This application describes embodiments of apparatuses, methods, and systems for the treatment of wounds, specifically to aid in the closure of large wounds, in conjunction with the administration of negative pressure.
Negative pressure wound therapy has been used in the treatment of wounds, and in many cases can improve the rate of healing while also removing exudates and other deleterious substances from the wound site.
Abdominal compartment syndrome is caused by fluid accumulation in the peritoneal space due to edema and other such causes, and results in greatly increased intra-abdominal pressure that may cause organ failure eventually resulting in death. Causes may include sepsis or severe trauma. Treatment of abdominal compartment syndrome may require an abdominal incision to permit decompression of the abdominal space, and as such, a large wound may be created onto the patient. Closure of this wound, while minimizing the risk of secondary infections and other complications, and after the underlying edema has subsided, then becomes a priority. However, acute open abdominal conditions may be caused by other reasons in addition to compartment syndrome, as described further below.
Other large or incisional wounds, either as a result of surgery, trauma, or other conditions, may also require closure. For example, wounds resulting from sternotomies, fasciotomies, and other abdominal wounds may require closure. Wound dehiscence of existing wounds is another complication that may arise, possibly due to incomplete underlying fascial closure, or secondary factors such as infection.
Existing negative pressure treatment systems, while permitting eventual wound closure, still require lengthy closure times. Although these may be combined with other tissue securement means, such as sutures, there is also a risk that underlying muscular and fascial tissue is not appropriately reapproximated so as to permit complete wound closure. Further, when foam or other wound fillers are inserted into the wound, the application of negative pressure to the wound and the foam may cause atmospheric pressure to bear down onto the wound, compressing the foam downward and outward against the margins of the wound. This downward compression of the wound filler slows the healing process and slows or prevents the joining of wound margins. Additionally, inflammation of the fascia in the form of certain types of fasciitis can lead to rapid and excessive tissue loss, potentially meriting the need for more advanced negative pressure treatment systems.
Further, because wounds are of different shapes and/or sizes, foam or other wound fillers may need to be sized or shaped to better accommodate wounds. Although existing foam or other wound fillers may be cut or tear to certain size or shape, the adjustment may be limited by various factors, such as the size or the shape of the original foam or other wound fillers. Additionally, a wound may change its size or shape as negative pressure treatment continues. Accordingly, there is a need to provide for an improved apparatus, method, and system for the treatment and closure of wounds.
Embodiments of the present invention relate to negative pressure wound closure devices, methods of making the same, and methods and systems that facilitate closure of a wound. It will be understood by one of skill in the art that the wounds described herein this specification may encompass any wound, and are not limited to a particular location or type of wound. The devices, methods, and systems may operate to reduce the need for repetitive replacement of wound filler material currently employed and can advance the rate of healing. The devices, methods, and systems may be simultaneously used with negative pressure to remove wound fluids.
In some embodiments, a wound closure device may comprise a plurality of building blocks and/or building units configured to be adhered to or attached to each other to form an assembled structure for insertion into or placement over a wound.
In some embodiments, each of the building blocks and/or building units may comprise at least one cell. The building blocks and/or building units may be configured to form an assembled stabilizing structure comprising a plurality of cells defined by one or more walls, wherein in the assembled stabilizing structure cells are provided side-by-side in a horizontal plane and each of the cells has a top end and a bottom end with an opening extending through the top and bottom ends.
In some embodiments, the plurality of building blocks and/or building units may be configured to be reversibly adhered to one another. One or more of the building blocks and/or building units may comprise attachment elements and/or receiving elements configured to receive attachment elements of one or more of the building blocks and/or building units.
In some embodiments, one or more of the building blocks and/or building units may have an elongate shape with a uniform width. Each building units may comprise one or more cells provided in a single row. Each of building units may have a uniform width. Each of the building units may be configured to reduce or increase its length by removing or adding cells respectively.
In some embodiments, each of the building blocks and/or building units may comprise cells having a uniform shape and size. Each of one or more building blocks may consist of one cell. Each of the building blocks and/or building units may comprise at least one cell having a triangular, quadrilateral or hexagonal shape.
In some embodiments, each of the building blocks and/or building units comprises foam or porous material. One or more building blocks and/or building units may further comprise precuts defining frangible portions of the foam or porous material. One or more of the plurality of building blocks and/or building units may be configured to be cut or torn.
In some embodiments, the wound closure device may further comprise a source of negative pressure, a drape and/or an organ protection layer. The wound closure device may further comprise a port configured to transmit negative pressure through a drape placed over the wound.
In certain embodiments, a method of treating a wound comprises:
In some embodiments, the method may further comprise adjusting the size and/or shape of the building blocks and/or the building units, optionally by detaching one or more cells from one or more units, wherein one or more units have two or more cells. The method may further comprise providing a plurality of building units having a uniform size and shape, and subsequently adjusting the size and/or shape of each of the plurality of building units having the uniform size and shape. The method may further comprise detaching one or more building blocks and/or the building units from the stabilizing structure, wherein the plurality of building blocks and/or the building units are detachably adhered.
