indicator, associated with GUI element 1304 of UI 1300 in FIG. 13C as compared to a visual indicator, e.g., first indicator, associated with GUI element 1304 in FIG. 13A. Upon receiving the selection of GUI element 1304 for configuration, the system determines that GUI element 1304 is associated with the IC Inlet and that a selection option is applicable to the IC Inlet. The system then retrieves the applicable selection options for the IC Inlet and presents the options in window or menu 1348. For example, window or menu 1348 provides selection options for the IC Inlet of: IC Media 1350, Reagent 1352, Cell 1354, EC Media 1356, Wash 1358, or None 1360. Further, the window or menu 1348 provides for a user or operator to cancel the selection of a setting type for GUI element 1304 by selecting the “Cancel” button 1362 in menu or window 1348. In an embodiment, the GUI element 1304 depicted in the diagram view of UI 1300 is then updated with the selection made with window or menu 1348. In an embodiment, the IC Inlet is shown as depicting a “Wash” for the task listed of “Wash Out Lines” 1304. However, these settings and task type, as noted, are offered for purposes of illustration only.


While FIGS. 13A, 13B, and 13C show the selections of particular GUI elements, these selections are offered for purposes of illustration. Any types of selections may be made in embodiments. In addition, diagram view 1300 may include additional data, controls, and/or other GUI elements, including a pressure window, temperature window, system window, etc. (not shown), according to embodiments. Diagram view 1300 may also include fewer GUI elements, data, etc., according to other embodiments.


With respect to FIGS. 8, 9A, 9B, 9C, 9D, 10A, 10B, 11, 12A, 12B, 12C, 13A, 13B, and 13C above, while a single UI associated with each screen may be provided according to embodiments of the present disclosure, multiple Ills can be displayed in accordance with other embodiments disclosed herein. Ills 800, 900, 1000, 1100, 1200, and 1300 are offered for purposes of illustration. Any type of UIs and GUI elements can be used in accordance with embodiments of the present disclosure. In another embodiment, a UI is not used. Rather, a configuration selection, input data, and output data may be provided by another device, output, etc., in accordance with embodiments of the present disclosure.


While various example UIs for interacting with a user or operator, for example, of the cell expansion system have been described, FIGS. 14A, 14B, 14C, and 14D illustrate example operational steps 1400 for modifying a predetermined or pre-defined task type, in accordance with embodiments of the present disclosure. Start operation 1402 is initiated by opening a home screen, for example, of the cell expansion system, and process 1400 proceeds to receive selection of a task operation 1404, in which a button or other GUI element for selecting a task or protocol is selected. In embodiments, a home screen of the cell expansion system comprises GUI elements to allow a selection of a desired action, such as a selection to execute a task, a selection to configure a setting, etc. The system then provides a choice of task types, including pre-defined or predetermined tasks 1406, such as load tasks, wash tasks, add tasks, and harvest tasks, according to embodiments. Further embodiments provide for the task types to be further described, in which specific task names are provided for the task types, including the following:

    • Load tasks: High flux load, load with circulation, coat bioreactor, cell attachment
    • Wash: Bone marrow washout, aggressive washout, IC EC washout, IC EC washout through membrane, wash inlet line
    • Add: Continuous add with ultrafiltration, reagent add, bolus add, continuous add
    • Harvest: Harvest cells, release adherent cells, release with harvest.


The type of task selected is then received 1408, and the default settings for the selected task type are retrieved 1410. Setting options for the task type are also retrieved 1412. Process 1400 then continues via off-page reference A 1414 to operation 1415 of FIG. 14B, in which the default settings are provided in table form in a setup confirmation view screen. Next, it is determined 1416 whether an indication is received to modify the settings for a process or step, in which a “Modify” button or other GUI element may be selected in the setup confirmation view screen. If an indication to modify a setting is not received, process 1400 proceeds NO to query 1418 to determine if an indication to execute the task is received. In an embodiment, an indication to execute the task comprises selecting a “Start” button or other UI element indicating to run the task. If an indication to execute the task is received, the system executes or performs the task 1420. Process 1400 then terminates at END operation 1422. If query 1418 determines that an indication to run the protocol is not received, process 1400 proceeds to receive another indication 1424, such as an indication to exit the setup screen, for example. Other indications may be received in other embodiments. The system then responds to the received indication 1426, and process 1400 then terminates at END operation 1422.


Returning to query 1416, if it is determined that an indication is received to modify a setting, process 1416 proceeds YES to determine the step selected to modify 1428. The settings associated with the selected step are then retrieved 1430. The retrieved setting(s) are associated with GUI element(s) 1431. For example, the system associates 1431 a setting, e.g., a first setting, with a GUI element, e.g., a first GUI element. The GUI element may be further associated with data associated with the setting, e.g., default data, according to embodiments. For example, a GUI element may be associated with a numeric value, a media type, e.g., Cells, Reagent, etc., depending on the associated setting type. In embodiments, the first GUI element displayed in the diagram window shows the default data associated with the first GUI element.


Query 1432 then determines if specific settings are available for modification, e.g., a determination is made as to whether specific settings can be modified, in which the settings capable of being modified are identified by the system. In response to determining that all settings associated with the selected step can be modified, process 1400 proceeds “All” to enable for selection all GUI element(s) associated with the setting(s) 1436. On the other hand, in response to determining that only specific settings are available for modification, process 1400 branches “Specific” at query 1434 to enable specific GUI elements for selection 1434. A diagram view or window showing the enabled and/or non-enabled settings is then provided, in which such providing includes: rendering the GUI element(s) 1437 and displaying the diagram view or window with the enabled and/or non-enabled GUI element(s) 1438. Process 1400 then continues through off-page reference B 1440 to operation 1442 of FIG. 14C, in which an indication to modify a selected setting is received by selection of a GUI element associated with the desired setting in the diagram view, according to an embodiment of the present disclosure. Information for the selected setting is then retrieved 1444.


Next, the system determines at query 1446 whether the selected setting is associated with a numeric value. For example, a rate, such as the IC Inlet Rate, is associated with a numeric value. If it is determined 1446 that the selected setting is associated with a numeric value, process 1400 branches YES to provide data entry pad 1448. An entry of data is received 1450. It is then determined whether the entry is within the range of setting options 1452. If the entry is within the range of setting options, process 1400 proceeds YES to update the selected setting 1454. Process 1400 then continues through off-page reference C 1468 to query 1470. If the entry is not within the range of setting options, process 1400 proceeds NO to receive another data entry 1450, and process 1400 then continues to operation 1452. In an embodiment, query 1452 is optional, and process 1400 proceeds directly to update the setting 1454 according to the received value.


Returning to query 1446, if the selected setting is not associated with a numeric value, process 1400 proceeds NO to query 1456 to determine whether a menu or window of options is applicable to the selected setting. If a menu or window of options is applicable to the selected setting, process 1400 proceeds YES to retrieve applicable options 1458. The menu or window of options is then provided 1460, and a selection is received 1462. The selected setting is then updated 1454, and process 1400 proceeds through off-page reference C 1468 to query 1470. Returning to query 1456, if a menu or window of options 1456 is not applicable to the selected setting, process 1400 proceeds NO to provide other input/selection capability, such as a field, button, control, etc., 1464. A selection is then received 1466, and the selected setting is updated 1454. Process 1400 then proceeds through off-page reference 1468 to query 1470 of FIG. 14D.


Next, query 1470 determines whether a confirmation of the settings provided is received. If a confirmation is not received, query 1470 proceeds NO to receive a selection to modify another setting or settings 1472 from within the diagram view. Process 1400 then proceeds through off-page reference D 1474 to FIG. 14C, and process 1400 then continues at operation 1442. If query 1470 determines that the modified settings are confirmed, process 1400 proceeds YES to provide an updated setup confirmation view, such as in table form, for example, 1476. It is next determined 1478 whether an indication is received to modify any other steps 1478 from within the setup confirmation view. If it is desired to modify other steps, process 1400 proceeds YES to off-page reference E 1480, and process 1400 then continues to FIG. 14B where the selected step for modification is determined 1428. If it is determined at query 1478 not to modify other steps, process 1400 proceeds NO to determine whether an indication is received to execute the task 1482. If a selection to run the task is received, process 1400 proceeds YES to execute task operation 1484, in which the protocol is performed with the cell expansion system. Process 1400 then terminates at END operation 1486. If an indication is not received to execute the task 1482, process 1400 proceeds NO to query 1496 to determine whether an indication is received to reset the modified setting(s) to the factory default settings. If an indication to “Reset” is received, such as by selecting a GUI element associated with the “Reset” functionality, process 1400 proceeds YES to reset the settings to the default values 1498. In an embodiment, the default values comprise the factory default values. If an indication to reset is not received, process 1400 proceeds NO to query 1490 to determine whether an indication to cancel the setup for the selected protocol is received. If an indication to cancel is received, process 1400 proceeds YES to exit the setup confirmation view 1491. Process 1400 then terminates at END operation 1492. If an indication to cancel is not received 1490, process 1400 proceeds NO to receive another indication 1493, such as an indication to move to another screen, for example. The system then responds 1494 to the indication, and process 1400 terminates at END operation 1492.


While FIGS. 14A, 14B, 14C, and 14D relate to modifying a setting(s) of a step of a protocol or task, FIGS. 15A and 15B illustrate example operational steps 1500 for configuring settings of the cell expansion system, in which such settings are stored and replace the applicable default settings, in accordance with embodiments of the present disclosure. Start operation 1502 is initiated, and process 1500 proceeds to receive a selection to configure a setting 1504, in which a “Configuration” GUI element related to configuration aspects for the system, such as a GUI element displayed on the system home screen, is received. In response to receiving the selection to configure 1504, the system provides configuration options 1506, including options to configure the display settings, system settings, and/or task default settings. Next, it is determined 1508 which of system settings, display settings, or task default settings is selected for configuration. If the system settings are selected 1510, process 1500 proceeds to retrieve system setting options 1510, and the system setting options for configuration, such as alarm sound, incubator “on” or “off,” etc., are provided 1512, according to embodiments. Process 1500 then continues through off-page reference A 1514 to operation 1541 of FIG. 15B. If it is desired to configure display settings, process 1500 proceeds to retrieve the display setting options 1516, and the display setting options are provided 1518, in which such display setting configuration options include date and time format, etc., according to embodiments.


Alternatively, if the default settings for tasks is selected, process 1500 proceeds to provide the task types 1520, including pre-defined or predetermined tasks and custom tasks, according to an embodiment. A selection of the task type desired is received 1522, and it is determined 1524 which selection has been made, i.e., custom or pre-defined or predetermined task. If a predetermined or pre-defined task selection is received, process 1500 branches “Pre-Defined” to providing a list of the pre-defined task options 1526, receiving a selection of a predetermined task option 1528, retrieving default settings 1530 for the selected task, and providing the default settings for the selected predetermined task 1532. Process 1500 then continues through off-page reference A 1514 to operation 1541 of FIG. 15B. Returning to query 1524, if a custom or user-defined task selection is received, process 1500 branches “Custom” to listing custom or user-defined task options, such as Custom Task 1, Custom Task 2, etc., 1534. A selection of a custom task option, e.g., Custom Task 1, is received 1536. Default settings for the custom task are retrieved 1538, and the default settings for the custom task are provided 1540. Process 1500 then proceeds through off-page reference A 1514 to operation 1541 of FIG. 15B.


At operation 1541 of FIG. 15B, a selection of a particular step or process of the task to configure is received, in accordance with embodiments of the present disclosure. In embodiments, the system then provides a diagram view 1542 of the cell expansion system for the step selected. A selection of a GUI element associated with a setting to configure is then received 1543, and it is determined whether the selected setting is associated with a numeric value, selection window or menu, or other input capability using a window or other control 1544. If the selected setting is associated with a data entry window, selection window or menu, or other input/selection capability using a window or other control, process 1500 proceeds YES to provide the applicable capability 1546, such as a data entry pad according to embodiments. Process 1500 then proceeds to operation 1548. If query 1544 determines that a selection of data may be received, such as in a field of the GUI element, for example, without providing a data entry window, selection window, or other input/selection capability using a window or other control, process 1500 proceeds NO to receive the data or selection 1548. To store the configuration settings, an indication to “Save” is received 1550, in which the system then stores the configurations 1552 and replaces 1553 the default settings or previously configured settings 1553 with the newly configured settings. In an embodiment, the first settings are replaced with the second configured settings 1553. Process 1500 then terminates at END operation 1554.


Next, FIG. 16 illustrates example operational steps 1600 for configuring protocol or task settings, and executing the task or protocol with the configured settings, according to an embodiment of the present disclosure. Start operation 1602 is initiated, and process 1600 proceeds to receive an indication to configure a task setting(s) 1604. A process view, or diagram view, depicting the cell expansion system, including the IC and EC sides of the bioreactor and related settings as associated with GUI elements, for example, is displayed 1606. An indication of a setting to configure is then received 1608, and a data entry pad or data entry window, menu, or other input/selection capability is provided 1610 as determined by the system as meeting the particular selected setting's characteristics. Information or data for the selected setting is then received 1612, and, in response to receiving an indication to save the setting configuration 1614, the system stores the configuration 1616. Next, a selection is received to execute the configured task associated with the configured task setting 1618. In an embodiment, an indication to execute the task comprises selecting a “Start” button or other UI element indicating to run the task. The configured, and stored, settings for the selected task are retrieved, and the task is executed with the stored setting(s) 1620. Process 1600 then terminates at END operation 1622.


While FIG. 16 depicts process steps for executing a task with stored configurations, FIG. 17 illustrates example operational steps 1700 for interpreting selections made using the touch screen of a user interface of the cell expansion system, according to embodiments of the present disclosure. The touch screen of the cell expansion system allows a user or operator, for example, to communicate with and interact with the cell expansion system by selecting GUI elements, selecting options from menus or windows, entering data, etc. Start operation 1702 is initiated, such as by turning the cell expansion system “on” or displaying a home screen for the cell expansion system using a display device, according to embodiments. Process 1700 then proceeds to receive a touch event on the display area 1704, in which a user or operator touches, or uses a touch input device, for example, a GUI element on the display area of the cell expansion system, such as of cell expansion system 702 of FIG. 7. A location of the touch event 1706 is next determined, and the location is mapped to a UI element 1708. The system next determines that the location corresponds to a selection of a task configuration 1710, according to an embodiment. Data specific to the selected task configuration is then retrieved 1712, such as data associated with certain steps and/or settings of the selected task. A UI for the selected task is then rendered 1714, in which settings available for configuration are enabled. Information, such as a diagram view showing the IC and EC sides of the bioreactor with relevant settings, is then displayed for receiving configurations 1716. A touch event is then received for a setting, such as for setting “A,” for example 1718. To show that setting “A” has been selected for configuration, the UI is rendered with the GUI element associated with setting A having a change in visual indicia 1720 in the diagram view, for example, to show it has been selected.


In an embodiment, a GUI element associated with setting A may be enabled before it is selected, in which the display of setting A in the diagram view shows the GUI element associated with setting A as being selectable through the use of a designated visual indicia. For example, the GUI element associated with an enabled setting may be rendered and displayed as having a first color, while a GUI element associated with a non-enabled setting may be rendered and displayed as having a second color. Where an enabled GUI element is selected, an additional change in visual indicia may apply. For example, an enabled GUI element for selected setting A is changed in color to a third color, for example, to show it is selected, e.g., such as by changing it to the color “black” when it is selected. A GUI element having a change in visual indicia to show it has been selected is displayed 1722. Input for setting A is then received 1724, such as through use of a window, selection menu, or other input/selection mechanism, according to embodiments. The input received is then processed 1726. The visual indicia for setting A is then returned 1728 to its original visual indicia, according to embodiments. For example, the visual indicia is changed from a first indicia to a second indicia when it is selected. Setting A is then returned to the first visual indicia after the requested configuration of setting A is made. The input provided for the configuring of setting A is then displayed 1730, such as within the GUI element for setting A in the diagram view and/or in the table of settings for configuration, in accordance with embodiments disclosed herein. Process 1700 then terminates at END operation 1732.


Turning to FIGS. 18A, 18B, 18C, and 18D, example operational steps 1800 are provided for configuring a pre-defined task or protocol for use with the cell expansion system and storing the configured settings, in accordance with embodiments. Start operation 1802 is initiated, and process 1800 proceeds to receiving a selection to configure 1804. Configuration selection options, including GUI elements to select to configure system settings, display settings, task settings, etc., are retrieved and provided 1806. A selection to configure the default settings for tasks is then received 1808. The types of tasks for selection are then provided 1810, and a selection of a pre-defined task is received 1812. The default settings for the selected task are then retrieved 1814, and process 1800 continues through off-page reference A 1816 to operation 1817 of FIG. 18B. At operation 1817, default settings for the selected task are provided in a configure confirmation UI, such as shown with UI 1100 of FIG. 11, for example. In an embodiment, the configure confirmation window or view includes a listing of the settings and associated data for one or more steps associated with the selected task. In an embodiment, the settings and associated data are provided in a table format. Query 1818 next determines whether an indication is received to configure the settings for a step or process associated with the selected task and displayed in the configure confirmation UI. If a selection to configure the settings for a step is not received, process 1800 proceeds NO to query 1820, in which it is determined whether a selection to cancel the configuration is received. If an indication to cancel is received, process 1800 proceeds YES to close the configuration window 1822 and exit. Process 1800 then terminates at END operation 1824, in which a home screen of the cell expansion system may appear, according to embodiments. If an indication to cancel is not received at query 1820, process 1800 proceeds NO to receive another indication 1826, such as to switch to another screen through a selection of a next screen button, control, or icon, for example. The indication received is responded to 1828, and process 1800 then terminates at END operation 1824.


Returning to query 1818, if an indication to configure settings for a step is received, process 1800 proceeds YES to determine the step selected 1830, and the setting(s) associated with the selected step are retrieved 1831. The retrieved setting(s) are associated with GUI element(s) 1832. For example, the system associates 1832 a setting, e.g., a first setting, with a GUI element, e.g., a first GUI element. The GUI element may be further associated with data associated with the setting, e.g., default data, according to embodiments. For example, a GUI element may be associated with a numeric value, a media type, e.g., Cells, Reagent, etc., depending on the associated setting type. In embodiments, a first GUI element displayed in the diagram view shows the default data associated with the first GUI element. Further, a second GUI element displayed in the diagram view shows the default data associated with the second GUI element, etc.


Query 1834 next determines if specific settings are available for configuration, e.g., a determination is made as to whether specific settings are configurable, in which the configurable settings are identified by the system. As discussed above, settings may be configured only for settings that are available for configuration for the selected task, according to embodiments of the present disclosure. If a setting cannot be configured, the button, or other GUI element, associated with the setting is not enabled for selection, in accordance with embodiments. For example, enabling the first GUI element for selection includes showing that the GUI element is capable of selection by the use of a visual indicator(s) showing such selection capabilities. For example, in embodiments, a GUI element that is not enabled is a first color, while a GUI element that is enabled is a second color. A visual indicia change comprising a color change is offered for purposes of illustration. Numerous types of visual indicia changes may be used to designate a GUI element as being enabled without departing from the spirit and scope of the present disclosure. For example, text may be used to show whether a GUI element is enabled or not enabled, such as by labels designating “Enabled” or “Not Enabled,” respectively. Further embodiments also include using any type of indicia change without departing from the spirit and scope of the present disclosure, in which such indicia changes are not limited to visual indicia changes.


Returning to query 1834, in response to determining that all settings associated with the selected step are configurable, process 1800 proceeds “All” to enable for selection all GUI element(s) associated with the setting(s) 1838. On the other hand, in response to determining that only specific settings are available for configuration, process 1800 branches “Specific” at query 1834 to enable specific GUI elements for selection 1836. A diagram view or window showing the enabled and/or non-enabled settings is then provided, in which such providing includes: rendering the GUI element(s) 1837 and displaying the diagram view or window with the enabled and/or non-enabled GUI element(s) 1840. Process 1800 then proceeds through off-page reference B 1842 to operation 1844 of FIG. 18C.


At operation 1844, an indication to configure a selected setting is received, such as by receiving a selection of a GUI element associated with the selected setting. Information related to the selected setting is then retrieved 1846, including information such as whether the setting is associated with a numeric value, for example. Query 1848 determines whether the setting is associated with entry of a numeric value. If entry of a numeric value is associated with the setting, process 1800 proceeds YES to provide data entry pad or window 1850 for receiving an entry of data 1852. In an embodiment, it may be determined whether the numeric value entered is within the available setting options 1854, for example. If the entry is not within the acceptable range, process 1800 proceeds to operation 1852 to receive another data entry. If the entry is within the available range 1854, process 1800 proceeds YES to update the setting 1856 according to the received value. In an embodiment, query 1854 is optional, and process 1800 proceeds directly to update the setting 1856 according to the received value.


In an embodiment, where a value for a first configured setting is received, another setting may be automatically calculated by the system based on the received first value. In an embodiment, a task may include a pump rate, such as the IC Circulation Rate, that the system automatically calculates based on another pump rate for the task, such as the IC Inlet Rate. In an embodiment, a user or operator may override an automatically calculated pump rate. In another embodiment, a user or operator may not be permitted to override the automatically calculated pump rate. In embodiments, setting options indicate whether it is possible to override an automatically calculated value. As shown in FIG. 18C, after updating a setting 1856 based on receiving an entry of data, for example, the system determines whether to automatically calculate any other settings in query 1870. Where no automatic calculation occurs, process 1800 proceeds NO to off-page reference C 1872, and process 1800 continues to query 1873 of FIG. 18D. Where another setting is automatically calculated based on configuration of the first setting, process 1800 proceeds YES to calculate the value for the second setting 1874 and update the second setting 1876. Process 1800 then proceeds through off-page reference C 1872 to query 1873 of FIG. 18D. In embodiments, query 1870 is optional, in which process 1800 provides for updating the setting operation 1856 and proceeding through off-page reference C 1872 to query 1873 of FIG. 18D.


