Aspects of the presently disclosed technology relate to medical apparatuses and methods. More specifically, the presently disclosed technology relates to unicompartmental customized arthroplasty cutting guides and surgical methods using such cutting guides.
Over time and through repeated use, bones and joints can become damaged or worn. For example, repetitive strain on bones and joints (e.g., through athletic activity), traumatic events, and certain diseases (e.g., arthritis) can cause cartilage in joint areas, which normally provides a cushioning effect, to wear down. When the cartilage wears down, fluid can accumulate in the joint areas, resulting in pain, stiffness, and decreased mobility.
Arthroplasty procedures can be used to repair damaged joints. During a typical arthroplasty procedure, an arthritic or otherwise dysfunctional joint can be remodeled or realigned or an implant can be implanted into the damaged region. Arthroplasty procedures may take place in any of a number of different regions of the body, such as a knee, a hip, a shoulder, or an elbow.
One type of arthroplasty procedure is a total knee arthroplasty (“TKA”), in which a damaged knee joint is replaced with prosthetic implants. The knee joint may have been damaged by, for example, arthritis (e.g., severe osteoarthritis or degenerative arthritis), trauma, or a rare destructive joint disease. Typically, a candidate for a TKA has significant wear or damage in tow or more “compartments” of the knee. The knee is generally divided into three “compartments, including: medial (the inside part of the knee), lateral (the outside part of the knee), and the patellofemoral (the joint between the knee cap and the thighbone). During a TKA procedure, a damaged portion in the distal region of the femur may be removed and replaced with a metal shell, and a damaged portion in the proximal region of the tibia may be removed and replaced with a channeled piece of plastic having a metal stem. In some TKA procedures, a plastic button may also be added under the surface of the patella, depending on the condition of the patella.
Another type of arthroplasty procedure is a unicompartmental (knee) arthroplasty or a partial knee replacement (“UKA”) in which only a portion (or a single compartment) of the knee is removed and replaced with prosthetic implants. Typically, a candidate for a UKA has significant wear or damage confined to primarily one compartment of the knee. A UKA may be a less invasive approach than a TKA and may have a quicker recovery time. A UKA may be utilized to prevent the spread of disease, such as in the early stages of osteoarthritis where the disease has only affected a portion of the knee and it is desirable to prevent the disease from spreading to other portions of the knee.
Implants that are implanted into a damaged region may provide support and structure to the damaged region and may help to restore the damaged region, thereby enhancing its functionality. Prior to implantation of an implant in a damaged region, the damaged region is prepared to receive the implant. For example, in a knee arthroplasty procedure, one or more of the bones in the knee area, such as the femur and/or the tibia, may be treated (e.g., cut, drilled, reamed, and/or resurfaced) to provide one or more surfaces that can align with the implant and thereby accommodate the implant.
Accuracy in implant alignment is an important factor to the success of a TKA or UKA procedure. A one to two millimeter translational misalignment may result in imbalanced ligaments and thus may significantly affect the outcome of the procedure. For example, implant misalignment may result in intolerable post-surgery pain and also may prevent the patient from having full leg extension and stable leg flexion.
To achieve accurate implant alignment, prior to treating (e.g., cut, drilled, reamed, and/or resurfaced) any regions of a bone, it is important to correctly determine the location at which the treatment will take place and how the treatment will be oriented. In some methods, an arthroplasty jig may be used to position and orient a resection or sawing instrument, such as a cutting, drilling, reaming, or resurfacing instrument on the regions of the bone. The arthroplasty jig may, for example, include one or more apertures and/or slots that are configured to accept such an instrument. However, under some methods, it is difficult to determine the proper orientation of an arthroplasty jig and more specifically, of a unicompartmental arthroplasty jig. Some methods utilize customized arthroplasty jigs to provide orientation of the treatment relative to the regions of the bone. However, such jigs often rely on a human to subjectively determine or “eyeball” rotational angles and the extent of the treatment. For example, when performing a resection in a knee region of a patient femur and/or tibia, many jigs rely on a surgeon to determine the proper orientation of the jig as well as how much of the bone to remove. In other words, once a surgeon has begun cutting to perform a resection, it is often difficult to accurately stop the cut.
Accordingly, there is a need in the art for customized arthroplasty cutting guides and surgical methods of using such cutting guides that increases the accuracy of arthroplasty procedures.
Implementations described and claimed herein address the foregoing problems by providing an arthroplasty cutting guide for making resections in a knee region of a patient femur in preparing a patient knee for the implantation of a femoral implant and a tibial implant.
The knee region includes surface topography including surface contours of a femoral condylar surface and a trochlear groove surface. In one implementation, the femoral implant includes: an articular condylar surface; a femur contacting side opposite the articular condylar surface and including a distal resection contacting surface, a posterior resection contacting surface, and a chamfer resection contacting surface. The femoral implant has a first distal-proximal thickness extending perpendicular from the distal resection contacting surface to the articular condylar surface. In one implementation, the tibial implant includes an articular plateau surface and a tibia contacting side, which includes a proximal resection contacting surface, opposite the articular plateau surface. The tibial implant includes a second distal-proximal thickness extending perpendicular from the proximal resection contacting surface to the articular plateau surface.