In some embodiments, the method may further comprise covering the stabilizing structure with a drape sealed to skin surrounding the wound; and applying negative pressure through the drape to the wound via a source of negative pressure, wherein the application of negative pressure causes the stabilizing structure to horizontally collapse. The method may further comprise inserting a tissue protection layer over the wound before inserting the stabilizing structure.
Other embodiments of wound closure devices, stabilizing structures and associated apparatuses and methods are described below.
Other features and advantages of the present invention will be apparent from the following detailed description of the invention, taken in conjunction with the accompanying drawings of which:
Embodiments disclosed in this section or elsewhere in this specification relate to apparatuses and methods of treating a wound with reduced pressure, including pump and wound dressing components and apparatuses. The apparatuses and components comprising the wound overlay and packing materials, if any, are sometimes collectively referred to in this section or elsewhere in this specification as dressings.
It will be appreciated that throughout this specification reference is made to a wound. It is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sternotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, electrical burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.
As is used in this section or elsewhere in this specification, reduced or negative pressure levels, such as —X mmHg, represent pressure levels that are below standard atmospheric pressure, which corresponds to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760−X) mmHg. In addition, negative pressure that is “less” or “smaller” than −X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg).
The negative pressure range for some embodiments of the present disclosure can be approximately −80 mmHg, or between about −10 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure. Thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively, a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively, a pressure range of over approximately −100 mmHg, or even −150 mmHg, can be supplied by the negative pressure apparatus. In some embodiments, the negative pressure range can be as small as about −20 mmHg or about −25 mmHg, which may be useful to reduce fistulas. In some embodiments of wound closure devices described here, increased wound contraction can lead to increased tissue expansion in the surrounding wound tissue. This effect may be increased by varying the force applied to the tissue, for example by varying the negative pressure applied to the wound over time, possibly in conjunction with increased tensile forces applied to the wound via embodiments of the wound closure devices. In some embodiments, negative pressure may be varied over time for example using a sinusoidal wave, square wave, and/or in synchronization with one or more patient physiological indices (e.g., heartbeat).
Examples of such applications where additional disclosure relating to the preceding descriptions may be found include U.S. Pat. No. 8,235,955, titled “Wound treatment apparatus and method,” issued Aug. 7, 2012 and U.S. Pat. No. 7,753,894, titled “Wound cleansing apparatus with stress,” issued Jul. 13, 2010. Both applications are hereby incorporated by reference in their entirety. Other applications that may contain teachings relevant for use with the embodiments described in this section or elsewhere in this specification may include application Ser. No. 12/886,088, titled “Systems And Methods For Using Negative Pressure Wound Therapy To Manage Open Abdominal Wounds,” filed Sep. 20, 2010, published as US 2011/0213287; application Ser. No. 13/092,042, titled “Wound Dressing And Method Of Use,” filed Apr. 21, 2011, published as US 2011/0282309; and application Ser. No. 13/365,615, titled “Negative Pressure Wound Closure Device,” filed Feb. 3, 2012, published as US 2012/0209227, the entireties of each of which are hereby incorporated by reference. Still more applications that may contain teachings relevant for use with the embodiments described in this specification are application Ser. No. 13/942,493, titled “Negative Pressure Wound Closure Device,” filed Jul. 15, 2013, published as US 2014/0180225; PCT App. No. PCT/US2013/050619, filed Jul. 16, 2013 titled “Negative Pressure Wound Closure Device,” published as WO 2014/014871 A1; PCT App. No. PCT/US2013/050698, filed Jul. 16, 2013 titled “Negative Pressure Wound Closure Device,” published as WO 2014/014922 A1; PCT App. No. PCT/IB2013/01555, titled “Devices and Methods for Treating and Closing Wounds with Negative Pressure,” filed May 5, 2013, published as WO 2013/175309 A1; PCT App. No. PCT/US2014/025059, titled “Negative Pressure Wound Closure Device and Systems and Methods of Use in Treating Wounds with Negative Pressure,” filed Mar. 12, 2014, published as WO 2014/165275 A1; and PCT App. No. PCT/GB2014/050746, “Compressible Wound Fillers and Systems and Methods of Use In Treating Wounds With Negative Pressure,” filed Mar. 13, 2014, published as WO 2014/140578 A1, and “Negative Pressure Wound Closure Device,” filed Oct. 21, 2014, and published as PCT/US2014/061627. The entireties of the aforementioned applications are each hereby incorporated by reference and should be considered part of the present specification.
It will be understood that throughout this specification, in some embodiments, reference is made to an elongate, elongated or longitudinal strip or strips. It is to be understood that these terms are to be broadly construed and refer in some embodiments to an elongate material having two parallel or substantially parallel faces, where in cross-section a thickness of the material as measured perpendicular to the faces is relatively smaller than a height of the material measured parallel to the faces. While in some embodiments the strips may be constructed from discrete lengths of material, in other embodiments the strips may simply refer to elongate portions of an overall structure having two parallel or substantially parallel faces. The strips in some embodiments have a rectangular or generally rectangular-shaped faces, wherein a length of the face is longer than the height of the face. In some embodiments, the length of the face may be more than 2 times, 4 times, 6 times, 8 time, 10 times, 12 times or more greater than the height of the face.