Returning to query 1848, if it is determined that the selected setting is not associated with a numeric value, process 1800 proceeds NO to query 1858 to determine if a menu, list, or window, for example, of selection options is associated with the selected setting. In an embodiment, such selection options are predetermined or pre-defined. In an embodiment, such selection options comprise text, such as “Wash.” In another embodiment, the selection options include a numeric value. If a window or menu of selection options is associated with the selected setting, process 1800 proceeds YES to retrieve the applicable options 1860. The menu or window of options is then provided 1862, and a selection of an option is received 1864. For example, “Wash” is selected 1864 from a menu of options 1862 for the IC Inlet setting, according to an embodiment of the present disclosure. The selected setting is then updated 1856. Process 1800 then proceeds to query 1870 to determine if any other settings are automatically calculated based on the selection received at operation 1864. Where no other settings are automatically calculated based on the received selection at operation 1864, process 1800 proceeds NO through off-page reference C 1872 to query 1873 of FIG. 18D. In embodiments, query 1870 is optional, in which process 1800 provides for updating the setting operation 1856 and proceeding through off-page reference C 1872 to query 1873 of FIG. 18D.


Next, returning to query 1858, where a menu or window of selection options is not associated with the selected setting, process 1800 proceeds to operation 1866 for providing another input/selection capability, such as a field, radio button, control, checkbox, etc., according to embodiments of the present disclosure. Input is received at operation 1868, and the selected setting is updated 1856. Process 1800 then proceeds to query 1870. Where no other settings are automatically calculated based on the received selection at operation 1864, process 1800 proceeds NO through off-page reference C 1872 to query 1873 of FIG. 18D. In embodiments, query 1870 is optional, in which process 1800 provides for updating the setting operation 1856 and proceeding through off-page reference C 1872 to query 1873 of FIG. 18D.


At query 1873 of FIG. 18D, it is determined whether a confirmation of the configured setting(s) is received. If no confirmation is received, process 1800 proceeds NO to determine whether a selection to include or omit a step is received 1874. If such a selection is received, the appropriate application of the request occurs 1876, and process 1800 then proceeds to query 1873. If no steps are included or omitted at query 1874, process 1800 proceeds NO to query 1878 for determining whether a selection to configure other settings 1878 is received. If other settings are desired to be configured, process 1800 proceeds YES to off-page reference D 1880, in which process 1800 continues to operation 1844 of FIG. 18C. If no selection is received to configure another setting(s), process 1800 proceeds NO to receive an indication to configure another step(s) of the selected task 1882, such as by selecting a button(s) with the applicable functionality, for example. Process 1800 then proceeds through off-page reference E 1884 to operation 1830 of FIG. 18B. Returning to query 1873, if a confirmation of the configuration is received, process 1800 proceeds YES to provide an updated configure confirmation view 1886, in which the settings, including any configured settings, are provided in the updated view 1886. In an embodiment, the configure confirmation view comprises a table format. Query 1888 next determines whether an indication is received in the table view of the settings to configure any other step(s). If a selection for configuring other step(s) is received, process 1800 proceeds YES through off-page reference E 1884 to operation 1830 of FIG. 18B. If no other configuration of steps is desired, process 1800 proceeds NO to query 1889 to determine whether the configurations are to be stored. If an indication to save the configuration(s) is received, process 1800 proceeds YES to store the settings as defaults 1890, in which the previous default settings, including previously configured default settings, if any, are replaced with the newly configured settings. In an embodiment, such configurations are stored through the use of Extensible Markup Language (XML) files. However, any type of storage capabilities understood by those of skill in the art may be used without departing from the spirit and scope of the present disclosure. Process 1800 then terminates at END operation 1891, in which the configure task settings UI is closed, according to embodiments.


Returning to query 1889, if an indication to store the configurations is not received, process 1800 proceeds NO to receive an indication to reset the settings query 1892, in which it is determined whether a selection to reset the settings to the factory default settings is received 1892. If a selection to reset the settings is received, process 1800 proceeds YES to reset the settings to the default values 1893. Process 1800 then continues to query 1889. If no indication to reset at query 1892 is received, process 1800 proceeds NO to query 1894 to determine whether an indication to cancel the configuration is received. If an indication to cancel is received, process 1800 proceeds YES to exit the configure confirmation table view 1895, and process 1800 then terminates at END operation 1896. If no indication to cancel is received at query 1894, process 1800 proceeds NO to receive another indication 1897, such as an indication to move to another screen, for example, through the selection of a button, control, or other icon, according to an embodiment. The system responds 1898 to the selection of the other indication 1897, as applicable, e.g., moving to another screen in an embodiment selecting the next screen, for example, and process 1800 terminates at END operation 1896.


While FIGS. 18A, 18B, 18C, and 18D depict example process 1800 for configuring a pre-defined task, FIGS. 19A, 19B, 19C, and 19D illustrate example operational steps 1900 for configuring a custom or user-defined task, in accordance with embodiments of the present disclosure. Start operation 1902 is initiated, and process 1900 proceeds to operation 1904 for receiving a selection to configure. Configuration selection options, including GUI elements to select to configure system settings, display settings, task settings, etc., are provided 1906. A selection to configure the default settings for tasks is then received 1908. The types of tasks for selection are then provided 1910, and a selection of a custom task, e.g., Custom Task 1, is received 1912. The default settings for the selected custom task are then retrieved 1914 from storage, for example. The default settings are then provided in a configure confirmation view 1916, in accordance with an embodiment. In further embodiments, the configure confirmation view comprises a table format for listing the settings. Next, query 1918 determines whether a selection is received to add a step to the custom task. In an embodiment, a custom task includes a single step by default. If a selection to add a step is received, process 1900 proceeds YES to add the step and retrieve the default settings for the added step 1920. Process 1900 then continues to operation 1916 for providing the default settings in the configure confirmation table view, according to embodiments. If no step is desired to be added at query 1918, process 1900 proceeds NO through off-page reference A 1922 to query 1924 of FIG. 19B. While query 1918 determines whether a step is to be added, other embodiments provide for a user or operator to select to add a step at a later time, for example, in another UI, e.g., in the diagram view or window for configuring, etc. Embodiments provide for numerous types of windows to provide the functionality to add a step(s). Query 1918 is offered as an example for determining whether to add a step in process 1900. As noted, other embodiments provide for a step(s) to be added before or after query 1918, etc.


As process 1900 continues through off-page reference A 1922 to query 1924 of FIG. 19B, it is determined whether an indication is received to configure the settings for a step or process associated with the selected task and displayed in the configure confirmation UI. If a selection to configure the settings for a step is not received, process 1900 proceeds NO to query 1926, in which it is determined whether a selection to cancel the configuration is received. If an indication to cancel is received, process 1900 proceeds YES to close the configuration window 1928 and exit the configuration screen. Process 1900 then terminates at END operation 1930, in which a home screen of the cell expansion system may appear, according to embodiments. If an indication to cancel is not received at query 1926, process 1900 proceeds NO to receive another indication 1932, such as to switch to another screen through a selection of a next screen button, control, or icon, for example. The indication received is responded to 1934, and process 1900 then terminates at END operation 1930.


Returning to query 1924, if an indication to configure settings for a step is received, process 1900 proceeds YES to determine the step selected 1936, and the setting(s) associated with the selected step are retrieved 1938. The retrieved setting(s) are associated with GUI element(s) 1939. For example, the system associates 1939 a setting, e.g., a first setting, with a GUI element, e.g., a first GUI element. The GUI element may be further associated with data associated with the setting, e.g., default data, according to embodiments. For example, a GUI element may be associated with a numeric value, a media type, e.g., Cells, Reagent, etc., depending on the associated setting type. In embodiments, a first GUI element displayed in the diagram view shows the default data associated with the first GUI element, for example.


Query 1940 next determines if specific settings are available for configuration, e.g., a determination is made as to whether specific settings are configurable, in which the configurable settings are identified by the system. As discussed above, settings may be configured only for those settings that are available for configuration, according to embodiments of the present disclosure. If a setting cannot be configured, the button, or other GUI element, associated with the setting is not enabled for selection, in accordance with embodiments. For example, enabling the first GUI element for selection includes showing that the first GUI element is capable of selection by the use of one or more visual indicia showing such selection capabilities. In embodiments, a GUI element that is not enabled is a first color, while a GUI element that is enabled is a second color. A visual indicia change comprising a color change is offered for purposes of illustration. Numerous types of visual indicia changes may be used to designate a GUI element as being enabled without departing from the spirit and scope of the present disclosure. For example, text may be used to show whether a GUI element is enabled or not enabled, such as by labels designating “Enabled” or “Not Enabled,” for example. Further embodiments also include using any type of indicia change without departing from the spirit and scope of the present disclosure, in which such indicia changes are not limited to visual indicia changes.


Returning to query 1940, in response to determining that all settings associated with the selected step are configurable, process 1900 proceeds “All” to enable for selection all GUI element(s) associated with the setting(s) 1944. On the other hand, in response to determining that only specific settings are available for configuration, process 1900 branches “Specific” at query 1940 to enable specific GUI elements for selection 1942. A diagram view or window showing the enabled and/or non-enabled settings is then provided, in which such providing includes: rendering the GUI element(s) 1945 and displaying the diagram view or window with the enabled and/or non-enabled GUI element(s) 1946. Process 1900 then proceeds through off-page reference B 1948 to operation 1950 of FIG. 19C.


At operation 1950 of FIG. 19C, an indication to configure a selected setting is received, such as by receiving a selection of a GUI element associated with the selected setting. Information related to the selected setting is then retrieved 1952, including information such as whether the setting is associated with a numeric value, for example. Query 1954 determines whether the setting is associated with entry of a numeric value. If entry of a numeric value is associated with the setting, process 1900 proceeds YES to provide data entry pad or window 1956 for receiving an entry of data 1958. In embodiments, it may be determined whether the numeric value entered is within the available setting options 1960, for example. If the entry is not within the acceptable range, process 1900 proceeds to operation 1958 to receive another data entry. If the entry is within the available range 1960, process 1900 proceeds YES to update the setting 1962 according to the received value. In an embodiment, query 1960 is optional, and process 1900 proceeds to update the setting 1962 according to the received value.


Further, in updating the selected setting 1962, or after such updating, for example, embodiments may provide for a second setting to be automatically calculated based on the value received for the first setting. In an embodiment, such calculations occur automatically. In another embodiment, such calculations are optional. As an example, a task may include a pump rate, such as the IC Circulation Rate, that the system automatically calculates based on another pump rate for the task, such as the IC Inlet Rate. A user or operator may override an automatically calculated pump rate, according to an embodiment of the present disclosure. In another embodiment, a user or operator may not be permitted to override the automatically calculated pump rate. In embodiments, setting options indicate whether an automatically calculated value may be overridden. Process 1900 then proceeds through off-page reference C 1976 to query 1977 of FIG. 19D.


Returning to query 1954, if it is determined that the selected setting is not associated with a numeric value, process 1900 proceeds NO to query 1964 to determine if a menu, list, or window, for example, of selection options is associated with the selected setting. If a window, list, or menu, for example, of selection options is associated with the selected setting, process 1900 proceeds YES to retrieve the applicable options 1966. In an embodiment, such selection options are predetermined or pre-defined. The menu, list, or window of selection options is then provided 1968, and a selection of an option is received 1970. For example, “Wash” is selected for the IC Inlet setting, according to an embodiment of the present disclosure. In another embodiment, a numeric value is selected, for example. The selected setting is then updated 1962. In an embodiment, any automatically calculated settings (based on any received data for the selected setting, for example) are also updated at update setting operation 1962. In another embodiment, any automatically calculated settings are updated after update setting operation 1962. Process 1900 next proceeds through off-page reference C 1976 to query 1977 of FIG. 18D.


Returning to query 1964, where a menu, list, or window, for example, of selection options is not associated with the selected setting, process 1900 proceeds to operation 1972 for providing another input/selection capability, such as a field, radio button, control, checkbox, etc., according to embodiments of the present disclosure. Input or a selection is received at operation 1974, and the selected setting is updated 1962. In an embodiment, any automatically calculated settings (based on any received data for the selected setting, for example) are also updated at update setting operation 1962. In another embodiment, any automatically calculated settings are updated after update setting operation 1962. Process 1900 then proceeds through off-page reference C 1976 to query 1977 of FIG. 18D.


At query 1977 of FIG. 19D, it is determined whether a confirmation of the configured setting(s) is received. If no confirmation is received, process 1900 proceeds NO to determine whether a selection to include or omit a step is received 1978. If such a selection is received, the appropriate application of the request occurs 1979, and process 1900 then proceeds to query 1977. If no steps are included or omitted at query 1978, process 1900 proceeds NO to query 1980 for determining whether a selection to configure other settings is received. If other settings are desired to be configured, process 1900 proceeds YES to off-page reference D 1981, in which process 1900 continues to operation 1950 of FIG. 19C. If no selection is received to configure another setting(s), process 1900 proceeds NO to receive an indication to configure another step(s) of the selected task 1982. Process 1900 then proceeds through off-page reference E 1983 to operation 1936 of FIG. 19B. Returning to query 1977, if a confirmation of the configuration is received, process 1900 proceeds YES to provide an updated configure confirmation view 1984, in which the settings, including any configured settings, are provided in the updated view 1984. In embodiments, the updated configure confirmation view comprises a table format. Query 1985 next determines whether an indication is received in the updated configure confirmation view of the settings to configure any other step(s). If a selection for configuring other step(s) is received, process 1900 proceeds YES through off-page reference E 1983 to operation 1936 of FIG. 19B. If no other configuration of steps is desired, process 1900 proceeds NO to query 1986 to determine whether the configurations are to be stored. If an indication to save the configuration(s) is received, process 1900 proceeds YES to store the settings as defaults 1987, in which the previous default settings, including previously configured default settings, if any, are replaced with the newly configured settings. Process 1900 then terminates at END operation 1988, in which the configure task settings UI is closed, according to embodiments.


Returning to query 1986, if an indication to store the configurations is not received, process 1900 proceeds NO to receive an indication to reset the settings query 1989, in which it is determined whether a selection to reset the settings to the factory default settings is received 1989. If a selection to reset the settings is received, process 1900 proceeds YES to reset the settings to the default values 1990. Process 1900 then continues to query 1986. If no indication to reset is received, process 1900 proceeds NO to query 1991 to determine whether an indication to cancel the configuration is received. If an indication to cancel is received, process 1900 proceeds YES to exit the configure confirmation view 1992, and process 1900 then terminates at END operation 1993. If no indication to cancel is received at query 1991, process 1900 proceeds NO to receive another indication 1994, such as an indication to move to another screen through the use of a button, control, or icon, according to an embodiment. The system responds 1995 to the selection of the other indication 1994, as applicable, e.g., moving to another screen in an embodiment selecting the next screen, for example, and process 1900 terminates at END operation 1993.


While FIGS. 19A, 19B, 19C, and 19D depict example steps for receiving, such as by the system, for example, configuration settings, FIGS. 20A and 20B illustrate example operational steps 2000 for modifying, from the perspective of a user or operator, device, program, etc., for example, a protocol or task for use with the system, in accordance with embodiments of the present disclosure. Start operation 2002 is initiated, and process 2000 proceeds to select a task or protocol 2004 for use with the cell expansion system. The types of tasks or protocols are received 2006, including pre-defined and/or custom task types, in accordance with embodiments disclosed herein. A task type is then selected 2008, and the default settings for the selected task are received 2010. In an embodiment, the default settings for the selected task are displayed in a setup confirmation view 2010, in which the setup confirmation view comprises a table view in embodiments. A determination 2012 is made as to whether to modify a process, or step, for the selected task or protocol. If it is not desired to modify a setting for a process or step, process 2000 proceeds NO to query 2014 to determine if the selected task or protocol should be executed. If it is desired to run the task or protocol, process 2000 proceeds YES to select to execute the task 2016. In an embodiment, an indication to execute the task comprises selecting a “Start” button or other UI element indicating to run the task. The task or protocol is then executed, and process 2000 terminates at END operation 2018. If it is not desired to execute the task, another indication is selected 2020, such as an indication to cancel, for example, in which the current view or window is closed, and a home screen appears, according to an embodiment. Process 2000 then terminates at END operation 2018.


Returning to query 2012, if it is desired to modify a setting(s) for a process, or step, process 2000 proceeds YES to select the step to modify 2022. In an embodiment, selecting the step to modify comprises selecting a “Modify” button or other type of GUI element designating modification functionalities for a particular step in the setup view, in which the setup view, in embodiments, comprises a table format. Process 2000 then proceeds to receive a diagram view or window with those settings capable of being modified shown as enabled GUID elements in the diagram view or window 2024. A selection of an enabled GUI element associated with the desired setting to modify is made 2026, and process 2000 then proceeds through off-page reference A 2028 to query 2030 of FIG. 20B.


At query 2030 of FIG. 20B, it is determined if a data entry pad or window, a menu, list, or window, for example, of selection options, or another input/selection capability is received. If a data entry pad is received, process 2000 proceeds to operation 2034, in which a numeric value is entered. In an embodiment, the numeric value entered is within setting options for the associated setting. In another embodiment, the numeric value entered is not within the setting options for the associated setting, and another numeric value or other input data is then provided. Next, process 2000 proceeds to query 2036 to determine if the settings can be confirmed as those that are desired.


Returning to query 2030, if a menu, list, or window, for example, of selection options is received, process 2000 proceeds to select an option from the menu or window 2040. Next, process 2000 proceeds to query 2036 to determine if the settings can be confirmed as those that are desired. If, at query 2030, another input/selection capability is received, including means to provide data or make a selection through means other than a data entry pad/window or a menu/window of options, process 2000 proceeds to select an option or provide input 2044. Next, process 2000 proceeds to query 2036 to determine if the settings can be confirmed as those that are desired.


If the settings are not confirmed, process 2000 proceeds NO, in which another setting(s) is selected for modification 2046, and process 2000 then continues to query 2030. If, at query 2036, the modified settings are confirmed, process 2000 proceeds YES to receive an updated setup confirmation view including the modified setting(s) 2048. In an embodiment, the updated setup confirmation view comprises data for the settings in a table format. In the setup confirmation view, a selection may be made to select another step(s) to modify 2050. If such a selection is made, process 2000 proceeds YES through off-page reference B 2052 to operation 2022 of FIG. 20A. If it is not desired to modify any other step(s), process 2000 proceeds to query 2054 to determine whether to select to execute the task. If it is desired to execute the task 2054, the selection to run the protocol is made. The system then performs the selected protocol, and process 2000 terminates at END operation 2056. If a selection to execute the task is not made at query 2054, process 2000 proceeds NO to query 2058 to select to reset the modified setting(s) to the factory default settings. If it is desired to reset the setting(s), process 2000 proceeds YES to select to reset the settings to the default values 2060. If it is not desired to reset the settings, process 2000 proceeds NO to query 2062 to determine whether to cancel the modifying of any setting(s). If it is desired to cancel and exit the current screen, process 2000 proceeds YES to terminate process 2000 at END operation 2064, in which the current screen is closed, according to an embodiment. If it is not desired to cancel, process 2000 proceeds NO to enter another indication 2066, in which entering another indication comprises, for example, selecting a button, control, or icon to switch between the current page and another page. Other types of indications may be made in accordance with other embodiments. Process 2000 then terminates at END operation 2064.


While FIGS. 20A and 20B provide example steps for selecting to modify a setting of a task or protocol, from a user or operator perspective, for example, FIG. 21 depicts example operational steps 2100 for creating a custom or user-defined task from the perspective of a user or operator, according to embodiments of the present disclosure. Start operation 2101 is initiated, and process 2100 proceeds to select a task 2102, in which a “task” button or other GUI element is selected, for example. Protocol or task types are then received 2104, in which such task types include a pre-defined task type and a custom task type, according to embodiments. A custom task is selected 2106, and a list of available custom tasks, e.g., Custom Task 1, Custom Task 2, Custom Task 3, Custom Task 4, Custom Task 5, etc., is received 2108. A specific custom task, e.g., Custom Task 1, is then selected 2110, and default settings for the selected custom task are received 2112. In an embodiment, such default settings include the factory default settings for the selected custom task. In another embodiment, the default settings include settings previously configured and stored for the selected custom task.


Next, query 2114 determines whether it is desired to add a step(s) to the custom task. For example, the following step(s) may be selected: Wash Out Lines, Wash Out Lines Through Membrane, Wash Rapidly, Harvest Cells, Add Bolus, and Custom, according to embodiments. If a selection is made to add a step(s), process 2100 proceeds YES to receive default settings for the selected additional step(s) 2122. Process 2100 then continues to query 2114. If no other steps are desired to be added, process 2100 proceeds NO to determine whether it is desired to select to configure a step(s) 2116. If it is desired to configure a step(s), process 2100 proceeds YES to configure operation 2118, in which a desired configuration is provided for the selected step(s). A selection is made to save the configuration(s) 2119. The system stores the configuration, and process 2100 then terminates at END operation 2120. Returning to query 2116, if it is not desired to configure a step(s), process 2100 proceeds NO to select to execute the task query 2124. If it is desired to execute the task, process 2100 proceeds to operation 2126, in which information regarding the performance of the task is received after task execution. Process 2100 then terminates at END operation 2120. However, if it is not desired to execute the task at query 2124, process 2100 proceeds to query 2128 to determine whether to modify a setting(s) of the custom task. If it is desired to modify a setting(s), process 2100 proceeds YES to provide the desired modification 2130. Following modify operation 2130, process 2100 proceeds to confirm the modification(s) 2131. In embodiments, process 2100 then proceeds to query 2132 to determine if another action, such as to cancel, move to another screen through selection of a button, control, or icon, for example, is selected. If no other action is selected, process 2100 proceeds to query 2124 to determine whether to execute the task. Returning to query 2132, if another action is selected, process 2100 proceeds YES, in which the system responds to the selected action, and process 2100 then terminates at END operation 2120. Further, returning to query 2128, if it is not desired to modify a setting, process 2100 proceeds NO to determine whether to select another action 2132. If no other action is selected, process 2100 proceeds to query 2124 to determine whether to execute the task. On the other hand, if another action is selected at query 2132, process 2100 proceeds YES, in which the system responds to the selected action, and process 2100 then terminates at END operation 2120.