In one implementation, the arthroplasty cutting guide comprises: a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with the topography of the knee region and comprises surface contours that are a general negative image of the surface contours of the femoral condylar surface and the surface contours of the trochlear groove. The distal resection slot is configured to guide a distal resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove. The distal planar surface is parallel to the distal resection slot and is distally spaced apart from the distal resection surface by a distance equal to the sum of the first distal-proximal thickness of the femoral implant and the second distal-proximal thickness of the tibial implant.
Other implementations described and claimed herein provide an arthroplasty system for making resections in a knee region of a patient tibia in preparing a patient knee for the implantation of a tibial implant. The knee region includes surface topography including surface contours of a tibial plateau surface. In one implementation, the arthroplasty system comprises a cutting guide and an anchor pin.
The cutting guide comprises a patient specific mating region, a proximal resection slot, and an anchor pin hole. The patient specific mating region is custom configured to interdigitate with the topography of the knee region and comprises surface contours that are a general negative image of the surface contours of the tibial plateau surface. The proximal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide. The proximal resection slot extends anterior-posterior and medial-lateral in the cutting guide and is configured to guide a proximal resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the tibial plateau surface. The anchor pin hole comprises an exterior opening defined in the exterior anterior surface of the cutting guide. The anchor pin hole extends generally anterior-posterior through the cutting guide and intersects the proximal resection slot near a medial or lateral edge of the proximal resection slot. The anchor pin comprises an elongated shaft configured to be received in the anchor pin hole in securing the cutting guide to the patient tibia.
Other implementations described and claimed herein provide methods of performing a knee arthroplasty. In one implementation, a tibia cutting guide is placed a tibial plateau of a patient tibia. The tibia cutting guide includes a patient specific mating region, a proximal resection slot, and an anchor pin hole. The patient specific mating region is custom configured to interdigitate with a topography of the tibial plateau and comprises surface contours that are a general negative image of surface contours of the tibial plateau. The proximal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide, and the proximal resection slot extends anterior-posterior and medial-lateral in the cutting guide. The anchor pin hole comprises an exterior opening defined in the exterior anterior surface of the cutting guide, and the anchor pin hole extends generally anterior-posterior through the cutting guide, intersecting the proximal resection slot near a medial or lateral edge of the proximal resection slot. The patient specific mating region is caused to interdigitate with the topography of the tibial plateau. The anchor pin is inserted into the patient tibia via the anchor pin hole such that the anchor pin is present within both the anchor pin hole and the patient tibia. With the mating region interdigitated with the topography of the tibial plateau, a proximal resection of the patient tibia is made via the proximal resection slot.
In another implementation, a proximal resection is created a patient tibia near a tibial plateau of the patient tibia. A femoral cutting guide is placed on a condylar region of a patient femur. The femoral cutting guide includes a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with a topography of the condylar region and comprises surface contours that are a general negative image of surface contours of the condylar region. The distal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide, and the distal resection slot extends anterior-posterior and medial-lateral in the cutting guide. The distal planar surface is parallel to the distal resection slot and distally spaced apart from the distal resection surface. The patient specific mating region is caused to interdigitate with the topography of the condylar region. With the patient specific mating region intedigitated with the topography of the condylar region, the distal planar surface is caused to abut against the proximal resection.
Other implementations are also described and recited herein. Further, while multiple implementations are disclosed, still other implementations of the presently disclosed technology will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the presently disclosed technology. As will be realized, the presently disclosed technology is capable of modifications in various aspects, all without departing from the spirit and scope of the presently disclosed technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not limiting.
Aspects of the presently disclosed technology involve customized unicompartmental arthroplasty cutting guides and methods of using the same during arthroplasty procedures. In one aspect, the cutting guides are customized to fit specific bone surfaces of a joint (e.g., knee, elbow, ankle, wrist, hip, shoulder, skull/vertebrae, vertebrae/vertebrae interface, etc.) of a specific patient to treat (e.g., cut, drilled, reamed, and/or resurfaced) the bone to provide one or more surfaces that can align with an implant and thereby accommodate the implant. In some aspects, depending on the implementation, both the implant and the cutting guide are automatically planned and generated according to the systems, apparatuses, and methods similar to those disclosed in U.S. patent application Ser. No. 12/636,939 to Park et al., entitled “Unicompartmental Customized Arthroplasty Cutting Jigs and Methods of Making the Same and filed on Dec. 14, 2009, which is incorporated by reference in its entirety into this Detailed Description.
For an overview discussion of the implants for which bone surfaces in a knee area are treated to align with and accommodate, reference is made to
In one implementation, the femoral implant 100 includes an articular condylar surface 104 and a femur contacting side 106 opposite the articular condylar surface 104. The femur contacting side 106 includes one or more surfaces each adapted to contact or otherwise engage a bone surface in a patient femur. In one implementation, the femur contacting side 106 includes a distal resection contacting surface 108, a chamfer resection contacting surface 110, and a posterior resection contacting surface 112, which are adapted to engage a distal resection, chamfer resection, and a posterior resection in the patient femur that are made using a femoral cutting guide as described herein. The femoral implant 100 includes a distal-proximal thickness 114 extending perpendicular from the distal resection contacting surface 108 to the articular condylar surface 104.