As used in this section or elsewhere in this specification, the term “horizontal,” when referring to a wound, indicates a direction or plane generally parallel to the skin surrounding the wound. The term “vertical,” when referring to a wound, generally refers to a direction extending perpendicular to the horizontal plane. The term “longitudinal,” when referring to a wound, generally refers to a direction in the horizontal plane taken in a direction along which the wound is longest. The term “lateral,” when referring to a wound, generally refers to a direction in the horizontal plane perpendicular to the longitudinal direction. The terms “horizontal,” “vertical,” “longitudinal” and “lateral” may also be used to describe the stabilizing structures and wound closure devices described throughout this specification. When describing these structures or devices, these terms should not be construed to require that the structures or devices necessarily be placed into a wound in a certain orientation, though in certain embodiments, it may be preferable to do so.
In some embodiments, the drape 104 may be provided with one or more corrugations or folds. Preferably, the corrugations are aligned along the longitudinal axis of the wound, and as such may support closure of the wound by preferentially collapsing in a direction perpendicular to the longitudinal axis of the wound. Such corrugations may aid in the application of contractile forces parallel to the wound surface and in the direction of wound closure. Examples of such drapes may be found in application Ser. No. 12/922,118, titled “Vacuum Closure Device,” filed Nov. 17, 2010 (published as US 2011/0054365), which is hereby incorporated by reference in its entirety.
In use, the wound 101 is prepared and cleaned. In some cases, such as abdominal wounds, a non- or minimally-adherent organ protection layer (not illustrated) may be applied over any exposed viscera. The wound packer 102 is then inserted into the wound, and is covered with the drape 104 so as to form a fluid-tight seal. A first end of the conduit 108 is then placed in fluidic communication with the wound, for example via the aperture 106. The second end of the conduit 108 is connected to the pump 110. The pump 110 may then be activated so as to supply negative pressure to the wound 101 and evacuate wound exudate from the wound 101. As will be described in additional detail below and in relation to the embodiments of the foregoing wound closure devices, negative pressure may also aid in promoting closure of the wound 101, for example by approximating opposing wound margins.
Any structure or component disclosed herein this section or elsewhere in the specification may comprise a radiopaque material. A radiopaque material advantageously allows a clinician to more easily find pieces of the wound closure device that may have come loose from the structure and become lost in the wound. Some examples of radiopaque materials include barium sulfate, bismuth trioxide, bismuth subcarbonate, bismuth oxychloride, and tungsten.
In some embodiments, the stabilizing structure 2000 may have an outer perimeter that defines an at least partially elliptical shape. Advantageously, the elliptical shape of stabilizing structure 2000 may allow the structure to better accommodate the shape of the wound. Most wounds are in shapes that are rounded, thus, an elliptically shaped stabilizing structure 2000 may better fit into a wound.
As described above, the stabilizing structure 2000 may comprise a plurality of cells 2004 provided side-by-side, each cell defined by one or more walls, each cell having a top end and a bottom end with an opening extending through the top and bottom ends. As with the other stabilizing structures described herein this section and elsewhere in the specification, the stabilizing structure 2000 is configured to collapse by collapsing one or more cells 2004. In some embodiments, the cells are all of the same approximate shape and size; however, in other embodiments, the cells are of different shapes and sizes. In some embodiments, the stabilizing structures as described herein this section or elsewhere in the specification may be domed, such that the central portion of the stabilizing structure bulges upward. For example, a lower portion of the stabilizing structure may be concave, while an upper portion of the stabilizing structure is convex.
In certain embodiments, the stabilizing structure 2000 can collapse in any manner described in this section or elsewhere in this specification with or without the application of negative pressure. For example, the stabilizing structure may collapse significantly more in one plane than in another plane upon application of negative pressure. In some embodiments, the stabilizing structure is configured to collapse more in a horizontal plane parallel to the length and width of the stabilizing structure than in a vertical plane perpendicular to the horizontal plane. In embodiments, particular rows may collapse in a first direction, while another row may collapse in the same or an opposing direction. In certain embodiments, the stabilizing structure may collapse along the width of the stabilizing structure while remaining relatively rigid along the length of the stabilizing structure and in the vertical direction.
The stabilizing structure may be comprised of any materials described in this section or elsewhere in this specification, including: flexible plastics such as silicone, polyurethane, rigid plastics such as polyvinyl chloride, semi-rigid plastics, semi-flexible plastics, biocompatible materials, composite materials, metals, and foam. In certain embodiments, the stabilizing structure may comprise a radio opaque material, to more readily allow a clinician to find pieces of the stabilizing structure within the wound.