While FIG. 21 provides for creating a custom task, from the perspective of a user or operator, for example, FIGS. 22A, 22B, and 22C illustrate example operational steps 2200 for configuring a task, from the perspective of a user or operator, for example, in accordance with embodiments of the present disclosure. Start operation 2202 is initiated, and process 2200 then proceeds to select to configure operation 2204, in which a selection of a “Configuration” GUI element, e.g., button, may be made according to an embodiment. In response to the configuration selection, configuration options are received 2206, in which such configuration options include system settings, display settings, and/or protocol or task default settings, for example. A selection is then made to configure the default settings for a task 2208, and the task type options are received 2210. A type of task is then selected 2212, and default settings for the selected task type are received 2214. In an embodiment, such default settings are received in a configure confirmation view, in which the configure confirmation view includes settings and data for the settings. According to an embodiment, the settings and associated data in the configure confirmation view are displayed in a table format. Next, it is determined whether the selected task is a custom or user-defined task at query 2216. If a custom task selection is made at operation 2212, process 2200 proceeds YES to query 2218 to determine if a step is desired to be added. If adding a step is desired, process 2200 proceeds YES to select a step to add 2220. Default settings for the added step are then received 2222. Process 2200 the continues through off-page reference A 2224 to query 2226 of FIG. 22B. If it is not desired to add a step to the custom task, process 2200 proceeds NO to off-page reference A 2224, and process 2200 then proceeds to query 2226. Returning to query 2216, if a pre-defined task is selected instead of a custom task at operation 2212, process 2200 proceeds NO through off-page reference A 2224 to query 2226.


Next, at query 2226, it is determined whether to configure a setting(s) of a step. If it is desired to configure a setting(s) of a step, process 2200 proceeds YES to select a step to configure 2238. The settings associated with the selected step are then received 2240. In an embodiment, the setting(s) associated with a step(s) are received in a diagram view of the cell expansion system. A selection to configure a first setting is made 2242. Depending on the type of setting selected to be configured, a data entry pad or window; menu, list, or window, for example, of selection options; or other input/selection capability is received 2244. In an embodiment, selection options in a menu, list, or window, for example, are predetermined or pre-defined. Where a data entry pad or window is received 2246, process 2200 proceeds to enter a numeric value 2248. In an embodiment, the entered numeric value is within the setting options. In another embodiment, the entered numeric value is not within the setting options, e.g., range of acceptable values, and another numeric value is entered 2248. In yet another embodiment, it is optional to determine whether the entered numeric value is within the setting options. Process 2200 then proceeds through off-page reference B 2250 to query 2258 of FIG. 22C. Returning to query 2244, where a menu, list, or window of selection options is received, process 2200 proceeds to select an option from the selection choices 2252. Process 2200 then proceeds through off-page reference B 2250 to query 2258 of FIG. 22C. In another embodiment, if another input or selection capability is received, process 2200 proceeds to select the option or provide input 2256, and process 2200 then proceeds through off-page reference B 2250 to query 2258 of FIG. 22C.


Turning to FIG. 22C, a selection may be made to confirm the configured setting(s) 2258. If no confirmation is made, process 2200 proceeds NO to select to configure other setting(s) 2260. Process 2200 then proceeds through off-page reference C 2262 to operation 2242 of FIG. 22B. If the settings are confirmed at query 2258, process 2200 proceeds YES to receive an updated setup confirmation view 2264. In an embodiment, the updated setup confirmation view 2264 includes the step(s) or process(es) and setting(s) associated with the protocol or task in a table format. Within the setup confirmation screen 2264, if a selection is made to configure another step(s) 2266, process 2200 then proceeds YES through off-page reference D 2268 to operation 2238 of FIG. 22B. If no other steps are selected to configure, process 2200 proceeds NO to query 2270, in which it is determined whether to select to save the configuration(s). If it is indicated to save the configuration(s), process 2200 proceeds YES to END operation 2272, and process 2200 terminates. In an embodiment, process 2200 terminates by storing, by the system, the configuration(s) made, and closing the current screen. If a selection to save is not made at query 2270, process 2200 proceeds NO to query 2274 to determine whether to select to reset a configured setting(s) to the factory default setting(s). If a selection is made to reset the setting(s), process 2200 proceeds YES to receive reset settings 2276. Process 2200 then proceeds to query 2270 to determine whether to save the setting(s). If, at query 2274, a selection is not made to reset the settings, process 2200 proceeds NO to query 2278 to determine if a selection is made to cancel the configuration. If a selection is made to cancel, process 2200 proceeds YES to END operation 2280, in which process 2200 is terminated, such as by closing the current screen, according to an embodiment. If a selection is not made to cancel at query 2278, process 2200 proceeds NO to enter another indication 2282, such as selecting a button, control, or icon to move to another page, for example. In embodiments, the system responds to the selected action, and process 2200 then terminates at END operation 2280.


With respect to the processes illustrated in FIGS. 14A, 14B, 14C, 14D, 15A, 15B, 16, 17, 18A, 18B, 18C, 18D, 19A, 19B, 19C, 19D, 20A, 20B, 21, 22A, 22B, and 22C, the operational steps depicted are offered for purposes of illustration and may be rearranged, combined into other steps, used in parallel with other steps, etc., according to embodiments of the present disclosure. Where queries are depicted as operational steps, such queries may be determined by event-based interactions, polling, and/or other means or processes, according to embodiments. Further, fewer or additional steps may be used in embodiments without departing from the spirit and scope of the present disclosure.


Turning to FIG. 23, an example data structure 2300 having attributes, fields, and/or portions storing data is provided in accordance with embodiments disclosed herein. The data structure may be part of any storage system. The data structure includes a task or protocol, and, in embodiments, the task or protocol data further comprises identifying data 2302. One or more tasks or protocols may be included, as shown by ellipsis 2320 and additional task identifying data 2322. Embodiments further provide for each protocol or task to have a step or process associated with the protocol or task, in which embodiments provide for the step or process to further comprise identifying data 2304. Further, each protocol or task 2302 and/or 2322, for example, may have one or more additional steps or processes associated therewith, as shown by step identifying data 2314, ellipsis 2316, and additional step 2318 for protocol or task 2302, and step identifying data 2323, 2324, and ellipsis 2326 for protocol or task 2322.


In embodiments, each process or step may comprise data including default settings 2305, 2306, 2307, 2309, 2311, 2313, and 2315. In an embodiment, the default settings 2306 comprise data associated with particular settings, including, for example, the IC Inlet, IC Inlet Rate, etc. In an embodiment, default settings 2306 comprise the factory default settings stored by the system. In another embodiment, the default settings comprise previously configured and saved settings, in which such previously configured settings replaced the factory default settings as the new default settings. In yet another embodiment, even where the default settings are configured, the factory default settings are also saved with data 2306, or, in another embodiment, as other data in data structure 2300, as an embodiment provides for resetting configured settings to the factory default settings. Where such resetting of the settings is desired, data for the factory default settings are retrieved.


In embodiments, data structure 2300 further comprises data for setting options 2308, 2327, 2329, 2331, 2333, 2335, and 2337, in which the setting options comprise ranges, for example, of possible data that may be provided for one or more settings. For example, embodiments involving a custom or user-defined task include setting options for the IC Inlet Rate of: 0 to 500 mL/min. Other data, including additional or fewer data, associated with data structure 2300 may be included as shown by ellipses 2310, 2339, and 2343 and Other data 2312, 2341, and 2345, according to embodiments. For example, other data associated with a protocol or task may include, according to an embodiment, data indicating the type of GUI element used to represent a setting in a diagram view or window of the cell expansion system, for example.


The data types depicted in the example data structure 2300 of FIG. 23 are offered for purposes of illustration. The order of the data types may be rearranged, according to embodiments. Further, fewer or additional data attributes, fields, and/or portions may be used in embodiments without departing from the spirit and scope of the present disclosure. Further, numerous types of names referring to the data attributes, fields, and/or portions may be used without departing from the spirit and scope of the present disclosure.


Finally, FIG. 24 illustrates example components of a cell expansion system 702 upon which embodiments of the present disclosure may be implemented. The cell expansion system 702 may include a user interface 2410, a processing system 2402, and/or storage 2408. The user interface 2410 may include output device(s) 2412, and/or input device(s) 2414 as understood by a person of skill in the art. Output device(s) 2412 may include one or more touch screens, in which the touch screen may comprise a display area for providing one or more application windows. The touch screen may also be an input device 2414 that can receive and/or capture physical touch events from a user or operator, for example. The touch screen may comprise a liquid crystal display (LCD) having a capacitance structure that allows the processing system 2402 to deduce the location(s) of touch event(s), as understood by those of skill in the art. The processing system 2402 may then map the location of touch events to UI elements rendered in predetermined locations of an application window. The touch screen may also receive touch events through one or more other electronic structures, according to embodiments. Other output devices 2412 may include a printer, speaker, etc. Other input devices 2414 may include a keyboard, other touch input devices, mouse, voice input device, etc., as understood by a person of skill in the art.


Processing system 2402 may include a processing unit 2404 and/or a memory 2406, according to embodiments of the present disclosure. The processing unit 2404 may be a general purpose processor operable to execute instructions stored in memory 2406. Processing unit 2404 may include a single processor or multiple processors, according to embodiments. Further, in embodiments, each processor may be a multi-core processor having one or more cores to read and execute separate instructions. The processors may include general purpose processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), other integrated circuits, etc., as understood by a person of skill in the art.


The memory 2406 may include any short-term or long-term storage for data and/or processor executable instructions, according to embodiments. The memory 2406 may include, for example, Random Access Memory (RAM), Read-Only Memory (ROM), or Electrically Erasable Programmable Read-Only Memory (EEPROM), as understood by a person of skill in the art. Other storage media may include, for example, CD-ROM, tape, digital versatile disks (DVD) or other optical storage, tape, magnetic disk storage, magnetic tape, other magnetic storage devices, etc., as understood by a person of skill in the art.


Storage 2408 may be any long-term data storage device or component. Storage 2408 may include one or more of the systems described in conjunction with the memory 2406, according to embodiments. The storage 2408 may be permanent or removable. In embodiments, storage 2408 stores data generated or provided by the processing system 2402.


It will be apparent to those skilled in the art that various modifications can be made to the apparatus, systems, and methods described herein. Thus, it should be understood that the embodiments are not limited to the subject matter discussed in the Specification. Rather, the present disclosure is intended to cover modifications, variations, and/or equivalents. The acts, features, structures, and/or media are disclosed as illustrative embodiments for implementation of the claims. The invention is defined by the appended claims.

Claims
  • 1. A non-transitory processor-readable storage medium storing executable instructions which, when executed by a processor, perform a method of customizing a protocol for use with a cell expansion system, the method comprising: receiving a first selection, in a user interface associated with the cell expansion system, to customize a first protocol for expanding a plurality of cells in a bioreactor of the cell expansion system, wherein the user interface is operable to display data and receive an input;in response to receiving the first selection, providing, through the user interface, a diagram view of the cell expansion system for customizing the first protocol, comprising: providing a first setting for the first protocol as a first graphical user interface (GUI) element for selection;receiving, through the user interface, a second selection of the first GUI element;receiving, through the user interface, a first value for the first GUI element;receiving a third selection to execute the first protocol; andexecuting the first protocol using the first value for the first setting to expand the plurality of the cells.
  • 2. The non-transitory processor-readable storage medium as defined in claim 1, the method further comprising: providing, through the user interface, one or more types of processes to add;receiving, through the user interface, a fourth selection of a first process; andin response to receiving the fourth selection, associating the diagram view with the first process.
  • 3. The non-transitory processor-readable storage medium as defined in claim 2, wherein the one or more types of processes to add comprises: wash out lines, wash out lines through membrane, wash rapidly, harvest cells, add bolus, and/or custom.
  • 4. The non-transitory processor-readable storage medium as defined in claim 1, the method further comprising: determining the first setting is associated with a numeric value; andin response to determining the first setting is associated with the numeric value, providing a data entry pad in the diagram view to receive the first value.
  • 5. The non-transitory processor-readable storage medium as defined in claim 4, the method further comprising: receiving, through the data entry pad, the first value for the first setting; andstoring the first value for the first setting.
  • 6. The non-transitory processor-readable storage medium as defined in claim 1, the method further comprising: determining the first setting is associated with a menu of selection options; andin response to determining the first setting is associated with the menu of selection options, providing the menu of selection options in the diagram view.
  • 7. The non-transitory processor-readable storage medium as defined in claim 1, wherein the user interface comprises a touch screen.
  • 8. The non-transitory processor-readable storage medium as defined in claim 7, wherein the touch screen comprises an input device that can receive one or more touch events.
  • 9. The non-transitory processor-readable storage medium as defined in claim 8, wherein the receiving the first selection comprises: receiving a touch event on the touch screen, wherein the touch screen comprises a display area;determining a location of the touch event;mapping the location of the touch event to the first GUI element; anddetermining the first GUI element is associated with the first setting.
  • 10. The non-transitory processor-readable storage medium as defined in claim 1, wherein the first setting comprises: intracapillary inlet, intracapillary inlet rate, intracapillary circulation rate, extracapillary inlet, extracapillary inlet rate, extracapillary circulation rate, rocker, and/or stop condition.
  • 11. The non-transitory processor-readable storage medium as defined in claim 1, wherein the providing the first setting for the first protocol as the first GUI element for selection comprises: enabling the first GUI element for selection.
  • 12. The non-transitory processor-readable storage medium as defined in claim 11, wherein the enabling the first GUI element for selection comprises: associating a first visual indicator with the first GUI element; andin response to determining the first setting can be modified, associating a second visual indicator with the first GUI element.
  • 13. The non-transitory processor-readable storage medium as defined in claim 1, wherein the providing, through the user interface, the diagram view of the cell expansion system for customizing the first protocol comprises: depicting an intracapillary space of the bioreactor in the diagram view; anddepicting an extracapillary space of the bioreactor in the diagram view.
  • 14. The non-transitory processor-readable storage medium as defined in claim 2, the method further comprising: receiving, through the user interface, a fifth selection of a second process.
  • 15. The non-transitory processor-readable storage medium as defined in claim 14, the method further comprising: providing, through the user interface, a second diagram view of the cell expansion system for customizing the first protocol, comprising: associating the second diagram view with the second process in the user interface.
  • 16. A method of customizing a protocol for use with a cell expansion system, the method comprising: receiving a first selection, in a user interface associated with the cell expansion system, to customize a first protocol for expanding a plurality of cells in a bioreactor of the cell expansion system, wherein the user interface is operable to display data and receive an input;in response to receiving the first selection, providing, through the user interface, a diagram view of the cell expansion system for customizing the first protocol, comprising: providing a first setting for the first protocol as a first graphical user interface (GUI) element for selection;receiving, through the user interface, a second selection of the first GUI element;receiving, through the user interface, a first value for the first GUI element;receiving a third selection to execute the first protocol; andexecuting the first protocol using the first value for the first setting to expand the plurality of the cells.
  • 17. The method as defined in claim 16, further comprising: providing, through the user interface, one or more types of processes to add;receiving, through the user interface, a fourth selection of a first process; andin response to receiving the fourth selection, associating the diagram view with the first process.
  • 18. The method as defined in claim 17, wherein the one or more types of processes to add comprises: wash out lines, wash out lines through membrane, wash rapidly, harvest cells, add bolus, and/or custom.
  • 19. The method as defined in claim 17, further comprising: receiving, through the user interface, a fifth selection of a second process; andin response to receiving the fifth selection: providing, through the user interface, a second diagram view of the cell expansion system for customizing the first protocol, comprising: associating the second diagram view with the second process in the user interface.
  • 20. The method as defined in claim 17, further comprising: determining the first setting is associated with a numeric value; andin response to determining the first setting is associated with the numeric value, providing a data entry pad in the diagram view to receive the first value.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of, and claims priority to, U.S. patent application Ser. No. 15/610,224, entitled, “Customizable Methods and Systems of Growing and Harvesting Cells in a Hollow Fiber Bioreactor System,” filed on May 31, 2017, and issued as U.S. Pat. No. 10,669,519 on Jun. 2, 2020, which is a divisional application of, and claims priority to, U.S. patent application Ser. No. 13/269,351, entitled, “Customizable Methods and Systems of Growing and Harvesting Cells in a Hollow Fiber Bioreactor System,” filed on Oct. 7, 2011, and issued as U.S. Pat. No. 9,677,042 on Jun. 13, 2017, which claims the benefit of U.S. Provisional Application Ser. No. 61/391,152, filed on Oct. 8, 2010, and entitled, “Methods of Growing and Harvesting Cells in a Hollow Fiber Bioreactor System” and of U.S. Provisional Application Ser. No. 61/434,726, filed on Jan. 20, 2011, and entitled, “Methods of Growing and Harvesting Cells in a Hollow Fiber Bioreactor System.” The disclosures of the above-identified applications are hereby incorporated by reference in their entireties as if set forth herein in full for all that they teach and for all purposes.