Similarly, in one implementation, the tibial implant 102 includes an articular plateau surface 116 and a tibia contacting side 118. The tibia contacting side 118 includes one or more surfaces, each of which is adapted to contact or otherwise engage a bone surface in a patient tibia. In one implementation, the tibia contacting side 118 includes a proximal resection contacting surface 120, which is adapted to engage a proximal resection in the patient tibia that is made using a tibial cutting guide as described herein. The tibial implant 102 includes a distal-proximal thickness 122 extending perpendicular from the proximal resection contacting surface 120 to the articular plateau surface 116.
Prior to implantation of the femoral implant 100 or the tibial implant 102, the damaged region in the femur or the tibia, respectively, is prepared to receive the implant. Stated differently, the femur or the tibia is treated (e.g., cut, drilled, reamed, and/or resurfaced) using an arthroplasty cutting guide to provide one or more resections that can align and mate with corresponding surfaces of the implant 100 or 102 and thereby accommodate the implant 100 or 102.
For a detailed discussion of an arthroplasty system for making resections in a knee region to prepare a patient knee for the implantation of the tibial implant 102, reference is made to
In one implementation, the tibia cutting guide 200 is custom generated to allow a surgeon to accurately and quickly perform an arthroplasty procedure. In other words, the tibia cutting guide 200 includes a patient specific mating region 206 configured to interdigitate with the topography of the knee region. The patient specific mating region 206 includes surface contours that are a general negative image of the surface contours of the tibial plateau surface 204.
The tibia cutting guide 200 includes a proximal resection slot 208 defined in an exterior anterior surface 210 and a vertical resection slot 212 defined in an exterior proximal surface 214. The proximal resection slot 208 is configured to guide a proximal resection in the tibia 202, and the vertical resection slot 212 is configured to guide at least a beginning of a vertical (i.e., distal-proximal) resection in the tibia 202.
As can be understood from
Turning to
The tibia cutting guide 200 is configured to assist a surgeon during the performance of such resections by increasing, for example, accuracy and stability. To achieve this, in one implementation, the tibia cutting guide 200 includes one or more anchor pin holes 216, 218, and 222 including exterior openings that are adapted to receive an elongated shaft of an anchor pin 228 (shown in
The anterior pin hole 216 extends generally anterior-posterior through the tibia cutting guide 200. As shown in the example in
The characteristics of the proximal resection slot 208 and the anterior pin hole 216 are configured to assist a surgeon during the performance of proximal resections. In one implementation, the anterior pin hole 216 intersects with the proximal resection slot 208 near a medial or lateral edge of the proximal resection slot 208 such that the anterior pin hole 216 defines the medial or lateral edge of the proximal resection slot 208. When the proximal resection is performed, the surgeon begins the proximal resection until the anchor pin in the proximal pin hole 222 is reached, which is removed to complete the proximal resection. At the end of the proximal resection, the anchor pin 228 in the anterior pin hole 216 serves as a sawing stop to prevent the surgeon from cutting too far into the tibia 202. As such, the anchor pin 228 is made from a material that is harder and more saw resistant than a material of the tibia cutting guide 200 around a border of the proximal resection slot 208. For example, the anchor pin 228 may be made from a metal or ceramic, and the material bordering the proximal resection slot in the tibia cutting guide 200 may be made from a polymer.
In some implementations, the anchor pin 228 in the anterior pin hole 216 may serve as a sawing stop during a vertical resection while the tibia cutting guide 200 is interdigitated with the topography of the tibial plateau surface 204. In other implementations, the anterior pin hole 216 and the vertical resection slot 212 do not intersect. Accordingly, at least a beginning of the vertical resection is performed using the vertical resection slot 212. In other words, a vertical resection line is scored using the vertical resection slot 212.
Turning to
For a detailed discussion of an arthroplasty system for making resections in a knee region to prepare a patient knee for the implantation of the femoral implant 100, reference is made to
The femur cutting guide 300 is custom generated to allow a surgeon to accurately and quickly perform an arthroplasty procedure. In other words, the femur cutting guide 300 includes a patient specific mating region 314 configured to interdigitate with the topography of the knee region. The patient specific mating region 314 includes surface contours that are a general negative image of the surface contours of the condylar surface 310 and the trochlear groove surface 304. In one implementation, the patient specific mating region 314 includes: a distal trochlear groove region 316 adapted to receive the distal trochlear groove 306; an anterior trochlear groove mating region 318 adapted to receive the anterior trochlear groove 308; and a distal condylar mating region 320 adapted to receive the distal condyle 312.
In one implementation, the femur cutting guide 300 includes a distal planar surface 322, a distal resection slot 324, a chamfer resection slot 326, a posterior resection slot 328, and one or more anchor pin holes 330, 332, and 334. The distal resection slot 324, the chamfer resection slot 326, and the posterior resection slot 328 are configured to guide a distal resection, chamfer resection, and posterior resection, respectively. In one implementation, the distal resection slot 324 is positioned generally parallel to the distal planar surface 322, and the chamfer resection slot 326 is defined in the distal planar surface 322. The posterior resection slot 328 is positioned generally perpendicular to the distal resection slot 324, and the chamfer resection slot 326 is positioned at angle (e.g., approximately 45 degrees) relative to the distal resection slot 324. In one implementation, the chamfer resection slot is further positioned at an angle (e.g., approximately 45 degrees) relative to the posterior resection slot 328. The angular relationship of the chamfer resection slot 326 to the distal resection slot 324 and/or the posterior resection slot 328 may be based on the geometry of the femoral implant 100, such as the distal resection contacting surface 108, the chamfer resection contacting surface 110, and the posterior resection contacting surface 112.