The stabilizing structure 2000 and all stabilizing structures and wound closure devices described in this section or elsewhere in this specification can collapse on a variety of timescales in a dynamic fashion. In certain embodiments, the majority of the collapse may occur within the first few minutes upon application of negative pressure. However, after the initial collapse, the stabilizing structure or wound closure device may continue to collapse at a much slower rate, thereby applying increasing longitudinal tension over a long period of time and drawing the edges of the wound closer together. By slowly drawing the wound edges closer together over time, the stabilizing structure or wound closure device allows the surrounding healing tissue to remodel synergistically with the closure of the device or stabilizing structure. Slow, dynamic wound closure may allow the surrounding tissue to heal at an accelerated rate, because the collapsing structure or device slowly brings the edges of the wound closer together without stressing the newly formed or weakened tissue too quickly.
In some embodiments, the stabilizing structures described in this section or elsewhere in this specification can be placed into a wound for a period of time and then removed or replaced with another stabilizing structure. For example, a stabilizing structure could be inserted into a wound for a period of time, promoting closure of the wound by drawing the edges closer together. After a period of time has passed, the stabilizing structure can be replaced by a stabilizing structure of a different size or collapsibility, for example a stabilizing structure of a smaller size or decreased density. This process could be repeated over and over, thereby continuously drawing the edges of the wound together over time and allowing for continuing repair and remodeling of the surrounding tissue. In certain embodiments, the stabilizing structure is configured to remain in the wound for at least about less than 1 hour, at least about 1 hour, at least about 2 hours, at least about 4 hours, at least about 6 hours, at least about 8 hours, at least about 12 hours, at least about 24 hours, at least about 2 days, at least about 4 days, at least about 6 days, at least about 1 week, at least about 2 weeks, at least about 3 weeks, or more than 3 weeks.
In certain embodiments, up to 90% of the collapse of the stabilizing structure or wound closure device may occur within the first few minutes upon application of negative pressure, while the remaining 10% of the collapse may occur slowly over a period of many minutes, hours, days, weeks, or months. In other embodiments, up to about 80% of the collapse, up to about 70%, up to about 60%, up to about 50%, up to about 40%, up to about 30%, up to about 20%, up to about 10%, or about 0% of the collapse will occur immediately within the first few minutes upon application of negative pressure while the remainder of the collapse occurs at a much slower rate such as over the course of many minutes, hours, days weeks, or months. In other embodiments, the stabilizing structure can collapse at a variable rate. In some embodiments, the entirety of the collapse occurs at a slowed rate, while in other embodiments the entirety of the collapse occurs almost immediately within the first few minutes. In further embodiments, the collapse can occur at any rate and the rate can vary over time. In certain embodiments, the rate of collapse can be altered in a variable fashion by adding and/or removing portions of the structure or by controlling the application of negative pressure and irrigant fluid.
In some embodiments, the stabilizing structure 2000 of
Applicable to all stabilizing structures or wound closure devices described in this section or elsewhere in the specification, the stabilizing structure or wound closure device may be tearable such that the stabilizing structure may be shaped into the shape of a wound. In some embodiments, the stabilizing structure may be torn at the intersections between intervening members and elongate strips, while in further embodiments, the elongate strips or intervening members may be torn at any suitable position.
The stabilizing structures and/or wound closure devices described in this section or elsewhere in this specification may be used in conjunction with methods or systems for the closure of a wound. In some embodiments of methods of use for closure of a wound, one or more of the stabilizing structures or wound closure devices of any of the embodiments described in this section or elsewhere in this specification is placed into a wound. In some embodiments, an organ protection layer may be provided in the wound before placement of the stabilizing structure. In certain embodiments, foam or other porous material may be placed in the wound along with the stabilizing structure or wound closure device, either below, above, or surrounding the stabilizing structure or wound closure device. Foam or other porous material may also surround the perimeter of the stabilizing structure or wound closure device. The stabilizing structure or wound closure device may be configured to collapse in any manner as described in this section or elsewhere in this specification, for example by having a particular size and shape, or by comprising a certain volume of foam or other porous material within the cells of the structure. The stabilizing structure or wound closure device may further be altered in any manner described in this section or elsewhere in this specification so as to better accommodate the shape of the wound. After placement in the wound, the stabilizing structure or wound closure device can be sealed by a fluid-tight drape. The fluid-tight drape can comprise a port configured for the application of negative pressure. A source of negative pressure may then be connected to the port and negative pressure may be applied to the wound. The stabilizing structure or wound closure device may be replaced over time by stabilizing structures or wound closure devices of various shapes and sizes as desired to best promote wound healing.
In
In certain embodiments, the suction port may be placed directly over the central portion of the foam layer 3116. In such embodiments, the foam layer may collapse inward along with the stabilizing structure while under negative pressure, thereby collapsing the suction port. To avoid collapse, the suction port may be rigid in comparison to the foam and resist collapse. A washer may be placed inside, below, or around the suction port to provide rigidity and resist collapse.
In some embodiments, the suction port may be pre-attached to the top foam layer so that drapes can be positioned around the port. A hard port or a soft port may be used, such ports may further be used in combination with a washer such as described above. In further embodiments, the suction port could only partially collapse with the collapsing matrix while still maintaining the port opening for negative pressure.