US Referenced Citations (1099)
Number Name Date Kind
2997077 Rodrigues Aug 1961 A
3013435 Rodrigues Dec 1961 A
3067915 Shapiro et al. Dec 1962 A
3191807 Rodrigues Jun 1965 A
3283727 Rodrigues Nov 1966 A
3701717 Ingvorsen Oct 1972 A
3821087 Knazek et al. Jun 1974 A
3883393 Knazek et al. May 1975 A
3896061 Tanzawa et al. Jul 1975 A
3997396 Delente Dec 1976 A
4173415 Wyatt Nov 1979 A
4184922 Knazek et al. Jan 1980 A
4200689 Knazek et al. Apr 1980 A
4220725 Knazek et al. Sep 1980 A
4301010 Eddleman et al. Nov 1981 A
4301118 Eddleman et al. Nov 1981 A
4391912 Yoshida et al. Jul 1983 A
4412990 Lundblad et al. Nov 1983 A
4418691 Yannas et al. Dec 1983 A
4439322 Sonoda et al. Mar 1984 A
4439901 Eddleman Apr 1984 A
4440853 Michaels et al. Apr 1984 A
4478829 Landaburu et al. Oct 1984 A
4486188 Altshuler et al. Dec 1984 A
4509695 Bessman Apr 1985 A
4585654 Landaburu et al. Apr 1986 A
4647539 Bach Mar 1987 A
4650766 Harm et al. Mar 1987 A
4657866 Kumar Apr 1987 A
4670544 Schwinn et al. Jun 1987 A
4722902 Harm et al. Feb 1988 A
4727059 Binder et al. Feb 1988 A
4789658 Yoshimoto et al. Dec 1988 A
4804628 Cracauer et al. Feb 1989 A
4828706 Eddleman May 1989 A
4885087 Kopf Dec 1989 A
4889812 Guinn et al. Dec 1989 A
4894342 Guinn et al. Jan 1990 A
4897358 Carrasco Jan 1990 A
4910139 Chang et al. Mar 1990 A
4918019 Guinn Apr 1990 A
4960521 Keller Oct 1990 A
4973558 Wilson et al. Nov 1990 A
4988623 Schwarz et al. Jan 1991 A
4999298 Wolfe et al. Mar 1991 A
5015585 Robinson May 1991 A
5019054 Clement et al. May 1991 A
5079168 Amiot Jan 1992 A
5081035 Halberstadt Jan 1992 A
5126238 Gebhard et al. Jun 1992 A
5130141 Law et al. Jul 1992 A
5149544 Gentile et al. Sep 1992 A
5156844 Aebischer et al. Oct 1992 A
5162225 Sager et al. Nov 1992 A
5169930 Ruoslahti et al. Dec 1992 A
5192553 Boyse et al. Mar 1993 A
5197985 Caplan et al. Mar 1993 A
5202254 Amiot et al. Apr 1993 A
5225346 Matsumiya et al. Jul 1993 A
5226914 Caplan et al. Jul 1993 A
5240614 Ofsthun et al. Aug 1993 A
5240861 Bieri Aug 1993 A
5252216 Folena-Wasserman et al. Oct 1993 A
5283058 Faustman Feb 1994 A
5310676 Johansson et al. May 1994 A
5324428 Flaherty Jun 1994 A
5330915 Wilson et al. Jul 1994 A
5342752 Platz et al. Aug 1994 A
5397706 Correa et al. Mar 1995 A
5399493 Emerson et al. Mar 1995 A
5416022 Amiot May 1995 A
5422197 Zito Jun 1995 A
5433909 Martakos et al. Jul 1995 A
5436151 McGlave et al. Jul 1995 A
5437994 Emerson et al. Aug 1995 A
5439757 Zito Aug 1995 A
5453357 Hogan Sep 1995 A
5459069 Palsson et al. Oct 1995 A
5460964 McGlave et al. Oct 1995 A
H1509 Eran et al. Dec 1995 H
5478739 Slivka et al. Dec 1995 A
5486359 Caplan et al. Jan 1996 A
5486389 Gerber Jan 1996 A
5496659 Zito Mar 1996 A
5507949 Ho Apr 1996 A
5510257 Sirkar et al. Apr 1996 A
5512180 Ho Apr 1996 A
5527467 Ofsthun et al. Jun 1996 A
5541105 Melink et al. Jul 1996 A
5543316 Zawadzka et al. Aug 1996 A
5545492 Zito Aug 1996 A
5549674 Humes et al. Aug 1996 A
5564183 Satou et al. Oct 1996 A
5571720 Grandics et al. Nov 1996 A
5581687 Lyle et al. Dec 1996 A
5591625 Gerson et al. Jan 1997 A
5593580 Kopf Jan 1997 A
5595909 Hu et al. Jan 1997 A
5599703 Davis et al. Feb 1997 A
5605822 Emerson et al. Feb 1997 A
5605829 McGlave et al. Feb 1997 A
5605835 Hu et al. Feb 1997 A
5622857 Goffe Apr 1997 A
5626731 Cooley et al. May 1997 A
5627070 Gruenberg May 1997 A
5631006 Melink et al. May 1997 A
5635386 Palsson et al. Jun 1997 A
5635387 Fei et al. Jun 1997 A
5643736 Bruder et al. Jul 1997 A
5646043 Emerson et al. Jul 1997 A
5653887 Wahl et al. Aug 1997 A
5654186 Cerami et al. Aug 1997 A
5656421 Gebhard et al. Aug 1997 A
5656479 Petitte et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667985 O'Leary et al. Sep 1997 A
5670147 Emerson et al. Sep 1997 A
5670351 Emerson et al. Sep 1997 A
5670372 Hogan Sep 1997 A
5674750 Kraus et al. Oct 1997 A
5677136 Simmons et al. Oct 1997 A
5677355 Shalaby et al. Oct 1997 A
5684712 Goffe et al. Nov 1997 A
5686289 Humes et al. Nov 1997 A
5688687 Palsson et al. Nov 1997 A
5695989 Kalamasz Dec 1997 A
5700289 Breitbart et al. Dec 1997 A
5705534 D'Agostino et al. Jan 1998 A
5707859 Miller et al. Jan 1998 A
5712154 Mullon et al. Jan 1998 A
5712163 Parenteau et al. Jan 1998 A
5716827 Tsukamoto et al. Feb 1998 A
5728581 Schwartz et al. Mar 1998 A
5733541 Taichman et al. Mar 1998 A
5733542 Haynesworth et al. Mar 1998 A
5736396 Bruder et al. Apr 1998 A
5744347 Wagner et al. Apr 1998 A
5750397 Tsukamoto et al. May 1998 A
5750651 Oppermann et al. May 1998 A
5753506 Johe May 1998 A
5759793 Schwartz et al. Jun 1998 A
5763194 Slowiaczek et al. Jun 1998 A
5763197 Tsukamoto et al. Jun 1998 A
5763261 Gruenberg Jun 1998 A
5763266 Palsson et al. Jun 1998 A
5766944 Ruiz Jun 1998 A
5766948 Gage et al. Jun 1998 A
5766951 Brown Jun 1998 A
5772994 Ildstad et al. Jun 1998 A
5783075 Eddleman et al. Jul 1998 A
5783216 Faustman Jul 1998 A
5785912 Cooley et al. Jul 1998 A
5804446 Cerami et al. Sep 1998 A
5806529 Reisner et al. Sep 1998 A
5807686 Wagner et al. Sep 1998 A
5811094 Caplan et al. Sep 1998 A
5811397 Francavilla et al. Sep 1998 A
5817773 Wilson et al. Oct 1998 A
5821218 Toback et al. Oct 1998 A
5827735 Young et al. Oct 1998 A
5827740 Pittenger Oct 1998 A
5830921 Cooley et al. Nov 1998 A
5833979 Schinstine et al. Nov 1998 A
5837258 Grotendorst Nov 1998 A
5837539 Caplan et al. Nov 1998 A
5837670 Hartshorn Nov 1998 A
5840502 Van Vlasselaer Nov 1998 A
5840576 Schinstine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5843633 Yin et al. Dec 1998 A
5843780 Thomson Dec 1998 A
5846796 Cerami et al. Dec 1998 A
5849553 Anderson et al. Dec 1998 A
5851832 Weiss et al. Dec 1998 A
5853247 Shroyer Dec 1998 A
5853717 Schinstine et al. Dec 1998 A
5855608 Brekke et al. Jan 1999 A
5855613 Antanavich et al. Jan 1999 A
5855619 Caplan et al. Jan 1999 A
5858747 Schinstine et al. Jan 1999 A
5858782 Long et al. Jan 1999 A
5861315 Nakahata Jan 1999 A
5866115 Kanz et al. Feb 1999 A
5866420 Talbot et al. Feb 1999 A
5868930 Kopf Feb 1999 A
5874301 Keller et al. Feb 1999 A
5882295 Kope Mar 1999 A
5882918 Goffe Mar 1999 A
5882929 Fofonoff et al. Mar 1999 A
5888807 Palsson et al. Mar 1999 A
5898040 Shalaby et al. Apr 1999 A
5902741 Purchio et al. May 1999 A
5906827 Khouri et al. May 1999 A
5906934 Grande et al. May 1999 A
5908782 Marshak et al. Jun 1999 A
5908784 Johnstone et al. Jun 1999 A
5912177 Turner et al. Jun 1999 A
5914108 Tsukamoto et al. Jun 1999 A
5914268 Keller et al. Jun 1999 A
5922597 Verfaillie et al. Jul 1999 A
5922847 Broudy et al. Jul 1999 A
5925567 Kraus et al. Jul 1999 A
5928945 Seliktar et al. Jul 1999 A
5935849 Schinstine et al. Aug 1999 A
5938929 Shimagaki et al. Aug 1999 A
5939323 Valentini et al. Aug 1999 A
5942225 Bruder et al. Aug 1999 A
5955353 Amiot Sep 1999 A
5958763 Goffe Sep 1999 A
5965436 Thiede et al. Oct 1999 A
5968829 Carpenter Oct 1999 A
5972703 Long et al. Oct 1999 A
5980795 Klotzer et al. Nov 1999 A
5981211 Hu et al. Nov 1999 A
5981708 Lawman et al. Nov 1999 A
5985653 Armstrong et al. Nov 1999 A
5994129 Armstrong et al. Nov 1999 A
5998184 Shi Dec 1999 A
6001585 Gramer Dec 1999 A
6001643 Spaulding Dec 1999 A
6001647 Peck et al. Dec 1999 A
6004743 Kenyon et al. Dec 1999 A
6010696 Caplan et al. Jan 2000 A
6015554 Galy Jan 2000 A
6022540 Bruder et al. Feb 2000 A
6022742 Kopf Feb 2000 A
6022743 Naughton et al. Feb 2000 A
6027743 Khouri et al. Feb 2000 A
6029101 Yoshida et al. Feb 2000 A
6030836 Thiede et al. Feb 2000 A
6037174 Smith et al. Mar 2000 A
6040180 Johe Mar 2000 A
6045818 Cima et al. Apr 2000 A
6048721 Armstrong et al. Apr 2000 A
6048727 Kopf Apr 2000 A
6049026 Muschler Apr 2000 A
6054121 Cerami et al. Apr 2000 A
6060270 Humes May 2000 A
6066317 Yang et al. May 2000 A
6071691 Hoekstra et al. Jun 2000 A
6074366 Rogers et al. Jun 2000 A
6077708 Collins et al. Jun 2000 A
6080581 Anderson et al. Jun 2000 A
6082364 Balian et al. Jul 2000 A
6083747 Wong et al. Jul 2000 A
6086643 Clark et al. Jul 2000 A
6087113 Caplan et al. Jul 2000 A
6096532 Armstrong et al. Aug 2000 A
6096537 Chappel Aug 2000 A
6103117 Shimagaki et al. Aug 2000 A
6103522 Torok-Storb et al. Aug 2000 A
6110176 Shapira Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6110739 Keller et al. Aug 2000 A
6114307 Jaspers et al. Sep 2000 A
6117985 Thomas et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6127141 Kopf Oct 2000 A
6129911 Faris Oct 2000 A
6143293 Weiss et al. Nov 2000 A
6146360 Rogers et al. Nov 2000 A
6146888 Smith et al. Nov 2000 A
6149902 Artavanis-Tsakonas et al. Nov 2000 A
6149906 Mosca Nov 2000 A
6150164 Humes Nov 2000 A
6152964 Van Blitterswijk et al. Nov 2000 A
6162643 Wille, Jr. Dec 2000 A
6165225 Antanavich et al. Dec 2000 A
6165785 Ogle et al. Dec 2000 A
6174333 Kadiyala et al. Jan 2001 B1
6174526 Cerami et al. Jan 2001 B1
6174666 Pavlakis et al. Jan 2001 B1
6179871 Halpern Jan 2001 B1
6190910 Kusakabe et al. Feb 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6197575 Griffith et al. Mar 2001 B1
6200606 Peterson et al. Mar 2001 B1
6200806 Thomson Mar 2001 B1
6214369 Grande et al. Apr 2001 B1
6214574 Kopf Apr 2001 B1
6224860 Brown May 2001 B1
6225119 Qasba et al. May 2001 B1
6225368 D'Agostino et al. May 2001 B1
6228117 De Bruijn et al. May 2001 B1
6228607 Kersten et al. May 2001 B1
6228635 Armstrong et al. May 2001 B1
6238908 Armstrong et al. May 2001 B1
6239157 Mbalaviele May 2001 B1
6242252 Reid et al. Jun 2001 B1
6248319 Zsebo et al. Jun 2001 B1
6248587 Rodgers et al. Jun 2001 B1
6255112 Thiede et al. Jul 2001 B1
6258597 Bachovchin et al. Jul 2001 B1
6258778 Rodgers et al. Jul 2001 B1
6261549 Fernandez et al. Jul 2001 B1
6280718 Kaufman et al. Aug 2001 B1
6280724 Moore Aug 2001 B1
6281012 McIntosh et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6287864 Bagnis et al. Sep 2001 B1
6291249 Mahant et al. Sep 2001 B1
6297213 Oppermann et al. Oct 2001 B1
6299650 Van Blitterswijk et al. Oct 2001 B1
6306169 Lee et al. Oct 2001 B1
6306424 Vyakamam et al. Oct 2001 B1
6306575 Thomas et al. Oct 2001 B1
6322784 Pittenger et al. Nov 2001 B1
6322786 Anderson Nov 2001 B1
6326198 Emerson et al. Dec 2001 B1
6326201 Fung et al. Dec 2001 B1
6328765 Hardwick et al. Dec 2001 B1
6328960 McIntosh et al. Dec 2001 B1
6333029 Vyakamam et al. Dec 2001 B1
6335195 Rodgers et al. Jan 2002 B1
6338942 Kraus et al. Jan 2002 B2
6340592 Stringer Jan 2002 B1
6342370 Connolly et al. Jan 2002 B1
6355239 Bruder et al. Mar 2002 B1
6358252 Shapira Mar 2002 B1
6361997 Huss Mar 2002 B1
6365149 Vyakamam et al. Apr 2002 B2
6368636 McIntosh et al. Apr 2002 B1
6372210 Brown Apr 2002 B2
6372244 Antanavich et al. Apr 2002 B1
6372494 Naughton et al. Apr 2002 B1
6372892 Ballinger et al. Apr 2002 B1
6376742 Zdrahala et al. Apr 2002 B1
6379953 Bruder et al. Apr 2002 B1
6387367 Davis-Sproul et al. May 2002 B1
6387369 Pittenger et al. May 2002 B1
6387693 Rieser et al. May 2002 B2
6387964 D'Agostino et al. May 2002 B1
6392118 Hammang et al. May 2002 B1
6394812 Sullivan et al. May 2002 B1
6399580 Elias et al. Jun 2002 B1
6410320 Humes Jun 2002 B1
6414219 Denhardt et al. Jul 2002 B1
6416496 Rogers et al. Jul 2002 B1
6417205 Cooke et al. Jul 2002 B1
6419829 Ho et al. Jul 2002 B2
6420138 Gentz et al. Jul 2002 B1
6423681 Barasch et al. Jul 2002 B1
6426332 Rueger et al. Jul 2002 B1
6428802 Atala Aug 2002 B1
6429012 Kraus et al. Aug 2002 B1
6429013 Halvorsen et al. Aug 2002 B1
6432653 Okarma Aug 2002 B1
6432711 Dinsmore et al. Aug 2002 B1
6436701 Evans et al. Aug 2002 B1
6440407 Bauer et al. Aug 2002 B1
6440734 Pykett et al. Aug 2002 B1
6451562 Ruben et al. Sep 2002 B1
6454811 Sherwood et al. Sep 2002 B1
6455678 Yin et al. Sep 2002 B1
6458585 Vachula et al. Oct 2002 B1
6458589 Rambhatla et al. Oct 2002 B1
6461495 Morrissey et al. Oct 2002 B1
6461853 Zhu Oct 2002 B1
6464983 Grotendorst Oct 2002 B1
6465205 Hicks, Jr. Oct 2002 B2
6465247 Weissman et al. Oct 2002 B1
6465249 Reya et al. Oct 2002 B2
6468794 Uchida et al. Oct 2002 B1
6472200 Mitrani Oct 2002 B1
6475481 Talmadge Nov 2002 B2
6479064 Atala Nov 2002 B1
6482231 Abatangelo et al. Nov 2002 B1
6482411 Ahuja et al. Nov 2002 B1
6482645 Atala Nov 2002 B2
6482926 Thomas et al. Nov 2002 B1
6488925 Ruben et al. Dec 2002 B2
6491918 Thomas et al. Dec 2002 B1
6495129 Li et al. Dec 2002 B1
6495364 Hammang et al. Dec 2002 B2
6497875 Sorrell et al. Dec 2002 B1
6498034 Strobl Dec 2002 B1
6500668 Samarut et al. Dec 2002 B2
6506574 Rambhatla et al. Jan 2003 B1
6511510 de Bruijn et al. Jan 2003 B1
6511767 Calver et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6524452 Clark et al. Feb 2003 B1
6528052 Smith et al. Mar 2003 B1
6528245 Sanchez-Ramos et al. Mar 2003 B2
6530956 Mansmann Mar 2003 B1
6531445 Cohen et al. Mar 2003 B1
6534084 Vyakamam et al. Mar 2003 B1
6537807 Smith et al. Mar 2003 B1
6541024 Kadiyala et al. Apr 2003 B1
6541249 Wager et al. Apr 2003 B2
6544506 Reisner Apr 2003 B2
6548734 Glimcher et al. Apr 2003 B1
6555324 Olweus et al. Apr 2003 B1
6555374 Gimble et al. Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6562616 Toner et al. May 2003 B1
6565843 Cohen et al. May 2003 B1
6566126 Cadwell May 2003 B2
6569421 Hodges May 2003 B2
6569427 Boyse et al. May 2003 B1
6569428 Isner et al. May 2003 B1
6569654 Shastri et al. May 2003 B2
6576188 Rose et al. Jun 2003 B1
6576428 Assenmacher et al. Jun 2003 B1
6576464 Gold et al. Jun 2003 B2
6576465 Long Jun 2003 B1
6582471 Bittmann et al. Jun 2003 B1
6582955 Martinez et al. Jun 2003 B2
6586192 Peschle et al. Jul 2003 B1
6589728 Csete et al. Jul 2003 B2
6589786 Mangano et al. Jul 2003 B1
6593123 Wright et al. Jul 2003 B1
6596274 Abatangelo et al. Jul 2003 B1
6599300 Vibe-Hansen et al. Jul 2003 B2
6599520 Scarborough et al. Jul 2003 B2
6610535 Lu et al. Aug 2003 B1
6613798 Porter et al. Sep 2003 B1
6616912 Eddleman et al. Sep 2003 B2
6617070 Morrissey et al. Sep 2003 B1
6617152 Bryhan et al. Sep 2003 B2
6617159 Cancedda et al. Sep 2003 B1
6617161 Luyten et al. Sep 2003 B2
6623749 Williams et al. Sep 2003 B2
6623942 Ruben et al. Sep 2003 B2
6624108 Clark et al. Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6627191 Bartelmez et al. Sep 2003 B1
6629003 Frizzell Sep 2003 B1
6632425 Li et al. Oct 2003 B1
6632620 Makarovskiy Oct 2003 B1
6632934 Moreadith et al. Oct 2003 B1
6638765 Rosenberg Oct 2003 B1
6642019 Anderson et al. Nov 2003 B1
6642048 Xu et al. Nov 2003 B2
6642049 Chute et al. Nov 2003 B1
6642201 Khavinson et al. Nov 2003 B1
6645489 Pykett et al. Nov 2003 B2
6645727 Thomas et al. Nov 2003 B2
6645763 Kobayashi et al. Nov 2003 B2
6649189 Talmadge et al. Nov 2003 B2
6649595 Clackson et al. Nov 2003 B2
6649631 Orme et al. Nov 2003 B1
6653105 Triglia et al. Nov 2003 B2
6653134 Prockop et al. Nov 2003 B2
6660523 Blom et al. Dec 2003 B2
6662805 Frondoza et al. Dec 2003 B2
6667034 Palsson et al. Dec 2003 B2
6667176 Funk et al. Dec 2003 B1
6670169 Schob et al. Dec 2003 B1
6670175 Wang et al. Dec 2003 B2
6673603 Baetge et al. Jan 2004 B2
6673606 Tennekoon et al. Jan 2004 B1
6677306 Veis et al. Jan 2004 B1
6680166 Mullon et al. Jan 2004 B1
6683192 Baxter et al. Jan 2004 B2
6685936 McIntosh et al. Feb 2004 B2
6685971 Xu Feb 2004 B2
6686198 Melton et al. Feb 2004 B1
6689324 Inoue Feb 2004 B2
6690981 Kawachi Feb 2004 B1
6696575 Schmidt et al. Feb 2004 B2
6699716 Sullivan et al. Mar 2004 B2
6703017 Peck et al. Mar 2004 B1
6703209 Baetscher et al. Mar 2004 B1
6703279 Lee Mar 2004 B2
6706293 Quintanilla Almagro et al. Mar 2004 B1
6709864 Pittenger et al. Mar 2004 B1
6712850 Vyakamam et al. Mar 2004 B2
6719969 Hogaboam et al. Apr 2004 B1
6719970 Costantino et al. Apr 2004 B1
6720340 Cooke et al. Apr 2004 B1
6730314 Jeschke et al. May 2004 B2
6730315 Usala et al. May 2004 B2
6730510 Roos et al. May 2004 B2
6733746 Daley et al. May 2004 B2
6734000 Chin et al. May 2004 B2
6737072 Angele et al. May 2004 B1
6740493 Long et al. May 2004 B1
6759039 Tsang et al. Jul 2004 B2
6759245 Toner et al. Jul 2004 B1
6761883 Weissman et al. Jul 2004 B2
6761887 Kavalkovich et al. Jul 2004 B1
6767699 Polo et al. Jul 2004 B2
6767737 Wilson et al. Jul 2004 B1
6767738 Gage et al. Jul 2004 B1
6767740 Sramek et al. Jul 2004 B2
6770478 Crowe et al. Aug 2004 B2
6777227 Ricci et al. Aug 2004 B2
6777231 Katz et al. Aug 2004 B1
6780612 Ford et al. Aug 2004 B1
6787355 Miller et al. Sep 2004 B1
6790455 Chu et al. Sep 2004 B2
6793939 Badylak Sep 2004 B2
6797269 Mosca et al. Sep 2004 B2
6797514 Berenson et al. Sep 2004 B2
6800480 Bodnar et al. Oct 2004 B1
6802971 Gorsuch et al. Oct 2004 B2
6805860 Alt Oct 2004 B1
6809117 Enikolopov et al. Oct 2004 B2
6811773 Gentz et al. Nov 2004 B1
6811776 Kale et al. Nov 2004 B2
6814961 Jensen et al. Nov 2004 B1
6821513 Fleming Nov 2004 B1
6821790 Mahant et al. Nov 2004 B2
6828145 Avital et al. Dec 2004 B2
6833269 Carpenter Dec 2004 B2
6835377 Goldberg et al. Dec 2004 B2
6835566 Smith et al. Dec 2004 B2
6838284 de Bruijn et al. Jan 2005 B2
6841150 Halvorsen et al. Jan 2005 B2
6841151 Stringer Jan 2005 B2
6841294 Morrissey et al. Jan 2005 B1
6841355 Livant Jan 2005 B2
6841386 Kraus et al. Jan 2005 B2
6841542 Bartelmez et al. Jan 2005 B2
6844011 Faustman Jan 2005 B1
6844187 Wechsler et al. Jan 2005 B1
6849051 Sramek et al. Feb 2005 B2
6849255 Gazit et al. Feb 2005 B2
6849454 Kelly et al. Feb 2005 B2
6849662 Enikolopov et al. Feb 2005 B2
6852308 Kohn et al. Feb 2005 B2
6852321 Colucci et al. Feb 2005 B2
6852533 Rafii et al. Feb 2005 B1
6855242 Comninellis et al. Feb 2005 B1
6855542 DiMilla et al. Feb 2005 B2
6863900 Kadiyala et al. Mar 2005 B2
6866843 Habener et al. Mar 2005 B2
6872389 Faris Mar 2005 B1
6875430 McIntosh et al. Apr 2005 B2
6875607 Reubinoff et al. Apr 2005 B1
6887600 Morrissey et al. May 2005 B2
6887704 Peled et al. May 2005 B2
6908763 Akashi et al. Jun 2005 B1
6911201 Merchav et al. Jun 2005 B1
6914279 Lu et al. Jul 2005 B2
6933144 Cadwell Aug 2005 B2
6939955 Rameshwar Sep 2005 B2
6943008 Ma Sep 2005 B1
6944522 Karmiy Sep 2005 B2
6965018 Mikesell et al. Nov 2005 B2
6969308 Doi et al. Nov 2005 B2
6979308 MacDonald et al. Dec 2005 B1
6979321 Geis et al. Dec 2005 B2
6988004 Kanno et al. Jan 2006 B2
7008394 Geise et al. Mar 2006 B2
7015037 Furcht et al. Mar 2006 B1
7029666 Bruder et al. Apr 2006 B2
7029913 Thomson Apr 2006 B2
7033339 Lynn Apr 2006 B1
7033823 Chang Apr 2006 B2
7037721 Wille, Jr. May 2006 B1
7041493 Rao May 2006 B2
7045098 Stephens May 2006 B2
7052517 Murphy et al. May 2006 B2
7056493 Kohn et al. Jun 2006 B2
7109032 Cancedda et al. Sep 2006 B2
7112437 Pera Sep 2006 B2
7112441 Uemura et al. Sep 2006 B2
7118672 Husain et al. Oct 2006 B2
7122178 Simmons et al. Oct 2006 B1
7145057 Van de Lavoir et al. Dec 2006 B2
7153684 Hogan Dec 2006 B1
7160719 Nyberg Jan 2007 B2
7169295 Husain et al. Jan 2007 B2
7169610 Brown Jan 2007 B2
7172696 Martinez et al. Feb 2007 B1
7175763 Husain et al. Feb 2007 B2
7192776 Stephens Mar 2007 B2
7195711 Gorsuch et al. Mar 2007 B2
7250154 Kohn et al. Jul 2007 B2
7270996 Cannon et al. Sep 2007 B2
7271234 Kohn et al. Sep 2007 B2
7294259 Cote et al. Nov 2007 B2
7294508 Parikh et al. Nov 2007 B2
7300571 Cote et al. Nov 2007 B2
7303676 Husain et al. Dec 2007 B2
7303677 Cote et al. Dec 2007 B2
7341062 Chachques et al. Mar 2008 B2