As can be understood from
Turning to
As can be understood from
Referring to
As shown in
Turning to
The tibia cutting guide further includes a proximal resection slot and an anchor pin hole. In one implementation, the proximal resection slot includes an exterior opening that is defined in an exterior anterior surface of the tibia cutting guide. The proximal resection slot extends anterior-posterior and medial-lateral in the tibia cutting guide such that the proximal resection slot is configured to guide a proximal resection. In one implementation, the anchor pin hole includes an exterior opening that is defined in the exterior anterior surface of the tibia cutting guide. The anchor pin hole extends generally anterior-posterior through the tibia cutting guide and intersects with the proximal resection slot near a medial or later edge of the proximal resection slot. In one implementation, the tibia cutting guide includes a vertical resection slot having an exterior opening extending anterior-posterior and distal-proximal in the tibia cutting guide.
A causing operation 404 causes the patient specific mating region of the tibia cutting guide to interdigitate with the topography of the tibial plateau. An inserting operation 406 inserts an anchor pin into the patient tibia via the anchor pin hole such that the anchor pin is present within both the anchor pin hole and the patient tibia. With the patient specific mating region interdigitated with the topography of the tibial plateau, a making operation 408 makes a proximal resection of the patient tibia via the proximal resection slot. In one implementation, the making operation 408 uses the anchor pin as a sawing stop.
In one implementation, a beginning operation 410 at least begins a vertical resection in the patient tibia via the vertical resection slot. For example, the beginning operation 410 scores a vertical resection line in the patient tibia using the vertical resection slot as guidance. Once the making operation 408 and/or the beginning operation 410 are complete, a removing operation 412 removes the anchor pin from the tibia cutting guide. In one implementation, the removing operation 412 further removes the tibia cutting guide from the tibial plateau. A completing operation 414 reinserts the anchor pin into a hole in the patient tibia formerly occupied by the anchor pin when the anchor pin was present in both the anchor pin hole and the patient tibia. In one implementation, the completing operation 414 completes the vertical resection without the tibia cutting guide mounted on the patient tibia by using the anchor pin as a sawing stop. It will be appreciated by those skilled in the art that the completing operation 414 may comprise completing the proximal resection without the tibia cutting guide mounted on the patient tibia by using the anchor pin as a sawing stop in other implementations.
A placing operation 416 places a femur cutting guide on a condylar region of a patient femur. In one implementation, the femur cutting guide includes a custom mating region having a topography that makes interdigitating surface engagement with a topography of the condylar region. The femur cutting guide further includes a planar portion generally parallel with and distally offset from a distal resection slot of the femur cutting guide. A checking operation 418 places the planar portion of the femur cutting guide in planar contact with the proximal resection made during the making operation 408. The checking operation 418 checks for ligament balance with the planar portion in planar contact with the proximal resection.
A placing operation 504 places a femoral cutting guide on a condylar region of a patient femur. In one implementation, the femoral cutting guide includes a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with a topography of the condylar region, and the patient specific mating region has surface contours that are a general negative image of surface contours of the condylar region. The distal resection slot includes an exterior opening defined in an exterior anterior surface of the femoral cutting guide, and the distal resection slot extends anterior-posterior and medial-lateral in the femoral cutting guide. The distal planar surface is generally parallel to the distal resection slot and distally spaced apart from the distal resection surface. In one implementation, the femoral cutting guide further includes a posterior resection slot configured to guide a posterior resection of the patient femur. In another implementation, the femoral cutting guide further includes a chamfer resection slot configured to guide a chamfer resection of the patient femur.
A causing operation 508 causes the patient specific mating region to interdigitate with the topography of the condylar region. With the patient specific mating region interdigitated with the topography of the condylar region, a checking operation 510 causes the distal planar surface of the femoral cutting guide to abut against the proximal resection made in the creating operation 502. The checking operation 510 checks a ligament balance of the patient knee with the femoral cutting guide engaged with the condylar region and the proximal resection.
A first making operation 512 makes a posterior resection of the patient femur via the posterior resection slot. A second making operation 514 makes a chamfer resection of the patient femur via the chamfer resection slot, and a third making operation 516 makes a distal resection of the patient femur via the distal resection slot. In one implementation, prior to the second making operation 514 and the third making operation 516, during which the chamfer and distal resections are performed, a distal pin is removed from the femoral cutting guide.
The discussion provided herein is given in the context of a unicompartmental knee arthroplasty cutting guides. However, the disclosure herein is readily applicable to other arthroplasty cutting guides as well as total or unicompartmental arthroplasty procedures in the knee or other joint contexts. Thus, the disclosure provided herein should be considered as encompassing cutting guides and the use thereof for both total and unicompartmental arthroplasty procedures. Additionally, the discussion given herein is applicable to cutting guides and methods applicable to restoring the patient to his or her natural alignment and also to cutting guides and methods applicable to arthroplasty procedures causing the patient's knee to be zero mechanical axis. Further, the discussion herein should be considered to encompass both medial and lateral unicompartmental cutting guides and arthroplasty procedures.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the spirit and scope of the presently disclosed technology. For example, while the embodiments described above refer to particular features, the scope of this disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the presently disclosed technology is intended to embrace all such alternatives, modifications, and variations together with all equivalents thereof.