Further details regarding the wound closure devices, stabilizing structures, related apparatuses and methods of use that may be combined with or incorporated into any of the embodiments described herein are found elsewhere throughout this specification and in International Application No. PCT/US2013/050698, filed Jul. 16, 2013, published as WO 2014/014922 A1, the entirety of which is hereby incorporated by reference.
As discussed elsewhere in the specification, wound closure devices, stabilizing structures, and foam or porous materials may be shaped into the shape of a wound such that they can better accommodate the wound. Even if a stabilizing structure, foam or any porous material is not for insertion into a wound, it may be advantageously shaped into desirable size and shape to better serve its purpose. As discussed elsewhere in the specification, in some embodiments, wound closure devices, stabilizing structures, or foam or porous materials may be pre-shaped into any common shapes of wounds, such as an elliptical shape, and/or can be cut or tearable from a larger structure, such that the structure may be shaped into the shape of a wound. However, in some embodiments, any wound closure devices, stabilizing structures and/or foam/porous materials may be built from smaller building blocks, units or modules to form structures with desirable shapes. When structures or devices are built from smaller building blocks, they may be advantageously disassembled and/or reassembled to form another structures or devices with different shapes or sizes.
As illustrated in
Even though the illustrated building blocks 4000 are similar to cells of stabilizing structures described in this section or elsewhere in the specification, features and teachings described in relation to
The building blocks 4000 may be constructed from any materials or methods described in relation to stabilizing structures or foam layer/structures, for example, flexible plastics such as silicone, polyurethane, rigid plastics such as polyvinyl chloride, semi-rigid plastics, semi-flexible plastics, biocompatible materials, composite materials, metals, and foam.
One or more building blocks may be adhered to one another via adhesive, Velcro®, or other suitable adhesive means. In some embodiments, magnets and/or suction cups may be used to keep the segments together. In some embodiments, one or more building blocks may have one or more attachment elements and/or one or more receiving elements. The attachment elements may be configured to serve to maintain attachment of a building block to another block until the attachment elements are separated from the receiving elements, for example by applying suitable force. Attachment elements may be prongs, hooks, tongues, screws, nails, or other suitable attachment means, and/or receiving elements may be in form of grooves, holes, windows, or any suitable means. For example,
Turning back to
In some embodiments, stabilizing structures or foams may be provided as customizable building units having relatively simple shapes, (e.g., a single-row elongate structure, a square, a hexagon, etc.) which are customizable into different building units and/or assemble-able. Unlike building blocks described in relation to
Stabilizing structures
As illustrated in
The customizable building unit 6000 may comprise pre-cuts defining cells 6002 and 6004, such that each cell can be easily disassembled, cut out or torn to reduce its length. In some embodiments, the unit 6000 may be constructed by assembling each of cells 6002 and 6004. Cells 6002 and 6004 may be attached with adhesives, Velcro®, other mechanical means, or any other suitable means such as described in more details below. Cells 6002 and 6004 may be reversibly detachable such that cells 6002 and 6004 may be disassembled without substantially damaging any part of cells, for example by application of force.
In some embodiments, the length of single-row building units such as the customizable unit 6000 may be adjusted by adding/removing peripheral cells 6002.
The building units 6020 and 6040 provided by adjusting the customizable building unit 6000 may be assembled to provide a more complex structure.
In some embodiments, a clinician may decrease the size of the multi-row structure 6500 as the size of the wound decrease as the wound heals. In some embodiments, a kit may include multiple customizable single-row units, such that a clinician can freely attach and/or detach cells of single-row units, and freely attach and/or detach multiple single-row units to accommodate various size and shape of the wound. Interface between each cell and each single-row unit may comprise means to reversibly attach cells and structures, such as Velcro®, adhesives, anchors, hooks, prongs or any other suitable means, such as described in this section or elsewhere in the specification. In some embodiments, the single-row unit 6000 may be replaced with any other structures having cells or blocks.
As described in relation to
Although this disclosure describes certain embodiments, it will be understood by those skilled in the art that many aspects of the methods and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. Indeed, a wide variety of designs and approaches are possible and are within the scope of this disclosure. No feature, structure, or step disclosed herein is essential or indispensable. Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), substitutions, adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection.
Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.