7358001 Morrissey et al. Apr 2008 B2
7361493 Hammond et al. Apr 2008 B1
7368169 Kohn et al. May 2008 B2
7378271 Bader May 2008 B2
7399872 Webster et al. Jul 2008 B2
7416884 Gemmiti et al. Aug 2008 B2
7425440 Malinge et al. Sep 2008 B2
7435586 Bartlett et al. Oct 2008 B2
7438902 Habener et al. Oct 2008 B2
7439057 Frangos et al. Oct 2008 B2
7452529 Brown, Jr. et al. Nov 2008 B2
7491388 Mc Intosh et al. Feb 2009 B1
7494811 Wolfinbarger, Jr. et al. Feb 2009 B2
7514074 Pittenger et al. Apr 2009 B2
7514075 Hedrick et al. Apr 2009 B2
7524676 Reiter et al. Apr 2009 B2
7531351 Marx et al. May 2009 B2
7534609 Merchav et al. May 2009 B2
7572374 Gorsuch et al. Aug 2009 B2
7579179 Bryhan et al. Aug 2009 B2
7585412 Gorsuch et al. Sep 2009 B2
7588938 Ma Sep 2009 B2
7598075 Smith et al. Oct 2009 B2
7608447 Cohen et al. Oct 2009 B2
7659118 Furcht et al. Feb 2010 B2
7678573 Merchav et al. Mar 2010 B2
7682822 Noll et al. Mar 2010 B2
7682823 Runyon Mar 2010 B1
7718430 Antwiler May 2010 B2
7722896 Kohn et al. May 2010 B2
D620732 Andrews Aug 2010 S
7838122 Kohn et al. Nov 2010 B2
7838289 Furcht et al. Nov 2010 B2
7892829 Pittenger et al. Feb 2011 B2
7919307 Klaus et al. Apr 2011 B2
7927587 Blazer et al. Apr 2011 B2
7989851 Lu et al. Aug 2011 B2
8008528 Kohn et al. Aug 2011 B2
8034365 Baluca Oct 2011 B2
8075881 Verfaillie et al. Dec 2011 B2
8147824 Maziarz et al. Apr 2012 B2
8147863 Kohn et al. Apr 2012 B2
8158120 Pittenger et al. Apr 2012 B2
8158121 Pittenger et al. Apr 2012 B2
8252280 Verfaillie et al. Aug 2012 B1
8252887 Bolikal et al. Aug 2012 B2
8288159 Warren et al. Oct 2012 B2
8288590 Kohn et al. Oct 2012 B2
8298823 Warren et al. Oct 2012 B2
8361453 Uhrich et al. Jan 2013 B2
8377683 Lu et al. Feb 2013 B2
8383806 Rameshwar Feb 2013 B2
8399245 Leuthaeuser et al. Mar 2013 B2
8415449 Kohn et al. Apr 2013 B2
8435781 Kodama May 2013 B2
8461289 Kohn et al. Jun 2013 B2
8476399 Bolikal et al. Jul 2013 B2
8486621 Luo et al. Jul 2013 B2
8486695 Danilkovitch et al. Jul 2013 B2
8492140 Smith et al. Jul 2013 B2
8492150 Parker et al. Jul 2013 B2
8551511 Brandom et al. Oct 2013 B2
8580249 Blazar et al. Nov 2013 B2
8678638 Wong Mar 2014 B2
8852570 Pittenger et al. Oct 2014 B2
8852571 Pittenger et al. Oct 2014 B2
8852572 Pittenger et al. Oct 2014 B2
8852573 Pittenger et al. Oct 2014 B2
8852574 Pittenger et al. Oct 2014 B2
8852575 Pittenger et al. Oct 2014 B2
9109193 Galliher et al. Aug 2015 B2
9220810 Ma et al. Dec 2015 B2
9732313 Hirschel et al. Aug 2017 B2
10093956 Hirschel et al. Oct 2018 B2
10494421 Castillo Dec 2019 B2
10669519 Stanton, IV et al. Jun 2020 B2
20010017188 Cooley et al. Aug 2001 A1
20010020086 Hubbell et al. Sep 2001 A1
20010021516 Wei et al. Sep 2001 A1
20010029046 Beaulieu Oct 2001 A1
20010033834 Wilkison et al. Oct 2001 A1
20010036663 Kraus et al. Nov 2001 A1
20010041687 Mruk Nov 2001 A1
20010044413 Pierce et al. Nov 2001 A1
20010049139 Lagasse et al. Dec 2001 A1
20020015724 Yang et al. Feb 2002 A1
20020018804 Austin et al. Feb 2002 A1
20020028510 Sanberg et al. Mar 2002 A1
20020031757 Ohgushi et al. Mar 2002 A1
20020037278 Ueno et al. Mar 2002 A1
20020045260 Hung et al. Apr 2002 A1
20020064869 Ebner et al. May 2002 A1
20020076400 Katz et al. Jun 2002 A1
20020077687 Ahn Jun 2002 A1
20020082698 Parenteau et al. Jun 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020128581 Vishnoi et al. Sep 2002 A1
20020128582 Farrell et al. Sep 2002 A1
20020128583 Min et al. Sep 2002 A1
20020128584 Brown et al. Sep 2002 A1
20020130100 Smith Sep 2002 A1
20020132343 Lum Sep 2002 A1
20020139743 Critz et al. Oct 2002 A1
20020142457 Umezawa et al. Oct 2002 A1
20020146678 Benvenisty Oct 2002 A1
20020146817 Cannon et al. Oct 2002 A1
20020150989 Greene et al. Oct 2002 A1
20020151056 Sasai et al. Oct 2002 A1
20020159981 Peled et al. Oct 2002 A1
20020160032 Long et al. Oct 2002 A1
20020160510 Hariri Oct 2002 A1
20020164794 Wernet Nov 2002 A1
20020168765 Prockop et al. Nov 2002 A1
20020169408 Beretta et al. Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020182664 Dolecek et al. Dec 2002 A1
20020188962 Denhardt et al. Dec 2002 A1
20020197240 Chiu Dec 2002 A1
20030021850 Xu Jan 2003 A1
20030022390 Stephens Jan 2003 A1
20030027330 Lanza et al. Feb 2003 A1
20030027331 Yan et al. Feb 2003 A1
20030032143 Neff et al. Feb 2003 A1
20030036168 Ni et al. Feb 2003 A1
20030037836 Blatt et al. Feb 2003 A1
20030040113 Mizuno et al. Feb 2003 A1
20030049236 Kassem et al. Mar 2003 A1
20030054331 Fraser et al. Mar 2003 A1
20030059414 Ho et al. Mar 2003 A1
20030059851 Smith Mar 2003 A1
20030059939 Page et al. Mar 2003 A1
20030069650 Karmiy et al. Apr 2003 A1
20030078345 Morrisey Apr 2003 A1
20030082795 Shuler et al. May 2003 A1
20030086915 Rader et al. May 2003 A1
20030089471 Gehr et al. May 2003 A1
20030092101 Ni et al. May 2003 A1
20030101465 Lawman et al. May 2003 A1
20030103957 McKerracher Jun 2003 A1
20030104568 Lee Jun 2003 A1
20030113813 Heidaran et al. Jun 2003 A1
20030113910 Levanduski Jun 2003 A1
20030124091 Tuse et al. Jul 2003 A1
20030124721 Cheatham et al. Jul 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030133918 Sherley Jul 2003 A1
20030138950 McAllister et al. Jul 2003 A1
20030143727 Chang Jul 2003 A1
20030148152 Morrisey Aug 2003 A1
20030149011 Ackerman et al. Aug 2003 A1
20030152558 Luft et al. Aug 2003 A1
20030157078 Hall et al. Aug 2003 A1
20030157709 DiMilla et al. Aug 2003 A1
20030161817 Young et al. Aug 2003 A1
20030166272 Abuljadayel Sep 2003 A1
20030170214 Bader Sep 2003 A1
20030180296 Salcedo et al. Sep 2003 A1
20030181269 Griffin Sep 2003 A1
20030185817 Thomas et al. Oct 2003 A1
20030202938 Rameshwar Oct 2003 A1
20030203483 Seshi Oct 2003 A1
20030204323 Morrisey Oct 2003 A1
20030211602 Atala Nov 2003 A1
20030211603 Earp et al. Nov 2003 A1
20030216718 Hamblin et al. Nov 2003 A1
20030219898 Sugaya et al. Nov 2003 A1
20030223968 Yang Dec 2003 A1
20030224420 Hellerstein et al. Dec 2003 A1
20030224510 Yamaguchi et al. Dec 2003 A1
20030225010 Rameshwar Dec 2003 A1
20030232432 Bhat Dec 2003 A1
20030232752 Freeman et al. Dec 2003 A1
20030235909 Hariri et al. Dec 2003 A1
20040009158 Sands et al. Jan 2004 A1
20040009589 Levenberg et al. Jan 2004 A1
20040010231 Leonhardt et al. Jan 2004 A1
20040014209 Lassar et al. Jan 2004 A1
20040018174 Palasis Jan 2004 A1
20040018617 Hwang Jan 2004 A1
20040023324 Sakano et al. Feb 2004 A1
20040023370 Yu et al. Feb 2004 A1
20040032430 Yung et al. Feb 2004 A1
20040033214 Young et al. Feb 2004 A1
20040033599 Rosenberg Feb 2004 A1
20040037811 Penn et al. Feb 2004 A1
20040037815 Clarke et al. Feb 2004 A1
20040038316 Kaiser et al. Feb 2004 A1
20040053869 Andrews et al. Mar 2004 A1
20040062753 Rezania et al. Apr 2004 A1
20040063205 Xu Apr 2004 A1
20040067585 Wang et al. Apr 2004 A1
20040071668 Bays et al. Apr 2004 A1
20040072259 Scadden et al. Apr 2004 A1
20040077079 Storgaard et al. Apr 2004 A1
20040079248 Mayer et al. Apr 2004 A1
20040087016 Keating et al. May 2004 A1
20040091936 West May 2004 A1
20040096476 Uhrich et al. May 2004 A1
20040097408 Leder et al. May 2004 A1
20040101959 Marko et al. May 2004 A1
20040107453 Furcht et al. Jun 2004 A1
20040110286 Bhatia Jun 2004 A1
20040115804 Fu et al. Jun 2004 A1
20040115806 Fu Jun 2004 A1
20040120932 Zahner Jun 2004 A1
20040121461 Honmou et al. Jun 2004 A1
20040121464 Rathjen et al. Jun 2004 A1
20040126405 Sahatjian et al. Jul 2004 A1
20040128077 Koebler et al. Jul 2004 A1
20040131601 Epstein et al. Jul 2004 A1
20040132184 Dennis et al. Jul 2004 A1
20040136967 Weiss et al. Jul 2004 A1
20040137612 Baksh Jul 2004 A1
20040137613 Vacanti et al. Jul 2004 A1
20040143174 Brubaker Jul 2004 A1
20040143863 Li et al. Jul 2004 A1
20040151700 Harlan et al. Aug 2004 A1
20040151701 Kim et al. Aug 2004 A1
20040151706 Shakhov et al. Aug 2004 A1
20040151729 Michalopoulos et al. Aug 2004 A1
20040152190 Sumita Aug 2004 A1
20040161419 Strom et al. Aug 2004 A1
20040171533 Zehentner et al. Sep 2004 A1
20040180347 Stanton et al. Sep 2004 A1
20040191902 Hambor et al. Sep 2004 A1
20040197310 Sanberg et al. Oct 2004 A1
20040197375 Rezania et al. Oct 2004 A1
20040208786 Kevy et al. Oct 2004 A1
20040214275 Soejima et al. Oct 2004 A1
20040219134 Naughton et al. Nov 2004 A1
20040219136 Hariri Nov 2004 A1
20040219563 West et al. Nov 2004 A1
20040224403 Bhatia Nov 2004 A1
20040229351 Rodriguez et al. Nov 2004 A1
20040234972 Owens et al. Nov 2004 A1
20040235158 Bartlett et al. Nov 2004 A1
20040235160 Nishikawa et al. Nov 2004 A1
20040235166 Prockop et al. Nov 2004 A1
20040242469 Lee et al. Dec 2004 A1
20040258669 Dzau et al. Dec 2004 A1
20040259242 Malinge et al. Dec 2004 A1
20040259254 Honmou et al. Dec 2004 A1
20040260058 Scheek et al. Dec 2004 A1
20040260318 Hunter et al. Dec 2004 A1
20040265996 Schwarz et al. Dec 2004 A1
20050002914 Rosen et al. Jan 2005 A1
20050003460 Nilsson et al. Jan 2005 A1
20050003527 Lang et al. Jan 2005 A1
20050003530 Gerlach Jan 2005 A1
20050003534 Huberman et al. Jan 2005 A1
20050008624 Peled et al. Jan 2005 A1
20050008626 Fraser et al. Jan 2005 A1
20050009178 Yost et al. Jan 2005 A1
20050009179 Gemmiti et al. Jan 2005 A1
20050009181 Black et al. Jan 2005 A1
20050013804 Kato et al. Jan 2005 A1
20050014252 Chu et al. Jan 2005 A1
20050014253 Ehmann et al. Jan 2005 A1
20050014254 Kruse Jan 2005 A1
20050014255 Tang et al. Jan 2005 A1
20050019801 Rubin et al. Jan 2005 A1
20050019908 Hariri Jan 2005 A1
20050019910 Takagi et al. Jan 2005 A1
20050019911 Gronthos et al. Jan 2005 A1
20050026836 Dack et al. Feb 2005 A1
20050031587 Tsutsui et al. Feb 2005 A1
20050031595 Peled et al. Feb 2005 A1
20050031598 Levenberg et al. Feb 2005 A1
20050032122 Hwang et al. Feb 2005 A1
20050032207 Wobus et al. Feb 2005 A1
20050032209 Messina et al. Feb 2005 A1
20050032218 Gerlach Feb 2005 A1
20050036980 Chaney et al. Feb 2005 A1
20050037488 Mitalipova et al. Feb 2005 A1
20050037490 Rosenberg et al. Feb 2005 A1
20050037492 Xu et al. Feb 2005 A1
20050037493 Mandalam et al. Feb 2005 A1
20050037949 O'Brien et al. Feb 2005 A1
20050106119 Brandom et al. May 2005 A1
20050106127 Kraus et al. May 2005 A1
20050112447 Fletcher et al. May 2005 A1
20050112762 Hart et al. May 2005 A1
20050118712 Tsai et al. Jun 2005 A1
20050130297 Sarem et al. Jun 2005 A1
20050136093 Denk Jun 2005 A1
20050137517 Blickhan et al. Jun 2005 A1
20050142162 Hunter et al. Jun 2005 A1
20050149157 Hunter et al. Jul 2005 A1
20050152946 Hunter et al. Jul 2005 A1
20050153442 Katz et al. Jul 2005 A1
20050158289 Simmons et al. Jul 2005 A1
20050172340 Logvinov et al. Aug 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050180957 Scharp et al. Aug 2005 A1
20050181502 Furcht et al. Aug 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050183731 Hunter et al. Aug 2005 A1
20050186244 Hunter et al. Aug 2005 A1
20050186671 Cannon et al. Aug 2005 A1
20050187140 Hunter et al. Aug 2005 A1
20050196421 Hunter et al. Sep 2005 A1
20050208095 Hunter et al. Sep 2005 A1
20050244963 Teplyashin Nov 2005 A1
20050249731 Aslan et al. Nov 2005 A1
20050255118 Wehner Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050277577 Hunter et al. Dec 2005 A1
20050281790 Simmons et al. Dec 2005 A1
20050282733 Prins et al. Dec 2005 A1
20050283844 Furcht et al. Dec 2005 A1
20060002900 Binder et al. Jan 2006 A1
20060008452 Simmons et al. Jan 2006 A1
20060019389 Yayon et al. Jan 2006 A1
20060054941 Lu et al. Mar 2006 A1
20060083720 Fraser et al. Apr 2006 A1
20060099198 Thomson et al. May 2006 A1
20060147246 Richards Jul 2006 A1
20060166364 Senesac Jul 2006 A1
20060172008 Yayon et al. Aug 2006 A1
20060193840 Gronthos et al. Aug 2006 A1
20060205071 Hasson et al. Sep 2006 A1
20060228798 Verfaillie et al. Oct 2006 A1
20060233834 Guehenneux et al. Oct 2006 A1
20060239909 Anderson et al. Oct 2006 A1
20060258586 Sheppard et al. Nov 2006 A1
20060258933 Ellis et al. Nov 2006 A1
20060259998 Brumbley et al. Nov 2006 A1
20060280748 Buckheit Dec 2006 A1
20060286077 Gronthos et al. Dec 2006 A1
20070005148 Barofsky et al. Jan 2007 A1
20070011752 Paleyanda Jan 2007 A1
20070042462 Hildinger Feb 2007 A1
20070065938 Gronthos et al. Mar 2007 A1
20070105222 Wolfinbarger et al. May 2007 A1
20070116612 Williamson May 2007 A1
20070117180 Morikawa et al. May 2007 A1
20070122904 Nordon May 2007 A1
20070123996 Sugaya et al. May 2007 A1
20070160583 Lange et al. Jul 2007 A1
20070166834 Williamson et al. Jul 2007 A1
20070178071 Westenfelder Aug 2007 A1
20070192715 Kataria et al. Aug 2007 A1
20070196421 Hunter et al. Aug 2007 A1
20070197957 Hunter et al. Aug 2007 A1
20070198063 Hunter et al. Aug 2007 A1
20070202485 Nees et al. Aug 2007 A1
20070203330 Kretschmar et al. Aug 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070258943 Penn et al. Nov 2007 A1
20070269486 Parker et al. Nov 2007 A1
20070274970 Gordon et al. Nov 2007 A1
20070275457 Granchelli et al. Nov 2007 A1
20070295651 Martinez et al. Dec 2007 A1
20070298015 Beer et al. Dec 2007 A1
20070298497 Antwiler Dec 2007 A1
20080003663 Bryhan et al. Jan 2008 A1
20080009458 Dornan et al. Jan 2008 A1
20080032398 Cannon et al. Feb 2008 A1
20080050770 Zhang et al. Feb 2008 A1
20080063600 Aguzzi et al. Mar 2008 A1
20080064649 Rameshwar Mar 2008 A1
20080069807 Jy et al. Mar 2008 A1
20080095676 Andretta Apr 2008 A1
20080095690 Liu Apr 2008 A1
20080103412 Chin May 2008 A1
20080110827 Cote et al. May 2008 A1
20080113426 Smith et al. May 2008 A1
20080113440 Gurney et al. May 2008 A1
20080153077 Henry Jun 2008 A1
20080160597 van der Heiden et al. Jul 2008 A1
20080166808 Nyberg Jul 2008 A1
20080181879 Catelas et al. Jul 2008 A1
20080190857 Beretta et al. Aug 2008 A1
20080194017 Esser et al. Aug 2008 A1
20080206733 Tanaka et al. Aug 2008 A1
20080206831 Coffey et al. Aug 2008 A1
20080213894 Antwiler Sep 2008 A1
20080220522 Antwiler Sep 2008 A1
20080220523 Antwiler Sep 2008 A1
20080220524 Noll et al. Sep 2008 A1
20080220526 Ellison et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080227189 Bader Sep 2008 A1
20080227190 Antwiler Sep 2008 A1
20080248572 Antwiler Oct 2008 A1
20080254533 Antwiler Oct 2008 A1
20080268165 Fekety et al. Oct 2008 A1
20080268538 Nordon et al. Oct 2008 A1
20080306095 Crawford Dec 2008 A1
20090004738 Merchav et al. Jan 2009 A1
20090011399 Fischer Jan 2009 A1
20090047289 Denhardt et al. Feb 2009 A1
20090074728 Gronthos et al. Mar 2009 A1
20090075881 Catelas et al. Mar 2009 A1
20090076481 Stegmann et al. Mar 2009 A1
20090081770 Srienc et al. Mar 2009 A1
20090081797 Fadeev et al. Mar 2009 A1
20090092608 Ni et al. Apr 2009 A1
20090098103 Madison et al. Apr 2009 A1
20090098645 Fang et al. Apr 2009 A1
20090100944 Newby Apr 2009 A1
20090104163 Deans et al. Apr 2009 A1
20090104653 Paldus et al. Apr 2009 A1
20090104692 Bartfeld et al. Apr 2009 A1
20090104699 Newby et al. Apr 2009 A1
20090118161 Cruz May 2009 A1
20090181087 Kraus et al. Jul 2009 A1
20090183581 Wilkinson et al. Jul 2009 A1
20090191627 Fadeev et al. Jul 2009 A1
20090191631 Bornemann Jul 2009 A1
20090191632 Fadeev et al. Jul 2009 A1
20090191634 Martin et al. Jul 2009 A1
20090196901 Guilak et al. Aug 2009 A1
20090203065 Gehman et al. Aug 2009 A1
20090203129 Furcht et al. Aug 2009 A1
20090203130 Furcht et al. Aug 2009 A1
20090214382 Burgess et al. Aug 2009 A1
20090214481 Muhs et al. Aug 2009 A1
20090214652 Hunter et al. Aug 2009 A1
20090227024 Baker et al. Sep 2009 A1
20090227027 Baker et al. Sep 2009 A1
20090233334 Hildinger et al. Sep 2009 A1
20090233353 Furcht et al. Sep 2009 A1
20090233354 Furcht et al. Sep 2009 A1
20090258379 Klein et al. Oct 2009 A1
20090269841 Wojciechowski et al. Oct 2009 A1
20090270725 Leimbach et al. Oct 2009 A1
20090280153 Hunter et al. Nov 2009 A1
20090280565 Jolicoeur et al. Nov 2009 A1
20090291890 Madison et al. Nov 2009 A1
20100009409 Hubbell et al. Jan 2010 A1
20100021954 Deshayes et al. Jan 2010 A1
20100021990 Edwards et al. Jan 2010 A1
20100028311 Motlagh et al. Feb 2010 A1
20100042260 Antwiler Feb 2010 A1
20100075410 Desai et al. Mar 2010 A1
20100086481 Baird et al. Apr 2010 A1
20100090971 Choi et al. Apr 2010 A1
20100092536 Hunter et al. Apr 2010 A1
20100093607 Dickneite Apr 2010 A1
20100111910 Rakoczy May 2010 A1
20100129376 Denhardt et al. May 2010 A1
20100129912 Su et al. May 2010 A1
20100136091 Moghe et al. Jun 2010 A1
20100144037 Antwiler Jun 2010 A1
20100144634 Zheng et al. Jun 2010 A1
20100183561 Sakthivel et al. Jul 2010 A1
20100183585 Van Zant et al. Jul 2010 A1
20100203020 Ghosh Aug 2010 A1
20100209403 Meiron et al. Aug 2010 A1
20100230203 Karayianni Sep 2010 A1
20100233130 Meretzki Sep 2010 A1
20100248366 Fadeev et al. Sep 2010 A1
20100267134 Pera et al. Oct 2010 A1
20100278933 Sayeski et al. Nov 2010 A1
20100285453 Goodrich Nov 2010 A1
20100285590 Verfaillie et al. Nov 2010 A1
20100291180 Uhrich Nov 2010 A1
20100291181 Uhrich et al. Nov 2010 A1
20100297234 Sugino et al. Nov 2010 A1
20100304427 Faris et al. Dec 2010 A1
20100304482 Deshayes et al. Dec 2010 A1
20100310524 Bechor et al. Dec 2010 A1
20100316446 Runyon Dec 2010 A1
20110060463 Selker et al. Mar 2011 A1
20110085746 Wong et al. Apr 2011 A1
20110111498 Oh et al. May 2011 A1
20110129447 Meretzki et al. Jun 2011 A1
20110129486 Meiron Jun 2011 A1
20110143433 Oh et al. Jun 2011 A1
20110159584 Gibbons et al. Jun 2011 A1
20110171182 Abelman Jul 2011 A1
20110171659 Furcht et al. Jul 2011 A1
20110177595 Furcht et al. Jul 2011 A1
20120028352 Oh et al. Feb 2012 A1
20120051976 Lu et al. Mar 2012 A1
20120058554 Deshayes et al. Mar 2012 A1
20120064047 Verfaillie et al. Mar 2012 A1
20120064583 Edwards et al. Mar 2012 A1
20120118919 Cianciolo May 2012 A1
20120135043 Maziarz et al. May 2012 A1
20120145580 Paruit et al. Jun 2012 A1
20120156779 Anneren et al. Jun 2012 A1
20120178885 Kohn et al. Jul 2012 A1
20120189713 Kohn et al. Jul 2012 A1
20120208039 Barbaroux et al. Aug 2012 A1
20120219531 Oh et al. Aug 2012 A1
20120219737 Sugino et al. Aug 2012 A1
20120226013 Kohn et al. Sep 2012 A1
20120231519 Bushman et al. Sep 2012 A1
20120237557 Lewitus et al. Sep 2012 A1
20120295352 Antwiler Nov 2012 A1
20120315696 Luitjens et al. Dec 2012 A1
20130059383 Dijkhuizen Borgart et al. Mar 2013 A1
20130101561 Sabaawy Apr 2013 A1
20130143313 Niazi Jun 2013 A1
20130157353 Dijkhuizen Borgart et al. Jun 2013 A1
20130319575 Mendyk Dec 2013 A1
20140004553 Parker et al. Jan 2014 A1
20140051162 Nankervis Feb 2014 A1
20140051167 Nankervis et al. Feb 2014 A1
20140112893 Tom et al. Apr 2014 A1
20140186937 Smith et al. Jul 2014 A1
20140193895 Smith et al. Jul 2014 A1
20140193911 Newby et al. Jul 2014 A1
20140248244 Danilkovitch et al. Sep 2014 A1
20140315300 Oh et al. Oct 2014 A1
20140342448 Nagels Nov 2014 A1
20150004693 Danilkovitch et al. Jan 2015 A1
20150104431 Pittenger et al. Apr 2015 A1
20150247122 Tom et al. Sep 2015 A1
20180010082 Jaques et al. Jan 2018 A1
20180030398 Castillo Feb 2018 A1
20180155668 Hirschel et al. Jun 2018 A1
20190194628 Rao et al. Jun 2019 A1
Foreign Referenced Citations (274)
Number Date Country
1016332 Aug 1977 CA
4007703 Sep 1991 DE
10244859 Apr 2004 DE
10327988 Jul 2004 DE
102012200939 Jul 2013 DE
0220650 May 1987 EP
0201086 Jan 1992 EP
0224734 Mar 1992 EP
750938 Jan 1997 EP