The present application claims priority under 35 U.S.C. §119 to U.S. provisional patent application 61/712,577, which was filed Oct. 11, 2012, entitled “PKR Cutting Guide,” and is hereby incorporated by reference in its entirety into the present application.
Number | Name | Date | Kind |
---|---|---|---|
3195411 | MacDonald et al. | Jul 1965 | A |
3825151 | Arnaud | Jul 1974 | A |
D245920 | Shen | Sep 1977 | S |
4198712 | Swanson | Apr 1980 | A |
4298992 | Burstein | Nov 1981 | A |
4436684 | White | Mar 1984 | A |
D274093 | Kenna | May 1984 | S |
D274161 | Kenna | Jun 1984 | S |
4467801 | Whiteside | Aug 1984 | A |
4517969 | Halcomb et al. | May 1985 | A |
4575330 | Hull | Mar 1986 | A |
4646726 | Westin et al. | Mar 1987 | A |
4719585 | Cline et al. | Jan 1988 | A |
4721104 | Kaufman et al. | Jan 1988 | A |
4821213 | Cline et al. | Apr 1989 | A |
4822365 | Walker et al. | Apr 1989 | A |
4825857 | Kenna | May 1989 | A |
4841975 | Woolson | Jun 1989 | A |
4931056 | Ghajar et al. | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4976737 | Leake | Dec 1990 | A |
5007936 | Woolson | Apr 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5030219 | Matsen, III et al. | Jul 1991 | A |
5035699 | Coates | Jul 1991 | A |
5037424 | Aboczsky | Aug 1991 | A |
5075866 | Goto et al. | Dec 1991 | A |
5078719 | Schreiber | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5098436 | Ferrante et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5122144 | Bert et al. | Jun 1992 | A |
5123927 | Duncan et al. | Jun 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5140646 | Ueda | Aug 1992 | A |
5141512 | Farmer et al. | Aug 1992 | A |
5154717 | Matsen, III et al. | Oct 1992 | A |
5156777 | Kaye | Oct 1992 | A |
5171276 | Caspari et al. | Dec 1992 | A |
D336518 | Taylor | Jun 1993 | S |
5218427 | Koch | Jun 1993 | A |
5234433 | Bert et al. | Aug 1993 | A |
5236461 | Forte | Aug 1993 | A |
5274565 | Reuben | Dec 1993 | A |
5282803 | Lackey | Feb 1994 | A |
5298115 | Leonard | Mar 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5305203 | Raab | Apr 1994 | A |
D346979 | Stalcup et al. | May 1994 | S |
5320529 | Pompa | Jun 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5364402 | Mumme et al. | Nov 1994 | A |
5365996 | Crook | Nov 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
D355254 | Krafft et al. | Feb 1995 | S |
D357315 | Dietz | Apr 1995 | S |
5408409 | Glassman et al. | Apr 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5448489 | Reuben | Sep 1995 | A |
5452407 | Crook | Sep 1995 | A |
5462550 | Dietz et al. | Oct 1995 | A |
5484446 | Burke et al. | Jan 1996 | A |
5514140 | Lackey | May 1996 | A |
D372309 | Heldreth | Jul 1996 | S |
D374078 | Johnson et al. | Sep 1996 | S |
5556278 | Meitner | Sep 1996 | A |
5569260 | Petersen | Oct 1996 | A |
5569261 | Marik et al. | Oct 1996 | A |
5601563 | Burke et al. | Feb 1997 | A |
5601565 | Huebner | Feb 1997 | A |
5662656 | White | Sep 1997 | A |
5681354 | Eckhoff | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683398 | Carls et al. | Nov 1997 | A |
5690635 | Matsen, III et al. | Nov 1997 | A |
5716361 | Masini | Feb 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5735277 | Schuster | Apr 1998 | A |
5741215 | D'Urso | Apr 1998 | A |
5749876 | Duvillier et al. | May 1998 | A |
5755803 | Haines et al. | May 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769092 | Williamson, Jr. | Jun 1998 | A |
5769859 | Dorsey | Jun 1998 | A |
5798924 | Eufinger et al. | Aug 1998 | A |
D398058 | Collier | Sep 1998 | S |
5810830 | Noble et al. | Sep 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
5824098 | Stein | Oct 1998 | A |
5824100 | Kester et al. | Oct 1998 | A |
5824111 | Schall et al. | Oct 1998 | A |
5860980 | Axelson, Jr. et al. | Jan 1999 | A |
5860981 | Bertin et al. | Jan 1999 | A |
5871018 | Delp et al. | Feb 1999 | A |
5880976 | DiGioia, III et al. | Mar 1999 | A |
5908424 | Bertin et al. | Jun 1999 | A |
5911724 | Wehrli | Jun 1999 | A |
5916221 | Hodorek et al. | Jun 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5993448 | Remmler | Nov 1999 | A |
5995738 | DiGioia, III et al. | Nov 1999 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6068658 | Insall et al. | May 2000 | A |