The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
This application is a continuation of U.S. application Ser. No. 16/634,534, filed Jan. 27, 2020, which is a U.S. national stage application of International Patent Application No. PCT/EP2018/069871, filed Jul. 23, 2018, which claims priority to U.S. Provisional Patent Application No. 62/537,617, filed on Jul. 27, 2017 each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3194239 | Sullivan et al. | Jul 1965 | A |
3789851 | LeVeen | Feb 1974 | A |
4467805 | Fukuda | Aug 1984 | A |
4608041 | Nielsen | Aug 1986 | A |
4699134 | Samuelsen | Oct 1987 | A |
4815468 | Annand | Mar 1989 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5376067 | Daneshvar | Dec 1994 | A |
5409472 | Rawlings et al. | Apr 1995 | A |
5415715 | Delage et al. | May 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5512041 | Bogart | Apr 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5584859 | Brotz | Dec 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5695777 | Donovan et al. | Dec 1997 | A |
6176868 | Detour | Jan 2001 | B1 |
6503208 | Skovlund | Jan 2003 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6566575 | Stickels et al. | May 2003 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6770794 | Fleischmann | Aug 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6977323 | Swenson | Dec 2005 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7315183 | Hinterscher | Jan 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7622629 | Aali | Nov 2009 | B2 |
7625362 | Boehringer et al. | Dec 2009 | B2 |
7683667 | Kim | Mar 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7754937 | Boehringer et al. | Jul 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7857806 | Karpowicz et al. | Dec 2010 | B2 |
7863495 | Aali | Jan 2011 | B2 |
7892181 | Christensen et al. | Feb 2011 | B2 |
7896856 | Petrosenko et al. | Mar 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7910789 | Sinyagin | Mar 2011 | B2 |
7931774 | Hall et al. | Apr 2011 | B2 |
7942866 | Radl et al. | May 2011 | B2 |
7951124 | Boehringer et al. | May 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7976524 | Kudo et al. | Jul 2011 | B2 |
8030534 | Radl et al. | Oct 2011 | B2 |
8057447 | Olson et al. | Nov 2011 | B2 |
8062331 | Zamierowski | Nov 2011 | B2 |
8067662 | Aali et al. | Nov 2011 | B2 |
8070773 | Zamierowski | Dec 2011 | B2 |
8114126 | Heaton et al. | Feb 2012 | B2 |
8123781 | Zamierowski | Feb 2012 | B2 |
8142419 | Heaton et al. | Mar 2012 | B2 |
8172816 | Kazala, Jr. et al. | May 2012 | B2 |
8187237 | Seegert | May 2012 | B2 |
8188331 | Barta et al. | May 2012 | B2 |
8197467 | Heaton et al. | Jun 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8235955 | Blott et al. | Aug 2012 | B2 |
8246590 | Hu et al. | Aug 2012 | B2 |
8246606 | Stevenson et al. | Aug 2012 | B2 |
8257328 | Augustine et al. | Sep 2012 | B2 |
8273105 | Cohen et al. | Sep 2012 | B2 |
8328776 | Kelch et al. | Dec 2012 | B2 |
8337411 | Nishtala et al. | Dec 2012 | B2 |
8353931 | Stopek et al. | Jan 2013 | B2 |
8357131 | Olson | Jan 2013 | B2 |
8376972 | Fleischmann | Feb 2013 | B2 |
8430867 | Robinson et al. | Apr 2013 | B2 |
8447375 | Shuler | May 2013 | B2 |
8454990 | Canada et al. | Jun 2013 | B2 |
8460257 | Locke et al. | Jun 2013 | B2 |
8481804 | Timothy | Jul 2013 | B2 |
8486032 | Seegert et al. | Jul 2013 | B2 |
8500776 | Ebner | Aug 2013 | B2 |
8608776 | Coward et al. | Dec 2013 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8673992 | Eckstein et al. | Mar 2014 | B2 |
8679080 | Kazala, Jr. et al. | Mar 2014 | B2 |
8679153 | Dennis | Mar 2014 | B2 |
8680360 | Greener et al. | Mar 2014 | B2 |
8708984 | Robinson et al. | Apr 2014 | B2 |
8721629 | Hardman et al. | May 2014 | B2 |
8746662 | Poppe | Jun 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8791315 | Lattimore et al. | Jul 2014 | B2 |
8791316 | Greener | Jul 2014 | B2 |
8802916 | Griffey et al. | Aug 2014 | B2 |
8821535 | Greener | Sep 2014 | B2 |
8945030 | Weston | Feb 2015 | B2 |
9044579 | Blott et al. | Jun 2015 | B2 |