906415 Apr 1999 EP
959980 Dec 1999 EP
1007631 Jun 2000 EP
1028737 Aug 2000 EP
1028991 Aug 2000 EP
1066052 Jan 2001 EP
1066060 Jan 2001 EP
1084230 Mar 2001 EP
1220611 Jul 2002 EP
1223956 Jul 2002 EP
1325953 Jul 2003 EP
1367119 Dec 2003 EP
1437404 Jul 2004 EP
1437406 Jul 2004 EP
1447443 Aug 2004 EP
1452594 Sep 2004 EP
1062321 Dec 2004 EP
1484080 Dec 2004 EP
1498478 Jan 2005 EP
1036057 Oct 2005 EP
1605044 Dec 2005 EP
1756262 Feb 2007 EP
1771737 Apr 2007 EP
1882030 Jan 2008 EP
1908490 Apr 2008 EP
1971679 Sep 2008 EP
1991668 Nov 2008 EP
1147176 Dec 2009 EP
2208782 Jul 2010 EP
2264145 Dec 2010 EP
2303293 Apr 2011 EP
2311938 Apr 2011 EP
2331957 Jun 2011 EP
2334310 Jun 2011 EP
2334783 Jun 2011 EP
2361968 Aug 2011 EP
2366775 Sep 2011 EP
2465922 Jun 2012 EP
2561066 Feb 2013 EP
2575831 Apr 2013 EP
2624845 Aug 2013 EP
2689008 Jan 2014 EP
2694639 Feb 2014 EP
2697362 Feb 2014 EP
2739720 Jun 2014 EP
2807246 Dec 2014 EP
1414671 Nov 1975 GB
2297980 Aug 1996 GB
2360789 Oct 2001 GB
3285 May 2007 HU
H02245177 Sep 1990 JP
H03047074 Feb 1991 JP
2003052360 Feb 2003 JP
2003510068 Mar 2003 JP
2005278564 Oct 2005 JP
2005333945 Dec 2005 JP
2007000038 Jan 2007 JP
5548207 Jul 2014 JP
115206 Apr 2003 MY
8602379 Apr 1986 WO
8801643 Mar 1988 WO
9002171 Mar 1990 WO
WO-9013306 Nov 1990 WO
WO-9105238 Apr 1991 WO
9107485 May 1991 WO
WO-9106641 May 1991 WO
WO-9109194 Jun 1991 WO
9110425 Jul 1991 WO
9118972 Dec 1991 WO
9210564 Jun 1992 WO
WO-9425571 Nov 1994 WO
9504813 Feb 1995 WO
9513088 May 1995 WO
9521911 Aug 1995 WO
9527041 Oct 1995 WO
WO-9629395 Sep 1996 WO
9639487 Dec 1996 WO
WO-9639035 Dec 1996 WO
WO-970137 Jan 1997 WO
WO-9705826 Feb 1997 WO
9716527 May 1997 WO
WO-9729792 Aug 1997 WO
9740137 Oct 1997 WO
WO-9739104 Oct 1997 WO
WO-1997-040137 Oct 1997 WO
WO-9831403 Jul 1998 WO
9850526 Nov 1998 WO
9853046 Nov 1998 WO
WO-9851317 Nov 1998 WO
WO-9851785 Nov 1998 WO
9901159 Jan 1999 WO
WO-9905180 Feb 1999 WO
WO-9924391 May 1999 WO
WO-9924490 May 1999 WO
WO-9927167 Jun 1999 WO
WO-9949015 Sep 1999 WO
WO-0006704 Feb 2000 WO
WO-0009018 Feb 2000 WO
WO-0016420 Mar 2000 WO
WO-0017326 Mar 2000 WO
WO-0029002 May 2000 WO
WO-0032225 Jun 2000 WO
WO-0044058 Jul 2000 WO
WO-0054651 Sep 2000 WO
WO-0056405 Sep 2000 WO
WO-0059933 Oct 2000 WO
WO-0069449 Nov 2000 WO
0075275 Dec 2000 WO
WO-0075196 Dec 2000 WO
WO-0077236 Dec 2000 WO
WO-2001000783 Jan 2001 WO
WO-2001011011 Feb 2001 WO
WO-2001018174 Mar 2001 WO
WO-2001021766 Mar 2001 WO
0123520 Apr 2001 WO
WO-2001025402 Apr 2001 WO
WO-2001029189 Apr 2001 WO
WO-0122810 Apr 2001 WO
WO-2001034167 May 2001 WO
WO-2001049851 Jul 2001 WO
WO-2001054706 Aug 2001 WO
0194541 Dec 2001 WO
WO-2001-094541 Dec 2001 WO
0228996 Apr 2002 WO
WO-2002042422 May 2002 WO
WO-2002057430 Jul 2002 WO
WO-2002092794 Nov 2002 WO
WO-2002101385 Dec 2002 WO
WO-2003010303 Feb 2003 WO
WO-2003014313 Feb 2003 WO
WO-2003016916 Feb 2003 WO
03024587 Mar 2003 WO
WO-2003023018 Mar 2003 WO
WO-2003023019 Mar 2003 WO
WO-2003025167 Mar 2003 WO
WO-2003029402 Apr 2003 WO
WO-2003040336 May 2003 WO
WO-2003042405 May 2003 WO
WO-2003046161 Jun 2003 WO
WO-2003055989 Jul 2003 WO
WO-2003061685 Jul 2003 WO
WO-2003061686 Jul 2003 WO
03070922 Aug 2003 WO
WO-2003068961 Aug 2003 WO
WO-2003072064 Sep 2003 WO
WO-2003078609 Sep 2003 WO
WO-2003078967 Sep 2003 WO
WO-2003080816 Oct 2003 WO
WO-2003082145 Oct 2003 WO
WO-2003085099 Oct 2003 WO
WO-2003089631 Oct 2003 WO
WO-2003091398 Nov 2003 WO
WO-2003095631 Nov 2003 WO
03105663 Dec 2003 WO
WO-2004001697 Dec 2003 WO
WO-2004012226 Feb 2004 WO
WO-2004016779 Feb 2004 WO
WO-2004018526 Mar 2004 WO
WO-2004018655 Mar 2004 WO
WO-2004026115 Apr 2004 WO
WO-2004029231 Apr 2004 WO
WO-2004042023 May 2004 WO
WO-2004042033 May 2004 WO
WO-2004042040 May 2004 WO
WO-2004044127 May 2004 WO
WO-2004044158 May 2004 WO
WO-2004046304 Jun 2004 WO
WO-2004050826 Jun 2004 WO
WO-2004053096 Jun 2004 WO
WO-2004055155 Jul 2004 WO
WO-2004056186 Jul 2004 WO
WO-2004065616 Aug 2004 WO
WO-2004069172 Aug 2004 WO
WO-2004070013 Aug 2004 WO
WO-2004072264 Aug 2004 WO
WO-2004073633 Sep 2004 WO
WO-2004074464 Sep 2004 WO
WO-2004076642 Sep 2004 WO
WO-2004076653 Sep 2004 WO
2004090112 Oct 2004 WO
WO-2004087870 Oct 2004 WO
WO-2004094588 Nov 2004 WO
WO-2004096975 Nov 2004 WO
WO-2004104166 Dec 2004 WO
WO-2004106499 Dec 2004 WO
WO-2004113513 Dec 2004 WO
2005007799 Jan 2005 WO
WO-2005001033 Jan 2005 WO
WO-2005001081 Jan 2005 WO
WO-2005003320 Jan 2005 WO
WO-2005010172 Feb 2005 WO
WO-2005011524 Feb 2005 WO
WO-2005012480 Feb 2005 WO
WO-2005012510 Feb 2005 WO
WO-2005012512 Feb 2005 WO
WO-05014775 Feb 2005 WO
WO-2005028433 Mar 2005 WO
WO-05044972 May 2005 WO
WO-2005056747 Jun 2005 WO
WO-05051316 Jun 2005 WO
WO-2005063303 Jul 2005 WO
WO-2005075636 Aug 2005 WO
2005087915 Sep 2005 WO
WO-2005107760 Nov 2005 WO
WO-2006009291 Jan 2006 WO
2006019357 Feb 2006 WO
2006026835 Mar 2006 WO
WO-2006032075 Mar 2006 WO
WO-2006032092 Mar 2006 WO
WO-20061 13881 Oct 2006 WO
WO-2006108229 Oct 2006 WO
WO-2006121445 Nov 2006 WO
WO-06124021 Nov 2006 WO
WO-06129312 Dec 2006 WO
07012144 Feb 2007 WO
WO-2007115367 Oct 2007 WO
WO-2007115368 Oct 2007 WO
2007136821 Nov 2007 WO
2007139742 Dec 2007 WO
2007139746 Dec 2007 WO
2007139747 Dec 2007 WO
2007139748 Dec 2007 WO
WO-2008006168 Jan 2008 WO
WO-2008011664 Jan 2008 WO
WO-2008017128 Feb 2008 WO
WO-2008028241 Mar 2008 WO
WO-08040812 Apr 2008 WO
WO-2008116261 Oct 2008 WO
WO-2008149129 Dec 2008 WO
WO-2009026635 Mar 2009 WO
WO-09058146 May 2009 WO
WO-09080054 Jul 2009 WO
WO-09081408 Jul 2009 WO
WO-2009140452 Nov 2009 WO
WO-09132457 Nov 2009 WO
2009144720 Dec 2009 WO
WO-10005527 Jan 2010 WO
WO-2010019886 Feb 2010 WO
WO-10014253 Feb 2010 WO
WO-10019997 Feb 2010 WO
2010026573 Mar 2010 WO
2010026574 Mar 2010 WO
2010026575 Mar 2010 WO
10034468 Apr 2010 WO
WO-2010036760 Apr 2010 WO
WO-2010059487 May 2010 WO
WO-10061377 Jun 2010 WO
WO-10068710 Jun 2010 WO
WO-10071826 Jun 2010 WO
WO-10083385 Jul 2010 WO
WO-10111255 Sep 2010 WO
WO-10119036 Oct 2010 WO
WO-10123594 Oct 2010 WO
10149597 Dec 2010 WO
WO-2011025445 Mar 2011 WO
2011132087 Oct 2011 WO
WO-2012072924 Jun 2012 WO
WO-2012138968 Oct 2012 WO
WO-2013110651 Aug 2013 WO
WO-2014128306 Aug 2014 WO
WO-2014131846 Sep 2014 WO
WO-2015118148 Aug 2015 WO
WO-2015118149 Aug 2015 WO
WO-2015131143 Sep 2015 WO
WO-2017072201 May 2017 WO
Non-Patent Literature Citations (337)
Entry
Campagnoli Cesare, et al.: “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, American Society of Hematology, US, vol. 98, No. 8, Oct. 15, 2001 (Oct. 15, 2001), pp. 2396-2402.
Colter, David C., et al., “Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow,” PNAS, Mar. 28, 2000, vol. 97, No. 7, pp. 3213-3218.
Deans, Robert J., et al., “Mesenchymal stem cells: Biology and potential clinical uses,” Experimental Hematology 28 (2000), pp. 875-884.
De Kreuk, Arne M., et al., “A Single-Step Colony-Forming Unit Assay for Unseparated Mobilized Peripheral Blood, Cord Blood, and Bone Marrow,” Journal of Hematotherapy & Stem Cell Research, Mary Ann Liebert, Inc., 2001, vol. 10, pp. 795-806.
Deppisch, Reinhold, et al., “Microdomain structure of polymeric surfaces—Potential for improving blood treatment procedures,” Nephrol Dial Transplant, 1998, vol. 13, pp. 1354-1359.
Humes, HD, et al.,“The future of hemodialysis membranes,” Kidney International, 2006, vol. 69, pp. 1115-1119.
Javazon, Elisabeth H., et al., “Rat Marrow Stromal Cells are More Sensitive to Plating Density and Expand More Rapidly from Single-Cell-Derived Colonies than Human Marrow Stromal Cells,” Stem Cells, 2001, vol. 19, pp. 219-225.
Lin, Wen-Ching, et al., “Blood compatibility of thermoplastic polyurethane membrane immobilized with water soluble chitosan/dextran sulfate,” Colloids and Surfaces B: Biointerfaces, 2005, vol. 44, pp. 82-92.
Martin, Ivan, et al., “Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams,” Engineering Skeletal Tissues from Bone Marrow, John Wiley & Sons, Inc., 2001, pp. 229-235.
Sekiya, Ichiro, et al., “Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions that Maximize the Yields of Early Progenitors and Evaluate Their Quality,” Stem Cells, 2002, vol. 20, pp. 530-541.
Sotiropoulou, Panagioia A., et al., “Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells,” Stem Cells, 2006, vol. 24, pp. 462-471.
Tsai, Ming-Song, et al., “Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol,” Human Reproduction, 2004, vol. 19, No. 6, pp. 1450-1456.
Antwiler, et al., “Bioreactor Design and Implementation,” Methods of Bioegineering: Stem Cell Bioengineering, Parekkadan and Yarmush, eds., Artech House, Chapter 4, pp. 49-62 (2009).
Brambrink, et al., “Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells,” Cell Stem Cell, 2:151-159 (2008).
Chua, et al., “Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold,” Biomaterials, 26:2537-2547 (2004).
Communication under Rule 71(3) EPC, European Patent Application No. 11773364.2, dated Oct. 31, 2019.
Drobinskaya, et al., “Scalable Selection of Hepatocyte- and Hepatocyte Precursor-Like Cells from Culture of Differentiating Transgenically Modified Murine Embryonic Stem Cells,” Stem Cells, 26:2245-2256 (2008).
Dvir-Ginzberg, et al., “Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds,” FASEB J., 22:1440-1449 (2008).
Guan, et al., “Pluripotency of spermatogonial stem cells from adult mouse testis,” Nature, 440:1199-1203 (2006).
Hanna, et al., “Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency,” Cell, 133:250-264 (2008).
Hoenich, et al., “A Microdomain-Structured Synthetic High-Flux Hollow-Fiber Membrane for Renal Replacement Therapy,” ASAIO J., 46:70-75 (2000).
Jaenisch, et al., “Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming,” Cell, 132:567-582 (2008).
Jahagirdar, B. N., et al., “Novel therapies for chronic myelogenous leukemia,” Experimental Hematology, 29:543-56 (2001).
Jiang, Y., et al., “Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain,” Experimental Hematology, 30896-904 (2002).
Jiang, Y., et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, 418:41-9. (2002).
Kirouac, et al., “The Systematic Production of Cells for Cell Therapies,” Cell Stem Cell, 3:369-381 (2008).
Matsumoto, et al., “Hepatic Differentiation of Mouse Embryonic Stem Cells in a Three-Dimensional Culture System Using Polyurethane Foam,” Journal of Bioscience and Bioengineering, 105:350-354 (2008).
McNiece, et al., “Ex-Vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer,” Hematol Cell Ther, 41:82-86 (1999).
McNiece, et al., “Increased expansion and differentiation of cord blood products using a two-step expansion culture,” Experimental Hematology, 28:1181-1186 (2000).
Mesquita, Fernanda C., et al., “Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells In a Closed Cell Expansion System,” Hindawi, Stem Cells International, vol. 2019, Article ID 9704945, Jan. 22, 2019, pp. 1-9.
Miyazawa, et al., “Hepatocyte dynamics in a three-dimensional rotating Bioreactor,” Journal of Gastroenterology and Hepatology, 22:1959-1964 (2007).
Ohashi, et al., “Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets,” Nature Medicine, 13:880-885 (2007).
Okita, et al., “Generation of germline-competent induced pluripotent stem cells,” Nature, 448:313-318 (2007).
Reyes, M. and C. M. Verfaillie, “Characterization of Multipotent Adult Progenitor Cells, a Subpopulation of Mesenchymal Stem Cells” Ann NY Acad Sci, 938:231-233 (2001).
Sheu, Jonathan, et al., “Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor,” Nature, Molecular Therapy—Methods & Clinical Development, 2, Article No. 15020 (2015), doi:10.1038/mtm.2015.20, Jun. 17, 2015, <http://www.nature.com/articles/mtm201520>, pp. 1-18.
Takahashi, et al., “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, 126:663-676 (2006).
Takahashi, et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Ceil, 131:861-872 (2007).
Turner, at al., “Human Hepatoblast Phenotype Maintained by Hyaluronan Hydrogels,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Wiley InterScience (www.interscience.wiley.com), 828:156-168 (2006).
Verfaillie, C. M., “Adult stem cells: assessing the case for pluripotency,” Trends Cell Biol 12:502-8 (2002).
Voss, Harald, “Bioreactors,” Ullmann's Encyclopedia Of Industrial Chemistry: Fifth ed,, B. Elvers, S. Hawkins and G. Schulz Eds, VCH Publishers, 1992, vol. B4, pp. 381-433.
Wernig, et al., “Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease,” PNAS, 105:5856-5861 (2008).
Wilmut, et al., “Viable offspring derived from fetal and adult mammalian cells,” Nature, 385:810-813 (1997).
Yamanaka, S. “Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells,” Cell Stem Cell, 1:39-49 (2007).
Ying, et al., “Changing potency by spontaneous fusion,” Nature, 416:545-548 (2002).
Zandstra, et al., “Expansions of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human Bone Marrow Cells,” Biotechnol, 12:909-914 (1994).
Biovest International, “AutovaxIDTM: advanced hollow fibre bioreactors with automated lactate control yield higher density monoclonal antibody production”, VWRbioMarke, No. 21, Sep. 2008, pp. 10-11.
Chang et al., “Membrane Bioreactors: Present and Prospects”, Advances in Biochemical Engineering, 1991, vol. 44, pp. 27-64.
Chang, Ho Nam, “Membrane Bioreactors: Engineering Aspects”, Biotech. Adv., 1987, vol. 5, pp. 129-145.
Clausen et al., “Lactate as an Indicator of Terminating Time in Insect Cell Culture Baculovirus Expression Vector Systems”, Biotechnology Techniques, vol. 10, No. 10, Oct. 1996, pp. 721-726.
Eddington, Stephen M., “New Horizons for Stem-Cell Bioreactors”, Biotechnology, Oct. 1992, vol. 10, pp. 1099-1106.
Gastens et al., “Good Manufacturing Practice-Compliant Expansion of Marrow-Derived Stem and Progenitor Cells for Cell Therapy”, Cell Transplantation, 2007, vol. 16, pp. 685-696.
Gerlach, J.C. et al., “Comparison of hollow fibre membranes for hepatocyte immobilization in bioreactors,” The International Journal of Artificial Organs, 1996, vol. 19 No. 10, pp. 610-616.
Gloeckner et al., “New Miniaturized Hollow-Fiber Bioreacter for in Vivo Like Cell Culture, Cell Expansion, and Production of Cell-Derived Products”, Biotechnol. Prog., Aug. 21, 2001, vol. 17, No. 5, pp. 828-831.
Gramer et al., “Screening Tool for Hollow-Fiber Bioreactor Process Development”, Biotechnol. Prog., 1998, vol. 14, pp. 203-209.
Grayson et al., “Effects of Hypoxia on Human Mesenchymal Stem Cell Expansion and Plasticity in 3D Constructs”, J. Cellular Physiology, 2006, 207:331-339.
Hirschel et al., “An Automated Hollow Fiber System for the Large Scale Manufacture of Mammalian Cell Secreted Product”, Large Scale Cell Culture Technology, ed. Bjorn K. Lydersen, Hanser Publishers, 1987, pp. 113-144.
Lloyd, J.R. et al., “Hollow-Fibre bioreactors compared to batch and chemostat culture for the production of a recombinant toxoid by a marine Vibrio,” Appl. Microbiol Biotechnol, Aug. 1997, vol. 48, pp. 155-161.
Nielsen, Lars Keld, “Bioreactors for Hematopoietic Cell Culture”, Annu. Rev. Biomed. Eng., 1999, vol. 1, pp. 129-152.
Neumann, Detlef et al., “Bioreaktorsteurung mit grafischer Bedienoberflache,” ATP Automatisierungstechnische Praxis, Mar. 1995, pp. 16-23, vol. 37, No. 3, Munchen, DE. (English language translation included).
Ozturk et al., “Real-Time Monitoring and Control of Glucose and Lactate Concentrations in a Mammalian Cell Perfusion Reactor”, Biotechnology and Bioengineering, vol. 53, No. 4, Feb. 20, 1997, pp. 372-378.
PCT/US2011/055451, “International Search Report, and Written Opinion,” dated Jun. 21, 2012.
PCT/US2011/055453, “International Search Report and Written Opinion,” dated Jun. 21, 2012.
Pörtner et al., “An Overview on Bioreactor Design, Prototyping and Process Control for Reproducible Three-Dimensional Tissue Culture”, Drug Testing in Vitro: Breakthroughs and Trends in Cell Culture Technology, ed. Uwe Marx and Volker Sandig, 2007, Wiley-VCH, pp. 53-78.
Sauer, I. et al., “Extracorporeal liver support based bn primary human liver cells and albumin dialysis—treatment of patient with primary graft non function,” Journal of Hepatology, Oct. 2003, vol. 39 No. 4, pp. 649-653.
Wang et al., “Influence of Oxygen on the Proliferation and Metabolism of Adipose Derived Adult Stem Cells”, J. Cellular Physiology, 2005, 204:184-161.
Zhao et al., “Effects of Oxygen Transport on 3-D human Mesenchymal Stem Cell Metabolic Activity in Perfusion and Static Cultures: Experiments and Mathematical Model”, Biotechnol. Prog, 2005, 27, 1269-1280.
Zhao et al., “Perfusion Bioreactor System for Human Mesenchymal Stem Cell Tissue Engineering: Dynamic Cell Seeding and Construct Development”, Biotechnology and Bioengineering, Aug. 20, 2005, vol. 91, No. 4, pp. 482-493.
Notice of Allowance and Fee(s) Due, U.S. Appl. No. 13/269,232, dated Apr. 7, 2016.
Notice of Allowance and Fee(s) Due, U.S. Appl. No. 13/269,323, dated Dec. 9, 2016.
Office Action, U.S. Appl. No. 13/269,323, filed Aug. 20, 2015.
Official Communication, European Patent Application No. 11773364.2, dated Sep. 21, 2016.
Official Communication, European Patent Application No. 11773365.9, dated Sep. 21, 2016.
Official Communication, European Patent Application No. 11773364.2, dated Jul. 28, 2017.
Official Communication, European Patent Application No. 11773365.9, dated Jul. 28, 2017.
Office Action, U.S. Appl. No. 13/269,351, dated Sep. 9, 2015.
Office Action, U.S. Appl. No. 13/269,351, dated Feb. 11, 2016.
Notice of Allowance and Fee(s) Due, U.S. Appl. No. 13/269,351, dated Oct. 5, 2016.
Notice of Allowance and Fee(s) Due, U.S. Appl. No. 13/269,351, dated Feb. 13, 2017.
Notice of Allowance and Fee(s) Due, U.S. Appl. No. 15/670,931, dated Nov. 8, 2018.
Abumiya, et al. at National Cardiovascular Center Research Institute in Japan, suggest that subjecting human umbilical vein endothelial cells (HUVECs) to laminar shear stress for a period of 8 hours increased the relative expression of VEGFR-2 mRNA (Ateriosclerosis, Thrombosis, and Vascular Biology, 2002).
Afzali B, Edozie FC, Fazekasova H, Scotta C, Mitchell PJ, Canavan JB, Kordasti SY, Chana PS, Ellis R, Lord GM, John S, Hilton R, Lechler RI, Lombardi G. Comparison of regulatory T cells in hemodialysis patients and healthy controls: implications for cell therapy in transplantation. Clin J Am Soc Nephrol. 2013;8(8):1396-405.
Akram, Khondoker M., et al. “Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms.” Respiratory research 14.1 (2013): 1-16.
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26889.
Alenazi, Noof A., et al. “Modified polyether-sulfone membrane: A mini review.” Designed monomers and polymers 20.1 (2017): 532-546.
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514-524.
Amy Putnam, Todd M. Brusko, Michael R. Lee, Weihong Liu, Gregory L. Szot, Taumoha Ghosh, Mark A. Atkinson, and Jeffrey A. Bluestone. Expansion of human regulatory T-Cells from patients with Type 1 Diabetes. Diabetes, 58: 652-662, 2009.
Anamelechi, Charles C., et al. “Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin.” Langmuir 23.25 (2007): 12583-12588.
Anurathapan et al., “Engineered T cells for cancer treatment,” Cytotherapy, vol. 16, pp. 713-733, 2014.
Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC. An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: Analysis of behavioral deficit. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1996;16:705-713.
Arrigoni, Chiara, et al. “Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid.” Biotechnology and bioengineering 100.5 (2008): 988-997.
Azar, Toni, Jody Sharp, and David Lawson. “Heart rates of male and female Sprague-Dawley and spontaneously hypertensive rats housed singly or in groups.” Journal of the American Association for Laboratory Animal Science 50.2 (2011): 175-184.
Baecher-Allan, Clare, et al. “CD4+ CD25high regulatory cells in human peripheral blood.” The Journal of Immunology 167.3 (2001): 1245-1253.
Bai, Tao, et al. “Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel.” Nature medicine 25.10 (2019): 1566-1575.
Bai/Delaney (Nohla Therapeutics) showed that expanding Cord Blood-derived CD34+CD38-CD45RA- HSPCs in a biodegradable zwitterionic hydrogel with a rNotch ligand cocktail for 24 days mitigated HSPC differentiation and promoted self-renewal of lymphoid and myeloid cell phenotypes in an NSG mouse model (Nature Medicine, 2019).
Ballas CB, Zielske SP, Gerson SL (2002) Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38: 20-28.
Ballke C, Gran E, Baekkevold ES, Jahnsen FL. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa. PLoS One. 2016;11(2):e0148826.
Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1): 121-143.
Barckhausen C, Rice B, Baila S, et al. (2016) GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol 1416: 389-412.
Barker et al. “CD34+ Cell Content of 126 341 Cord Blood Units in the US Inventory: Implications for Transplantation and Banking,” blood Advances, vol. 3, No. 8, pp. 1267-1271, Apr. 23, 2019.
Barker, Juliet N., et al. “CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking.” Blood advances 3.8 (2019): 1267-1271.
Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. The Journal of head trauma rehabilitation. 2009;24:439-451.
Bending D, Pesenacker AM, Ursu S, Wu Q, Lom H, Thirugnanabalan B, Wedderburn LR. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193(6):2699-708.
Berendse M, Grounds MD, Lloyd CM (2003) Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res 291(2): 435-450.
Bernard, A., Payton, Mar. 1995. “Fermentation and Growth of Escherichia coli for Optimal Protein Production”, Current Protocols in Protein Science, (1), 5-3.
Berney SM, Schaan T, Wolf RE, van der Heyde H, Atkinson TP. CD2 (OKT11) augments CD3-mediated intracellular signaling events in human T lymphocytes. J Investig Med. 2000;48(2):102-9.
Bioheart Clinical Trial Clinica 1302 Apr. 18, 2008.
Biomolecular and Cellular Interactions with the Hollow Fiber Membrane Currently Used in the Quantum® Cell Expansion System. 12th NJ Symposium on Biomaterials Science, Oct. 6-7, 2014, New Brunswick, NJ.
Blache C, Chauvin JM, Marie-Cardine A, Contentin N, Pommier P, Dedreux I, Francois S, Jacquot S, Bastit D, Boyer O. Reduced frequency of regulatory T cells in peripheral blood stem cell compared to bone marrow transplantations. Biol Blood Marrow Transplant. 2010;16(3):430-4.
Bluestone et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine 7(315):1-34, 2015.
Bluestone JA, Tang Q. Treg cells-the next frontier of cell therapy. Science. 2018;362(6411):154-155.
Bluestone, Jeffrey A., et al. “Type 1 diabetes immunotherapy using polyclonal regulatory T cells.” Science translational medicine 7.315 (2015): 315ra189-315ra189.
Blum S, Moore AN, Adams F, Dash PK. A mitogen-activated protein kinase cascade in the ca1/ca2 subfield of the dorsal hippocampus is essential for long-term spatial memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999; 19:3535-3544.
Boitano, Anthony E., et al. “Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.” Science 329.5997 (2010): 1345-1348.
Bojun Li et al. Heparin-induced conformation changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomaterials Science 3: 73-84, 2015.
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of Stromal Stem Cells from Human Adipose Tissue. Methods Mol Biol. 2006;325:35-46. doi: 10.1385/1-59745-005-7:35. PMID: 16761717.
Borden, M. and Longo, M., “Dissolution Behavior of Lipid Monolayer-Coated, Air-Filled Microbubbles: Effect of Lipid Hydrophobic Chain Length,” Langmuir, vol. 18, pp. 9225-9233, 2002.
Bourke, Sharon L., and Joachim Kohn. “Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol).” Advanced drug delivery reviews 55.4 (2003): 447-466.
Brand, K. and Hermfisse, U., “Aerobic Glycolysis by Proliferating Cells: a Protective Strategy against Reactive Oxygen Species,” The FASEB Journal, vol. 11, pp. 388-395, Apr. 1997.
Brentjens et al., “CD19-Targeted T Cells Rapidly Induce Molecular Remission in Adults with Chemotherapy-Refractory Acute Lympohblastic Leukemia,” Science Translational Medicine, vol. 5, Issue 177, pp. 1-9, Mar. 20, 2013.
Brentjens et al., “Safety and Persistance of Adoptively Transferred Autologous CD19-Target T Cells in Patients with Relapsed or Chemotherapy Refractory B-Cell Leukemias,” Blood, vol. 118, No. 18, pp. 4817-4828, Nov. 3, 2011.
Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, DeFor T, Levine B, June C, Rubinstein P, McGlave P, Blazar B, Wagner J. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117(3):1061-1070.
C. H. Weaver, et al. An Analysis of Engraftment Kinetics as a function of the CD34 Content of the Peripheral Blood Progenitor Cell Collections in 692 Patients After the Administration of Myeloblative Chemotherapy. Blood 86(10): 3691-3969, 1995.
Cano, Àngels, Cristina Minguillón, and Cristina Palet. “Immobilization of endo-1, 4-β-xylanase on polysulfone acrylate membranes: Synthesis and characterization.” Journal of membrane science 280.1-2 (2006): 383-388.
Carswell, K. and Papoutsakis, E. “Culture of Human T Cells in Stirred Bioreactors for Cellular Immunotherapy Applications: Shear, Proliferation, and the IL-2 Receptor,” Biotechnology and Bioengineering, vol. 68, No. 3, pp. 329-338, May 5, 2000.
Celeste Nelson et al., Emergent patterns of growth controlled by multicellular form and mechanics, (in Christopher Chen's Lab demonstrated, in separate experiments, that curved surfaces with a radius of curvature (200 ?m) that is greater than the cell diameter and surfaces that have undulating special patterning (depressions) increase the patterned growth of ECs [PNAS 102(33): 11594-11599, 2005].
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy. 2014;6(12):1295-311.
Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566-78.
Chen, C. and Broden, M., “The Role of Poly(theylene glycol) Brush Architecture in Complement Activation on Targeted Microbubble Surfaces,” Biomaterials, vol. 32, No. 27, pp. 6579-6587, Jun. 17, 2011.
Choi W, Kwon SJ, Jin HJ, et al. (2017) Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med 6(1): 38.
Chullikana A, Majumdar AS, Gottipamula S, et al. (2015) Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 17(3): 250-261.
Claudio G. Brunstein, Jeffrey S. Miller, Qing Cao, Daivd H. McKenna, Keii L. Hippen, Julie Curtsinger, Todd Defer, Bruce L. Levine, Carl H. June, Pablo Rubinstein, Philip B. McGlave, Bruce R. Blazar, and John E. Wagner. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood, 117(3): 1061-1070, 2010.
Coeshott C, Vang B, Jones M, Nankervis B. Large-scale expansion and characterization of CD3(+) T-cells in the Quantum((R)) Cell Expansion System. J Transl Med. 2019;17(1):258.
Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol Rev. 2005;204:184-94.
Coquillard C. mTOR Signaling in Regulatory T cell Differentiation and Expansion. SOJ Immunology. 2015;3(1):1-10.
Creed JA, DiLeonardi AM, Fox DP, Tessier AR, Raghupathi R. Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. Journal of neurotrauma. 2011;28:547-563.
Cuchiara, Maude L., et al. “Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.” Acta biomaterialia 9.12 (2013): 9258-9269.
Da Silva, Ricardo MP, Joao F. Mano, and Rui L. Reis. “Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.” TRENDS in Biotechnology 25.12 (2007): 577-583.
Dash PK, Hochner B, Kandel ER. Injection of the camp-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature. 1990;345:718-721.
Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S. Involvement of the glycogen synthase kinase-3 signaling pathway in tbi pathology and neurocognitive outcome. PloS one. 2011;6:e24648.
Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem. 2002;9:167-177.
Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PloS one. 2010;5:e11383.
Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neuroscience letters. 2009;460:103-107.
Davila et al., “Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B cell Acute Lymphoblastic Leukemia,” Science Translational Medicine, vol. 6, No. 224, pp. 1-10, Feb. 19, 2014.
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and ve-cadherin in the control of vascular permeability. Journal of cell science. 2008;121:2115-2122.
Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and haemostasis. 2001;86:308-315.
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Developmental cell. 2009;16:209-221.
Del Pino A, Ligero G, Lopez MB, et al. (2015) Morphology, cell viability, karyotype, expression of surface markers and plasticity of three primary cell line cultures before and after the cryostorage in LN2 and GN2. Cryobiology 70(1): 1-8.
Delaney, Colleen, et al. “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution.” Nature medicine 16.2 (2010): 232-236.
Ding, Zhongli, Guohua Chen, and Allan S. Hoffman. “Synthesis and purification of thermally sensitive oligomer? enzyme conjugates of poly (N-isopropylacrylamide)- trypsin.” Bioconjugate chemistry 7.1 (1996): 121-125.
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. Journal of neuroscience methods. 1991;39:253-262.
Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317.
Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5(6): 919-932.
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol. 2018;142(6):1710-1718.
Fakin R, Hamacher J, Gugger M, Gazdhar A, Moser H, Schmid RA. Prolonged amelioration of acute lung allograft rejection by sequential overexpression of human interleukin-10 and hepatocyte growth factor in rats. Exp Lung Res. 2011;37(9):555-62.
Fedorov et al., “PD-1- and CTLA-4-Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses,” Science Translational Medicine, vol. 5, No. 215, pp. 1-12, Dec. 11, 2013.
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18(10):749-769.
Fischbach, Michael A., Jeffrey A. Bluestone, and Wendell A. Lim. “Cell-based therapeutics: the next pillar of medicine.” Science translational medicine 5.179 (2013): 179ps7-179ps7.
Fisk, Nicholas M., et al. “Can routine commercial cord blood banking be scientifically and ethically justified?.” PLoS medicine 2.2 (2005): e44.
Forbes Jun. 23, 2014 article “Will this man cure cancer?”.
Fowler DH. Rapamycin-resistant effector T-cell therapy. Immunol Rev. 2014;257(1):210-25.
Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Mol Ther Methods Clin Dev. 2018;8:198-209.
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769-77.
Fuchs A, Gliwinski M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhauser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Golab K, Hafler DA, van Ham SM, Hester J et al. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol. 2017;8:1844.
G0211: Study for Gamma Irradiation of Bioreactor Membranes, undated, available at least one year prior to Jun. 1, 2020, author unknown, 3 pages.
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. J Immunol. 2016;197(7):2567-75.
Garlie, Nina K., et al. “T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer.” Journal of immunotherapy (Hagerstown, Md.: 1997) 22.4 (1999): 336-345.
Gedaly R, De Stefano F, Turcios L, Hill M, Hidalgo G, Mitov MI, Alstott MC, Butterfield DA, Mitchell HC, Hart J, Al-Attar A, Jennings CD, Marti F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation. 2019;103(4):705-715.
Gimble, Jeffrey M., Adam J. Katz, and Bruce A. Bunnell. “Adipose-derived stem cells for regenerative medicine.” Circulation research 100.9 (2007): 1249-1260.
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807-26.
Godin, Michel, et al. “Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator.” Applied physics letters 91.12 (2007): 123121.
Goh, Celeste, Sowmya Narayanan, and Young S. Hahn. “Myeloid-derived suppressor cells: the dark knight or the joker in viral infections?.” Immunological reviews 255.(2013): 210-221.
Golab K, Leveson-Gower D, Wang XJ, Grzanka J, Marek-Trzonkowska N, Krzystyniak A, Millis JM, Trzonkowski P, Witkowski P. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol. 2013;16(3):371-5.
Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell stem cell. 2011;8:618-628.
Griesche, Nadine, et al. “A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells.” cells tissues organs 192.2 (2010): 106-115.
Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34(3):396-408.
Haack-Sorensen M, Follin B, Juhl M, et al. (2016) Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med 14(1): 319.
Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. Journal of neurotrauma. 2005;22:252-265.
Hami et al., “GMP Production and Testing of Xcellerated T Cells for the Treatment of Patients with CLL,” Cytotherapy, pp. 554-562, 2004.
Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of neurotrauma. 1992;9:11-20.
Hanley PJ, Mei Z, Durett AG, et al. (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16(8): 1048-1058.
Harimoto, Masami, et al. “Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes.” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 62.3 (2002): 464-470.
He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, Zheng Y, Downes M, Evans RM. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA. 2017;114(47):12542-12547. .
He X, Landman S, Bauland SC, van den Dolder J, Koenen HJ, Joosten I. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells. PLoS One. 2016;11(5):e0156311.
Heskins, Michael, and James E. Guillet. “Solution properties of poly (N-isopropylacrylamide).” Journal of Macromolecular Science—Chemistry 2.8 (1968): 1441-1455.
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27(5):786-800.
Högstedt, Benkt, Anita Karlsson, and Anders Holmén. “Frequency and size distribution of micronuclei in lymphocytes stimulated with phytohemagglutinin and pokeweed mitogen in workers exposed to piperazine.” Hereditas 109.(1988): 139-142.
Hollyman et al., “Manufacturing Validation of Biologicall Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy,” J Immunother, vol. 32, No. 2, pp. 169-180, February-Mar. 2009.
Horwitz, Mitchell E., et al. “Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide.” Journal of Clinical Oncology 37.5 (2019): 367-373.
MRI| Small Animal Imaging| University of Colorado Cancer Center, http://www.ucdenver.edu/academics/colleges/medicalschool/centers/cancercenter/Research/sharedresources/AnimalImaging/smallanimalimaging/Pages/MRI.aspx, 2019, 2 pages.
ISCT Webinar “Volume Reduction technology for Large Scale Harvest or Post-thaw Manipulation of Cellular Therapeutics”, Feb. 8, 2012, 60 pages.
Itkin, Tomer, and Tsvee Lapidot. “SDF-1 keeps HSC quiescent at home.” Blood, The Journal of the American Society of Hematology 117.2 (2011): 373-374.
Iwashima, Shigejiro, et al. “Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.” Stem cells and development 18.4 (2009): 533-544.
Jang, Eugene, et al. “Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle.” Proceedings of the National Academy of Sciences 109.5 (2012): 1679-1684.
Jarocha D, Stangel-Wojcikiewicz K, Basta A, Majka M (2014) Efficient myoblast expansion for regenerative medicine use. Int J Mol Med 34(1): 83-91.
Jin, H., and J. Bae. “Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.” 22nd Annual ISCT Meeting (2016): S29.
Jo CH, Lee YG, Shin WH, et al. (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5): 1254-1266.
Johansson, Ulrika, et al. “Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices.” PloS one 10.6 (2015): e0130169.
John Carvell, et al. Monitoring Live Biomass in Disposable Bioreactors, BioProcess International 14(3)s, Mar. 2016.
John Nicolette, et al. (Abbott Laboratories). In Vitro Micronucleus Screening of Pharmaceutical Candidates by Flow Cytometry in Chinese Hamster V79 Cells, Environmental and Molecular Mutagenesis 00:000-000, 2010.
John P. Carvell and Jason E. Dowd. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio frequency impedance. Cytotechnology 50: 35-48, 2006.
Johnson, Patrick A., et al. “Interplay of anionic charge, poly (ethylene glycol), and iodinated tyrosine incorporation within tyrosine-derived polycarbonates: Effects on vascular smooth muscle cell adhesion, proliferation, and motility.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 93.2 (2010): 505-514.
Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, Hadaczek P, Federoff HJ, Bankiewicz K, Forsayeth J. Human interleukin-10 gene transfer is protective in a rat model of Parkinson's disease. Mol Ther. 2008;16(8):1392-9.
Jones M, Varella-Garcia M, Skokan M, et al. (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System. Cytotherapy 15(11): 1323-1339.
Jones2016ISCT 2016 Poster 69.
Joy, Abraham, et al. “Control of surface chemistry, substrate stiffness, and cell function in a novel terpolymer methacrylate library.” Langmuir 27.5 (2011): 1891-1899.
Kalamasz et al., “Optimization of Human T-Cell Expansion Ex Vivo Using Magnetic Beads Conjugated with Anti-CD3 and Anti-CD28 Antibodies,” J Immunother, vol. 27, No. 5, pp. 405-418, Sep.-Oct. 2004.
Kim, Do-Hyung, et al. “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.” Cell 110.2 (2002): 163-175.
Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, Matarese G, Smith DM, Haas R, Mauro C, Wraith DC, Okkenhaug K, Catapano AL, De Rosa V, Norata GD, Marelli-Berg FM. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47(5):875-889 e10.
Klapper et al., “Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy,” Journal of Immunological Methods, 345, pp. 90-99, Apr. 21, 2009.
Klein, Elias, Eva Eichholz, and Don H. Yeager. “Affinity membranes prepared from hydrophilic coatings on microporous polysulfone hollow fibers.” Journal of membrane science 90.1-2 (1994): 69-80.
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.
Korpanty et al., “Tageting Vascular Enothelium with Avidin Microbubbles,” Ultrasound in Medicine and Biology, vol. 31, No. 9, pp. 1279-1283, May 24, 2005.
Krauss et al., “Signaling Takes a Breath—New Quantitative Perspectives on Bioenergetics and Signal Transduction,” Immunity, vol. 15, pp. 497-502, Oct. 2001.
Kulikov, A. V., et al. “Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic acid in rats.” Bulletin of experimental biology and medicine 145.4 (2008): 514-519.