6090114 | Matsuno et al. | Jul 2000 | A |
6096043 | Techiera et al. | Aug 2000 | A |
6106529 | Techiera | Aug 2000 | A |
6112109 | D'Urso | Aug 2000 | A |
6126690 | Ateshian et al. | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6161080 | Aouni-Ateshian et al. | Dec 2000 | A |
6171340 | McDowell | Jan 2001 | B1 |
6173200 | Cooke et al. | Jan 2001 | B1 |
6183515 | Barlow et al. | Feb 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6228121 | Khalili | May 2001 | B1 |
6254639 | Peckitt | Jul 2001 | B1 |
6285902 | Kienzle, III et al. | Sep 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6343987 | Hayama et al. | Feb 2002 | B2 |
6382975 | Poirier | May 2002 | B1 |
6383228 | Schmotzer | May 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6415171 | Gueziec et al. | Jul 2002 | B1 |
6458135 | Harwin et al. | Oct 2002 | B1 |
6463351 | Clynch | Oct 2002 | B1 |
6503254 | Masini | Jan 2003 | B2 |
6510334 | Schuster et al. | Jan 2003 | B1 |
6514259 | Picard et al. | Feb 2003 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6533737 | Brosseau et al. | Mar 2003 | B1 |
D473307 | Cooke | Apr 2003 | S |
6540784 | Barlow et al. | Apr 2003 | B2 |
6558426 | Masini | May 2003 | B1 |
6575980 | Roble et al. | Jun 2003 | B1 |
6602259 | Masini | Aug 2003 | B1 |
6672870 | Knapp | Jan 2004 | B2 |
6692448 | Tanaka et al. | Feb 2004 | B2 |
6701174 | Krause et al. | Mar 2004 | B1 |
6702821 | Bonutti | Mar 2004 | B2 |
6711431 | Sarin et al. | Mar 2004 | B2 |
6711432 | Krause et al. | Mar 2004 | B1 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6716249 | Hyde | Apr 2004 | B2 |
6738657 | Franklin et al. | May 2004 | B1 |
6747646 | Gueziec et al. | Jun 2004 | B2 |
6770099 | Andriacchi et al. | Aug 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6799066 | Steines et al. | Sep 2004 | B2 |
6814575 | Poirier | Nov 2004 | B2 |
6905510 | Saab | Jun 2005 | B2 |
6905514 | Carignan et al. | Jun 2005 | B2 |
6923817 | Carson et al. | Aug 2005 | B2 |
6932842 | Litschko et al. | Aug 2005 | B1 |
6944518 | Roose | Sep 2005 | B2 |
6955345 | Kato | Oct 2005 | B2 |
6969393 | Pinczewski et al. | Nov 2005 | B2 |
6975894 | Wehrli et al. | Dec 2005 | B2 |
6978188 | Christensen | Dec 2005 | B1 |
7029479 | Tallarida et al. | Apr 2006 | B2 |
7033360 | Cinquin et al. | Apr 2006 | B2 |
7039225 | Tanaka et al. | May 2006 | B2 |
7060074 | Rosa et al. | Jun 2006 | B2 |
7074241 | McKinnon | Jul 2006 | B2 |
7090677 | Fallin et al. | Aug 2006 | B2 |
7094241 | Hodorek et al. | Aug 2006 | B2 |
RE39301 | Bertin | Sep 2006 | E |
7104997 | Lionberger et al. | Sep 2006 | B2 |
7128745 | Masini | Oct 2006 | B2 |
D532515 | Buttler et al. | Nov 2006 | S |
7141053 | Rose et al. | Nov 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7166833 | Smith | Jan 2007 | B2 |
7172597 | Sanford | Feb 2007 | B2 |
7174282 | Hollister et al. | Feb 2007 | B2 |
7177386 | Mostafavi et al. | Feb 2007 | B2 |
7184814 | Lang et al. | Feb 2007 | B2 |
7203628 | St. Ville | Apr 2007 | B1 |
7235080 | Hodorek | Jun 2007 | B2 |
7238190 | Schon et al. | Jul 2007 | B2 |
7239908 | Alexander et al. | Jul 2007 | B1 |
7258701 | Aram et al. | Aug 2007 | B2 |
7275218 | Petrella et al. | Sep 2007 | B2 |
7309339 | Cusick et al. | Dec 2007 | B2 |
7340316 | Spaeth et al. | Mar 2008 | B2 |
7359746 | Arata | Apr 2008 | B2 |
7373286 | Nikolskiy et al. | May 2008 | B2 |
7383164 | Aram et al. | Jun 2008 | B2 |
7388972 | Kitson | Jun 2008 | B2 |
7392076 | de La Barrera | Jun 2008 | B2 |
7393012 | Funakura et al. | Jul 2008 | B2 |
7394946 | Dewaele | Jul 2008 | B2 |
7429346 | Ensign et al. | Sep 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7517365 | Carignan et al. | Apr 2009 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7542791 | Mire et al. | Jun 2009 | B2 |
7547307 | Carson et al. | Jun 2009 | B2 |
7548638 | Graessner | Jun 2009 | B2 |
7611519 | Lefevre et al. | Nov 2009 | B2 |
7616800 | Paik et al. | Nov 2009 | B2 |
7618421 | Axelson, Jr. et al. | Nov 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7621744 | Massoud | Nov 2009 | B2 |
7621920 | Claypool et al. | Nov 2009 | B2 |