9061095 | Adie et al. | Jun 2015 | B2 |
9180231 | Greener | Nov 2015 | B2 |
9408755 | Larsson | Aug 2016 | B2 |
9421132 | Dunn | Aug 2016 | B2 |
9655807 | Locke et al. | May 2017 | B2 |
9849023 | Hall et al. | Dec 2017 | B2 |
10143485 | Locke et al. | Dec 2018 | B2 |
11607344 | Rawson | Mar 2023 | B2 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20040162512 | Liedtke et al. | Aug 2004 | A1 |
20040267312 | Kanner et al. | Dec 2004 | A1 |
20050142331 | Anderson et al. | Jun 2005 | A1 |
20050267424 | Eriksson et al. | Dec 2005 | A1 |
20060020269 | Cheng | Jan 2006 | A1 |
20060058842 | Wilke et al. | Mar 2006 | A1 |
20060069357 | Marasco | Mar 2006 | A1 |
20060155260 | Blott et al. | Jul 2006 | A1 |
20060217795 | Besselink et al. | Sep 2006 | A1 |
20060271018 | Korf | Nov 2006 | A1 |
20070052144 | Knirck et al. | Mar 2007 | A1 |
20070104941 | Kameda et al. | May 2007 | A1 |
20070118096 | Smith et al. | May 2007 | A1 |
20070123973 | Roth et al. | May 2007 | A1 |
20070129660 | McLeod et al. | Jun 2007 | A1 |
20070149910 | Zocher | Jun 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070213597 | Wooster | Sep 2007 | A1 |
20070282309 | Bengtson et al. | Dec 2007 | A1 |
20080041401 | Casola et al. | Feb 2008 | A1 |
20080108977 | Heaton et al. | May 2008 | A1 |
20080243096 | Svedman | Oct 2008 | A1 |
20080275409 | Kane et al. | Nov 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20090005716 | Abuzaina et al. | Jan 2009 | A1 |
20090099519 | Kaplan | Apr 2009 | A1 |
20090105670 | Bentley et al. | Apr 2009 | A1 |
20090117311 | Kuzmin | May 2009 | A1 |
20090204423 | DeGheest et al. | Aug 2009 | A1 |
20090312685 | Olsen et al. | Dec 2009 | A1 |
20100022990 | Karpowicz et al. | Jan 2010 | A1 |
20100047324 | Fritz et al. | Feb 2010 | A1 |
20100081983 | Zocher et al. | Apr 2010 | A1 |
20100137775 | Hu et al. | Jun 2010 | A1 |
20100150991 | Bernstein | Jun 2010 | A1 |
20100160874 | Robinson et al. | Jun 2010 | A1 |
20100179515 | Swain et al. | Jul 2010 | A1 |
20100198128 | Turnlund et al. | Aug 2010 | A1 |
20100262106 | Hartwell | Oct 2010 | A1 |
20100280468 | Haggstrom et al. | Nov 2010 | A1 |
20100312159 | Aali et al. | Dec 2010 | A1 |
20110021965 | Karp et al. | Jan 2011 | A1 |
20110022082 | Burke et al. | Jan 2011 | A1 |
20110059291 | Boyce et al. | Mar 2011 | A1 |
20110066096 | Svedman | Mar 2011 | A1 |
20110082480 | Viola | Apr 2011 | A1 |
20110110996 | Schoenberger et al. | May 2011 | A1 |
20110112458 | Holm et al. | May 2011 | A1 |
20110178451 | Robinson et al. | Jul 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110224632 | Zimnitsky et al. | Sep 2011 | A1 |
20110224634 | Locke et al. | Sep 2011 | A1 |
20110264138 | Avelar et al. | Oct 2011 | A1 |
20110270301 | Cornet et al. | Nov 2011 | A1 |
20110305736 | Wieland et al. | Dec 2011 | A1 |
20110319804 | Greener | Dec 2011 | A1 |
20120016321 | Wu et al. | Jan 2012 | A1 |
20120029455 | Perez-Foullerat et al. | Feb 2012 | A1 |
20120059412 | Fleischmann | Mar 2012 | A1 |
20120130327 | Marquez Canada | May 2012 | A1 |
20120136326 | Croizat et al. | May 2012 | A1 |
20120136328 | Johannison et al. | May 2012 | A1 |
20120143113 | Robinson et al. | Jun 2012 | A1 |
20120172926 | Hotter | Jul 2012 | A1 |
20120191132 | Sargeant | Jul 2012 | A1 |
20120209226 | Simmons et al. | Aug 2012 | A1 |
20120209227 | Dunn | Aug 2012 | A1 |
20120253302 | Corley | Oct 2012 | A1 |
20130023842 | Song | Jan 2013 | A1 |
20130150813 | Gordon et al. | Jun 2013 | A1 |
20130190705 | Vess et al. | Jul 2013 | A1 |
20130197457 | Kazala, Jr. et al. | Aug 2013 | A1 |
20130204213 | Heagle et al. | Aug 2013 | A1 |
20130245527 | Croizat et al. | Sep 2013 | A1 |
20130325142 | Hunter et al. | Dec 2013 | A1 |
20130331757 | Belson | Dec 2013 | A1 |
20140094730 | Greener et al. | Apr 2014 | A1 |
20140163415 | Zaiken et al. | Jun 2014 | A1 |
20140196736 | Fernando et al. | Jul 2014 | A1 |
20140249495 | Mumby et al. | Sep 2014 | A1 |
20150065968 | Sealy et al. | Mar 2015 | A1 |
20150119837 | Thompson, Jr. et al. | Apr 2015 | A1 |
20150157758 | Blucher et al. | Jun 2015 | A1 |
20150190288 | Dunn et al. | Jul 2015 | A1 |