Kumar P, Marinelarena A, Raghunathan D, Ragothaman VK, Saini S, Bhattacharya P, Fan J, Epstein AL, Maker AV, Prabhakar BS. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol Immunol. 2019;16(2):138-153.
Kwan, J. and Borden, M., “Lipid Monolayer Collapse and Microbubble Stability,” Advances in Colloid and Interface Science, vols. 183-184, pp. 82-99, Aug. 21, 2012.
Lampugnani MG, Caveda L, Breviario F, Del Maschio A, Dejana E. Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Bailliere's clinical haematology. 1993;6:539-558.
Lang, Julie, et al. “Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2nullll2rYnull mouse model: a multivariable optimization approach.” Clinical Immunology 140.1 (2011): 102-116.
Lataillade, Jean-Jacques, et al. “Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival.” Blood, The Journal of the American Society of Hematology 95.3 (2000): 756-768.
Lee et al., “Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion,” The Journal of Immunology, 168, pp. 1682-1689, 2002.
Lee III, Daniel W., et al. “Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation.” Blood 128.22 (2016): 218.
Lee, Jae W., et al. “Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.” Proceedings of the national academy of Sciences 106.38 (2009): 16357-16362.
Levine, B., “T Lymphocyte Engineering ex vivo for Cancer and Infectious Disease,” Expert Opinion on Biological Therapy, vol. 4, No. 4, pp. 475-489, 2008.
Lindstein, Tullia, et al. “Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway.” Science 244.4902 (1989): 339-343.
Liotta, Francesco, et al. “Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma.” BJU international 107.9 (2011): 1500-1506.
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701-1711.
Lum et al., “Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles,” Journal of Controlled Release, 111, pp. 128-134, 2006.
M. R. Koller, et al. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplantion 21:653-663, 1998.
Malin, Stephen F., et al. “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.” (1999): 1651-1658.
Malone et al., “Characterization of Human Tumor-Infiltrating Lymphocytes Expanded in Hollow-Fiber Bioreactors for Immunotherapy of Cancer,” Cancer Biotherapy & Radiopharmaceuticals, vol. 16, No. 5, pp. 381-390, 2001.
Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 112(47): 14452-14459.
Marek-Trzonkowska, Natalia, et al. “Administration of CD4+ CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children.” Diabetes care 35.9 (2012): 1817-1820.
Maria Streltsova, Dean Lee (Nationwide Children's Hospital, OSU, Columbus, OH) et al. (Int'l Journal of Molecular Sciences, 2019).
Markgraf CG, Clifton GL, Aguirre M, Chaney SF, Knox-Du Bois C, Kennon K, Verma N. Injury severity and sensitivity to treatment after controlled cortical impact in rats. Journal of neurotrauma. 2001;18:175-186.
Mathew et al. A Phase I Clinical Trials I with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Nature, Scientific Reports 8:7428 (1-12), 2018.
Matthay, Michael A., et al. “Therapeutic potential of mesenchymal stem cells for severe acute lung injury.” Chest 138.4 (2010): 965-972.
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nat Immunol. 2007;8(9):931-41.
McKenna DH, Jr., Sumstad D, Kadidlo DM, et al. Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy 2017;19:250-62.
McLimans W, Kinetics of Gas Diffusion in Mammalian Cell Culture Systems. Biotechnology and Bioengineering 1968; 10:725-740.
McMurtrey, Richard J. “Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids.” Tissue Engineering Part C: Methods 22.3 (2016): 221-249.
Menge, Tyler, et al. “Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury.” Science translational medicine 4.161 (2012): 161ra150-161ra150.
Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. HIF-1 alpha Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep. 2019;27(1):226-237 e4.
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911.
Murugappan, G., et al. “Human hematopoietic progenitor cells grow faster under rotational laminar flows.” Biotechnology progress 26.5 (2010): 1465-1473.
Nankervis B, Jones M, Vang B et al. (2018) Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor. Curr Stem Cell Rep. Advanced online publication, https://doi.org/10.1007/s40778-018-0116-x.
Nankervis, Brian, et al. “Optimizing T cell expansion in a hollow-fiber bioreactor.” Current Stem Cell Reports 4.1 (2018): 46-51.
Nedoszytko B, Lange M, Sokolowska-Wojdylo M, Renke J, Trzonkowski P, Sobjanek M, Szczerkowska-Dobosz A, Niedoszytko M, Gorska A, Romantowski J, Czarny J, Skokowski J, Kalinowski L, Nowicki R. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis. Postepy Dermatol Alergol. 2017;34(5):405-417.
Nehlin JO, Just M, Rustan AC (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12: 349-365.
Unknown Author, “New Victories for Adult Stem Cell Research,” New York, Feb. 6, 2007, 3 pages.
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17(6):618-25.
Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129.
Nikolaychik, V. V., M. M. Samet, and P. I. Lelkes. “A New, Cryoprecipitate Based Coating For Improved Endothelial Cell Attachment And Growth On Medical Grade Artificial Surfaces.” ASAIO Journal (American Society for Artificial Internal Organs: 1992) 40.3 (1994): M846-52.
Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, Yu S, Yan X, Lee HK, Pasman L, Brodsky I, Yordy B, Zhao H, Bruning J, Medzhitov R. T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife. 2014;3:e01949.
Niwayama, Jun, et al. “Analysis of hemodynamics during blood purification therapy using a newly developed noninvasive continuous monitoring method.” Therapeutic Apheresis and Dialysis 10.4 (2006): 380-386.
Nugent, Helen M., et al. “Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts.” Journal of vascular surgery 46.3 (2007): 548-556.
Okano et al. (Tokyo Women's Medical College, Japan) demonstrated the recovery of endothelial cells and hepatocytes from plasma-treated polystyrene dishes grafted with PNIAAm (Journal of Biomedical Materials Research, 1993).
Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008; 105(29):10113-8.
Onyszchuk G, LeVine SM, Brooks WM, Berman NE. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: A magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neuroscience letters. 2009;452:204-208.
Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F, Coccia EM, Bonacina F, Mitro N, Norata GD, Rossetti G, Ranzani V, Pagani M, Giorda E, Wei Y, Matarese G, Barnaba V, Piconese S. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A. 2018;115(28):E6546-E6555.
Parhi, Purnendu, Avantika Goias, and Erwin A. Vogler. “Role Of Proteins And Water In The Initial Attachment Of Mammalian Cells To Biomedical Surfaces: A Review.” Journal of Adhesion Science and Technology 24.5 (2010): 853-888.
Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, Zhao J, Letourneau PA, Huby MP, Baer LA, Salsbury JR, Kozar RA, Wade CE, Walker PA, Dash PK, Cox CS, Jr., Doursout MF, Holcomb JB. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS one. 2011;6:e25171.
Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Reitz MS, Holcomb JB, Dash PK. Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/beta-catenin signaling. Stem cells and development. 2011;20:89-101.
Pati, Shibani, and Todd E. Rasmussen. “Cellular therapies in trauma and critical care medicine: Looking towards the future.” PLoS Medicine 14.7 (2017): e1002343.
Pati, Shibani, et al. “Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock.” PloS one 13.2 (2018): e0192363.
Peters JH, Preijers FW, Woestenenk R, Hilbrands LB, Koenen HJ, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 Depletion, Treg expansion, and Treg cryopreservation. PLoS One. 2008;3(9):e3161.
Peters, R.; Jones, M.; Brecheisen, M.; Startz, T.; Vang, B.; Nankervis, B.; Frank, N.; Nguyen, K. (2012) TerumoBCT. https://www.terumobct.com/location/north-america/products-and-services/Pages/Quantum-Materials.aspx.
Porter CM, Horvath-Arcidiacono JA, Singh AK, Horvath KA, Bloom ET, Mohiuddin MM. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a nonhuman primate xenotransplantation model. Xenotransplantation. 2007;14(4):298-308.
Povsic TJ, O'Connor CM, Henry T, et al. (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162(4): 654-662.
Prockop, Darwin J., Carl A. Gregory, and Jeffery L. Spees. “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.” Proceedings of the National Academy of Sciences 10O.suppl_1 (2003): 11917-11923.
Q. L. Hao, et al. A functional comparison of CD34+ CD38= cells in cord blood and bone marrow. Blood 86:3745-3753, 1995.
Rahmahwati, Nurlaela, Deana Wahyuningrum, and Anita Alni. “The Synthesis Of Polyethersulfone (PES) Derivatives For The Immobilization Of Lipase Enzyme.” Key Engineering Materials. vol. 811. Trans Tech Publications Ltd, 2019.
Rey-Jurado, Emma, et al. “Assessing the importance of domestic vaccine manufacturing centers: an overview of immunization programs, vaccine manufacture, and distribution.” Frontiers in immunology 9 (2018): 26.
Roballo KC, Dhungana S, Z. J, Oakey J, Bushman J. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1-9.
Rodrigues, C., Fernandes, T., Diogo, M., Lobato da Silva, C., Cabral, J. Stem Cell Cultivation in Bioreactors. 2011. Biotechnology Advances v. 29, pp. 815-829.
Ronco C1, Levin N, Brendolan A, Nalesso F, Cruz D, Ocampo C, Kuang D, Bonello M, De Cal M, Corradi V, Ricci Z. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial Int. Oct. 2006; 10(4):380-8.
Ronco, C., Brendolan, A., Crepaldi, C., Todighiero, M., Scabardi, M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. 2002. Journal of the American Society of Nephrology. V. 13, pp. S53-S61.
Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16(2):90-101.
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR, Jr., Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58.
Rudensky, Alexander Y. “Regulatory T cellsand Foxp3.” Immunological reviews 241.1 (2011): 260-268.
Ryu, Min-Hyung, and Mark Gomelsky. “Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.” ACS synthetic biology 3.11 (2014): 802-810.
S. Koestenbauer, et al. Protocols for Hematopoietic Stem Cell Expansion from Umbilical Cord Blood. Cell Transplantation 18: 1059-1068, 2009.
S. L. Smith, et al. Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow. Experimental Hematology 21:870-877, 1993.
Safinia N, Grageda N, Scotta C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol. 2018;9:354.
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011 ;472:466-470.
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.
Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18-32.
Schild, Howard G. “Poly (N-isopropylacrylamide): experiment, theory and application.” Progress in polymer science 17.2 (1992): 163-249.
Schmitz R, Alessio A, Kina P. The Physics of PET/CT scanners. Imaging Research Laboratory, Department of Radiology, University of Washington http://depts.washington.edu/imreslab/education/Physics%20of%20PET.pdf, 2013, 16 pages.
Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305-34.
Shevkoplyas et al., “The Force Acting on a Superparamagnetic Bead due to an Applied Magnetic Field,” Lab on a Chip , 7, pp. 1294-1302, 2007.
Shimazu Y, Shimazu Y, Hishizawa M, Hamaguchi M, Nagai Y, Sugino N, Fujii S, Kawahara M, Kadowaki N, Nishikawa H, Sakaguchi S, Takaori-Kondo A. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia. Cancer Immunol Res. 2016;4(2):136-45.
Shimizu et al. (TWMU & Heart Institute of Japan) described the detachment of avian cardiomyocytes from PIPAAm matrixes that were observed to pulse spontaneously with neovascularization in layered sheets three (3) weeks after transplantation (Circulation Research, 2002).
Sigma-Aldrich, Product Information, Cheimcals Mitomycin C (M4287) MSDS, v4.4, Jul. 7, 2011.
Sirsi, S. and Borden, M., “Microbubble Composition, Properties, and Biomedical Applications,” Bubble Science, Engineering & Technolology, vol. 1, No. 1-2, pp. 3-17, 2009.
Smith C, Okern G, Rehan S, et al. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement. Clinical & Translational Immunology 2015;4:e31.
Somerville et al., “Clinical Scale Rapid Expansion of Lymphocytes for Adoptive Cell Transfer Therapy in the WAVE® Bioreactor,” Journal of Translational Medicine, vol. 10, No. 69, pp. 1-11, 2012.
Somerville, R. and Dudley, M., “Bioreactors Get Personal,” Oncolmmunology, vol. 1, No. 8, pp. 1435-1437, Nov. 2012.
Spectrum Labs, KrosFlo Research IIi TFF System, Spectrum Laboratories, Inc., 2013, 4 pages.
Stafano Tiziani, et al. Metabolomic Profiling of Drug Response in Acute Myeloid Leukaemia Cell lines. PLOSone 4(1): e4251 (Jan. 22, 2009).
Unknown Author, StAR_Abstract, 2014, 1 page.
Startz et al. May 2016 TBCT T-cell White Paper.
Startz, T., et al. “Maturation of dendritic cells from CD14+ monocytes in an automated functionally closed hollow fiber bioreactor system.” Cytotherapy 16.4 (2014): S29.
Steven M. Bryce, et al. (Litron Laboratories). In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutation Research 630(1-2): 78-91,2007.
Steven M. Bryce, et al. (Novartis Pharma AG, Johnson & Johnson Pharmaceutical Research, GlaxoSmithKline). Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Genetic Toxicology and Environmental Mutagenesis 650: 181-195, 2008.
Stuart, Martien A. Cohen, et al. “Emerging applications ofstimuli-responsive polymer materials.” Nature materials 9.2 (2010): 101-113.
Su LF, Del Alcazar D, Stelekati E, Wherry EJ, Davis MM. Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc Natl Acad Sci U S A. 2016;113(41):E6192-E6198.
Takezawa, Toshiaki, Yuichi Mori, and Katsutoshi Yoshizato. “Cell culture on a thermo-responsive polymer surface.” Bio/technology 8.9 (1990): 854-856.
The effect of rocking rate and angle on T cell cultures grown in Xuri™ Cell Expansion Systems, Aug. 2014, GE Healthcare UK Limited, 4 pages.
Trzonkowski et al., “Ex Vivo Expansion of CD4+ CD25+ T Regulatory Cells for Immunosuppressive Therapy,” Cytometry Part A, 75A, pp. 175-188, 2009.
Trzonkowski, Piotr, et al. “First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127? T regulatory cells.” Clinical immunology 133.1 (2009): 22-26.
Tsvetkov, Ts, et al. “Isolation and cryopreservation of human peripheral blood monocytes.” Cryobiology 23.6 (1986): 531-536.
Ueda, Ryosuke, et al. “Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.” Cancer medicine 5.1 (2015): 49-60.
Underwood, P. Anne, et al. “Effects of base material, plasma proteins and FGF2 on endothelial cell adhesion and growth.” Journal of Biomaterials Science, Polymer Edition 13.8 (2002): 845-862.
Urbich, et al. from the Goethe-Universität, demonstrated that human endothelial cells increased VEGFR-2 mRNA expression when exposed to 5-15 dynes/cm2 of constant shear force for a period of 6-24 hours (FEBS, 2002).
Van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29(1):3-11.
Van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev. 2012;249(1):27-42.
Vera et al., “Accelerated Production of Antigen-Specific T-Cells for Pre-Clinical and Clinical Applications Using Gas-Permeable Rapid Expansion Cultureware (G-Rex),” J Immunother, vol. 33, No. 3, pp. 305-315, Apr. 2010.
Villa, Alma Y. Camacho, et al. “CD133+ CD34+ and CD133+ CD38+ blood progenitor cells as predictors of platelet engraftment in patients undergoing autologous peripheral blood stem cell transplantation.” Transfusion and Apheresis Science 46.3 (2012): 239-244.
Visser EP1, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. Jan. 2009;50(1):139-47.
Von Laer, D., et al. “Loss of CD38 antigen on CD34+ CD38+ cells during short-term culture.” Leukemia 14.5 (2000): 947-948.
Wagner Jr, John E., et al. “Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft.” Cell stem cell 18.1 (2016): 144-155.
Walker, Peter A., et al. “Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NF?B-mediated increase in interleukin-6 production.” Stem cells and development 19.6 (2010): 867-876.
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011 ;35(6):871-82.
Wang, Jiamian, John A. Jansen, and Fang Yang. “Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review.” Frontiers in Chemistry 7 (2019): 258.
Ward H, Vigues S, Poole S, Bristow AF. The rat interleukin 10 receptor: cloning and sequencing of cDNA coding for the alpha-chain protein sequence, and demonstration by western blotting of expression in the rat brain. Cytokine. 2001;15(5):237-40.
Wawman, Rebecca Ellen, Helen Bartlett, and Ye Htun Oo. “Regulatory T cell metabolism in the hepatic microenvironment.” Frontiers in immunology 8 (2018): 1889.
Weber et al., “White Paper on Adoptive Cell Therapy for Cancer with Tumor-Infiltrating Lymphocytes: A Report of the CTEP Subcommittee on Adoptive Cell Therapy,” Clinical Cancer Research, vol. 17, No. 7, pp. 1664-1673, Apr. 1, 2011.
Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, Phase III clinical trial. Dermatol Surg 33(3): 263-268.
Wddel, F. 2010. “Theory and measurement of bacterial growth” http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf. year 2010.
Yamada, Noriko, et al. “Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells.” Die Makromolekulare Chemie, Rapid Communications 11.11 (1990): 571-576.
Yang, Hee Seok, et al. “Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment.” Cell transplantation 19.9 (2010): 1123-1132.
Yi, Zhuan, et al. “A readily modified po lyeth ersu Ifo ne with amino-substituted groups: its amphiphilic copolymer synthesis and membrane application.” Polymer 53.2 (2012): 350-358.
Yoshinari, Masao, et al. “Effect of cold plasma-surface modification on surface wettability and initial cell attachment.” International Journal of Biomedical and Biological Engineering 3.10 (2009): 507-511.
Zappasodi et al., “The Effect Of Artificial Antigen-Presenting Cells with Preclustered Anit-CD28/-CD3/LFA-1 Monoclonal Antibodies on the Induction of ex vivo Expansion of Functional Human Antitumor T Cells,” Haematologica, vol. 93, No. 10, pp. 1523-1534, 2008.
Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Publisher Correction: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19(6):645.
Zeng B, Kwak-Kim J, Liu Y, Liao AH. Treg cells are negatively correlated with increased memory B cells in pre-eclampsia while maintaining suppressive function on autologous B-cell proliferation. Am J Reprod Immunol. 2013;70(6):454-63.
Zheng, et al. at the University of Iowa have shown that the differential effects of pulsatile blood flow and cyclic stretch are an important growth stimulus (American Journal of Physiology—Heart and Circulatory Physiology, 2008).
Related Publications (1)
Number Date Country
20200291346 A1 Sep 2020 US
Provisional Applications (2)
Number Date Country
61391152 Oct 2010 US
61434726 Jan 2011 US
Divisions (1)
Number Date Country
Parent 13269351 Oct 2011 US
Child 15610224 US
Continuations (1)
Number Date Country
Parent 15610224 May 2017 US
Child 16889632 US