7630750 | Liang et al. | Dec 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7634306 | Sarin et al. | Dec 2009 | B2 |
7641660 | Lakin et al. | Jan 2010 | B2 |
7641663 | Hodorek | Jan 2010 | B2 |
7643862 | Schoenefeld | Jan 2010 | B2 |
7658741 | Claypool et al. | Feb 2010 | B2 |
7660623 | Hunter et al. | Feb 2010 | B2 |
7682398 | Croxton et al. | Mar 2010 | B2 |
7693321 | Lehtonen-Krause | Apr 2010 | B2 |
7695520 | Metzger et al. | Apr 2010 | B2 |
7699847 | Sheldon et al. | Apr 2010 | B2 |
7702380 | Dean | Apr 2010 | B1 |
7715602 | Richard | May 2010 | B2 |
7717956 | Lang | May 2010 | B2 |
D618796 | Cantu et al. | Jun 2010 | S |
7747305 | Dean et al. | Jun 2010 | B2 |
D619718 | Gannoe et al. | Jul 2010 | S |
D622854 | Otto et al. | Aug 2010 | S |
7769429 | Hu | Aug 2010 | B2 |
7780672 | Metzger et al. | Aug 2010 | B2 |
7780681 | Sarin et al. | Aug 2010 | B2 |
7787932 | Vilsmeier et al. | Aug 2010 | B2 |
7794467 | McGinley et al. | Sep 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
D626234 | Otto et al. | Oct 2010 | S |
7806838 | Tsai et al. | Oct 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7815645 | Haines | Oct 2010 | B2 |
7824181 | Sers | Nov 2010 | B2 |
7842039 | Hodorek et al. | Nov 2010 | B2 |
7842092 | Otto et al. | Nov 2010 | B2 |
7881768 | Lang et al. | Feb 2011 | B2 |
7894650 | Weng et al. | Feb 2011 | B2 |
7927335 | Deffenbaugh et al. | Apr 2011 | B2 |
7935150 | Carignan et al. | May 2011 | B2 |
7940974 | Skinner et al. | May 2011 | B2 |
7950924 | Brajnovic | May 2011 | B2 |
7963968 | Dees, Jr. | Jun 2011 | B2 |
7967868 | White et al. | Jun 2011 | B2 |
D642263 | Park | Jul 2011 | S |
7974677 | Mire et al. | Jul 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
D642689 | Gannoe et al. | Aug 2011 | S |
8007448 | Moctezuma de La Barrera | Aug 2011 | B2 |
8021368 | Haines | Sep 2011 | B2 |
8036729 | Lang et al. | Oct 2011 | B2 |
8052623 | Haimerl et al. | Nov 2011 | B2 |
8059878 | Feilkas et al. | Nov 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
D651315 | Bertoni et al. | Dec 2011 | S |
8073521 | Liew et al. | Dec 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8086336 | Christensen | Dec 2011 | B2 |
8092465 | Metzger et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
D655008 | Gannoe et al. | Feb 2012 | S |
8112142 | Alexander et al. | Feb 2012 | B2 |
8115485 | Maier et al. | Feb 2012 | B1 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8126234 | Edwards et al. | Feb 2012 | B1 |
8126533 | Lavallee | Feb 2012 | B2 |
RE43282 | Alexander et al. | Mar 2012 | E |
8133234 | Meridew et al. | Mar 2012 | B2 |
8142189 | Brajnovic | Mar 2012 | B2 |
8152855 | Tulkis et al. | Apr 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8165657 | Krueger | Apr 2012 | B2 |
8167888 | Steffensmeier | May 2012 | B2 |
8170641 | Belcher | May 2012 | B2 |
8170716 | Coste-Maniere et al. | May 2012 | B2 |
8175683 | Roose | May 2012 | B2 |
8177850 | Rudan et al. | May 2012 | B2 |
D661808 | Kang | Jun 2012 | S |
8202324 | Meulink et al. | Jun 2012 | B2 |
8206153 | Berckmans, III et al. | Jun 2012 | B2 |
8214016 | Lavallee et al. | Jul 2012 | B2 |
8221430 | Park et al. | Jul 2012 | B2 |
8224127 | Woodard et al. | Jul 2012 | B2 |
8231634 | Mahfouz et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8265730 | Alexander et al. | Sep 2012 | B2 |
8265949 | Haddad | Sep 2012 | B2 |
8282646 | Schoenefeld et al. | Oct 2012 | B2 |
8290564 | Lang et al. | Oct 2012 | B2 |
8306601 | Lang et al. | Nov 2012 | B2 |
8311306 | Pavlovskaia et al. | Nov 2012 | B2 |
D672038 | Frey | Dec 2012 | S |
8323288 | Zajac | Dec 2012 | B2 |
8331634 | Barth et al. | Dec 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8377066 | Katrana et al. | Feb 2013 | B2 |
8398646 | Metzger et al. | Mar 2013 | B2 |
8407067 | Uthgenannt et al. | Mar 2013 | B2 |
8460302 | Park et al. | Jun 2013 | B2 |
8460303 | Park | Jun 2013 | B2 |
8480679 | Park | Jul 2013 | B2 |
8483469 | Pavlovskaia et al. | Jul 2013 | B2 |
8532361 | Pavlovskaia et al. | Sep 2013 | B2 |
D691719 | Park | Oct 2013 | S |
8545509 | Park et al. | Oct 2013 | B2 |
8617171 | Park et al. | Dec 2013 | B2 |
8617175 | Park et al. | Dec 2013 | B2 |
8734455 | Park et al. | May 2014 | B2 |
8737700 | Park et al. | May 2014 | B2 |