20150196431 | Dunn et al. | Jul 2015 | A1 |
20150320602 | Locke et al. | Nov 2015 | A1 |
20150374561 | Hubbard, Jr. et al. | Dec 2015 | A1 |
20160144085 | Melin et al. | May 2016 | A1 |
20160184496 | Jaecklein et al. | Jun 2016 | A1 |
20170065751 | Toth | Mar 2017 | A1 |
20170196736 | Long | Jul 2017 | A1 |
20170281838 | Dunn | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2012261793 | Nov 2014 | AU |
2013206230 | May 2016 | AU |
101112326 | Jan 2008 | CN |
101744688 | Jun 2010 | CN |
201519362 | Jul 2010 | CN |
102038575 | May 2011 | CN |
202568632 | Dec 2012 | CN |
103071197 | May 2013 | CN |
203408163 | Jan 2014 | CN |
2949920 | Mar 1981 | DE |
1320342 | Jun 2003 | EP |
2279016 | Feb 2011 | EP |
2567717 | Mar 2013 | EP |
2601984 | Jun 2013 | EP |
2389794 | Dec 2003 | GB |
2423019 | Aug 2006 | GB |
2489947 | Oct 2012 | GB |
2496310 | May 2013 | GB |
S6257560 | Mar 1987 | JP |
2012105840 | Jun 2012 | JP |
1818103 | May 1993 | RU |
62504 | Apr 2007 | RU |
WO-0185248 | Nov 2001 | WO |
WO-0189392 | Nov 2001 | WO |
WO-0205737 | Jan 2002 | WO |
WO-03003948 | Jan 2003 | WO |
WO-03049598 | Jun 2003 | WO |
WO-2005046761 | May 2005 | WO |
WO-2005105174 | Nov 2005 | WO |
WO-2006046060 | May 2006 | WO |
WO-2008027449 | Mar 2008 | WO |
WO-2008064502 | Jun 2008 | WO |
WO-2008104609 | Sep 2008 | WO |
WO-2009112062 | Sep 2009 | WO |
WO-2010033725 | Mar 2010 | WO |
WO-2010097570 | Sep 2010 | WO |
WO-2011023384 | Mar 2011 | WO |
WO-2012082716 | Jun 2012 | WO |
WO-2012082876 | Jun 2012 | WO |
WO-2012136707 | Oct 2012 | WO |
WO-2012142473 | Oct 2012 | WO |
WO-2013012381 | Jan 2013 | WO |
WO-2013043258 | Mar 2013 | WO |
WO-2013071243 | May 2013 | WO |
WO-2013076450 | May 2013 | WO |
WO-2013079947 | Jun 2013 | WO |
WO-2013175309 | Nov 2013 | WO |
WO-2013175310 | Nov 2013 | WO |
WO-2014013348 | Jan 2014 | WO |
WO-2014024048 | Feb 2014 | WO |
WO-2014140578 | Sep 2014 | WO |
WO-2014158526 | Oct 2014 | WO |
WO-2014165275 | Oct 2014 | WO |
WO-2014178945 | Nov 2014 | WO |
WO-2014194786 | Dec 2014 | WO |
WO-2015008054 | Jan 2015 | WO |
WO-2015061352 | Apr 2015 | WO |
WO-2015109359 | Jul 2015 | WO |
WO-2015110409 | Jul 2015 | WO |
WO-2015110410 | Jul 2015 | WO |
WO-2015169637 | Nov 2015 | WO |
WO-2015193257 | Dec 2015 | WO |
WO-2016018448 | Feb 2016 | WO |
WO-2016176513 | Nov 2016 | WO |
WO-2016179245 | Nov 2016 | WO |
WO-2017106576 | Jun 2017 | WO |
WO-2018038665 | Mar 2018 | WO |
WO-2018041805 | Mar 2018 | WO |
WO-2018044949 | Mar 2018 | WO |
WO-2018085457 | May 2018 | WO |
WO-2018108785 | Jun 2018 | WO |
WO-2018140386 | Aug 2018 | WO |
WO-2018229009 | Dec 2018 | WO |
WO-2018229010 | Dec 2018 | WO |
WO-2018229012 | Dec 2018 | WO |
Entry |
---|
“Definition of 3D Printer,” American Heritage Dictionary of the English Language, Fifth Edition, accessed on Feb. 22, 2018 from URL: https://www.thefreedictionary.com , 2016, 1 page. |
“Definition of Adhere,” The Free Dictionary, accessed on Mar. 23, 2017 from http://www.thefreedictionary.com/adhere, 6 pages. |
“Definition of Oculiform,” Webster's Revised Unabridged Dictionary, accessed from The Free Dictionary on May 30, 2018 from URL: https://www.thefreedictionary.com/Oculiform, 1913, 1 page. |
“Definition of Throughout,” Merriam-Webster Dictionary, accessed on Aug. 29, 2017 from https://www.merriam-webster.com/dictionary/throughout, 11 pages. |
Hougaard, et al., “The Open Abdomen: Temporary Closure with a Modified Negative Pressure Therapy Technique,” International Wound Journal, ISSN 1742-4801, 2014, pp. 13-16. |
International Preliminary Report on Patentability for Application No. PCT/EP2018/069871, mailed on Feb. 6, 2020, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2018/069871, mailed on Oct. 19, 2018, 11 pages. |
Kapischke M., et al., “Self-Fixating Mesh for the Lichtenstein Procedure—a Prestudy,” Langenbeck's Arch Surg, 2010, vol. 395, pp. 317-322. |
Number | Date | Country | |
---|---|---|---|
20230233380 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
62537617 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16634534 | US | |
Child | 18123486 | US |