8777875 | Park | Jul 2014 | B2 |
8777955 | Park | Jul 2014 | B2 |
8801719 | Park et al. | Aug 2014 | B2 |
8801720 | Park et al. | Aug 2014 | B2 |
8828011 | Park et al. | Sep 2014 | B2 |
8882779 | Park et al. | Nov 2014 | B2 |
8961527 | Park | Feb 2015 | B2 |
8968320 | Park et al. | Mar 2015 | B2 |
20020160337 | Klein et al. | Oct 2002 | A1 |
20030009167 | Wozencroft | Jan 2003 | A1 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20040102792 | Sarin et al. | May 2004 | A1 |
20040102866 | Harris et al. | May 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040153066 | Coon et al. | Aug 2004 | A1 |
20040153087 | Sanford et al. | Aug 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040220583 | Pieczynski, II et al. | Nov 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20050054914 | Duerk et al. | Mar 2005 | A1 |
20050059978 | Sherry et al. | Mar 2005 | A1 |
20050065617 | de la Barrera et al. | Mar 2005 | A1 |
20050080426 | Qian | Apr 2005 | A1 |
20050149091 | Tanamal et al. | Jul 2005 | A1 |
20050192588 | Garcia | Sep 2005 | A1 |
20050245934 | Tuke et al. | Nov 2005 | A1 |
20050245936 | Tuke et al. | Nov 2005 | A1 |
20050256389 | Koga et al. | Nov 2005 | A1 |
20050267584 | Burdulis, Jr. et al. | Dec 2005 | A1 |
20050272998 | Diehl et al. | Dec 2005 | A1 |
20060015018 | Jutras et al. | Jan 2006 | A1 |
20060015030 | Poulin et al. | Jan 2006 | A1 |
20060015188 | Grimes | Jan 2006 | A1 |
20060079755 | Stazzone et al. | Apr 2006 | A1 |
20060110017 | Tsai et al. | May 2006 | A1 |
20060122491 | Murray et al. | Jun 2006 | A1 |
20060155293 | McGinley et al. | Jul 2006 | A1 |
20060155294 | Steffensmeier et al. | Jul 2006 | A1 |
20060195113 | Masini | Aug 2006 | A1 |
20060244448 | Ballon et al. | Nov 2006 | A1 |
20060271058 | Ashton et al. | Nov 2006 | A1 |
20070010732 | DeYoe et al. | Jan 2007 | A1 |
20070021838 | Dugas et al. | Jan 2007 | A1 |
20070038059 | Sheffer et al. | Feb 2007 | A1 |
20070055268 | Utz et al. | Mar 2007 | A1 |
20070073305 | Lionberger et al. | Mar 2007 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100338 | Deffenbaugh et al. | May 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070114370 | Smith et al. | May 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070123856 | Deffenbaugh et al. | May 2007 | A1 |
20070123857 | Deffenbaugh et al. | May 2007 | A1 |
20070123912 | Carson | May 2007 | A1 |
20070162039 | Wozencroft | Jul 2007 | A1 |
20070167833 | Redel et al. | Jul 2007 | A1 |
20070173853 | MacMillan | Jul 2007 | A1 |
20070173858 | Engh et al. | Jul 2007 | A1 |
20070191741 | Tsai et al. | Aug 2007 | A1 |
20070213738 | Martin et al. | Sep 2007 | A1 |
20070226986 | Park et al. | Oct 2007 | A1 |
20070232959 | Couture et al. | Oct 2007 | A1 |
20070233136 | Wozencroft | Oct 2007 | A1 |
20070233141 | Park et al. | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070237372 | Chen et al. | Oct 2007 | A1 |
20070239167 | Pinczewski | Oct 2007 | A1 |
20070249967 | Buly et al. | Oct 2007 | A1 |
20070276224 | Lang et al. | Nov 2007 | A1 |
20070276400 | Moore et al. | Nov 2007 | A1 |
20080004701 | Axelson et al. | Jan 2008 | A1 |
20080015599 | D'Alessio et al. | Jan 2008 | A1 |
20080015600 | D'Alessio et al. | Jan 2008 | A1 |
20080015602 | Axelson et al. | Jan 2008 | A1 |
20080015606 | D'Alessio et al. | Jan 2008 | A1 |
20080015607 | D'Alessio et al. | Jan 2008 | A1 |
20080021299 | Meulink | Jan 2008 | A1 |
20080033442 | Amiot et al. | Feb 2008 | A1 |
20080058613 | Lang et al. | Mar 2008 | A1 |
20080088761 | Lin et al. | Apr 2008 | A1 |
20080089591 | Zhou et al. | Apr 2008 | A1 |
20080114370 | Schoenefeld | May 2008 | A1 |
20080153067 | Berckmans et al. | Jun 2008 | A1 |
20080195108 | Bhatnagar et al. | Aug 2008 | A1 |
20080234685 | Gjerde | Sep 2008 | A1 |
20080257363 | Schoenefeld et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20080312659 | Metzger et al. | Dec 2008 | A1 |
20080319491 | Schoenefeld | Dec 2008 | A1 |
20090024131 | Metzger et al. | Jan 2009 | A1 |
20090085567 | Kimmlingen et al. | Apr 2009 | A1 |
20090087276 | Rose | Apr 2009 | A1 |
20090088674 | Caillouette et al. | Apr 2009 | A1 |
20090088753 | Aram et al. | Apr 2009 | A1 |
20090088754 | Aker et al. | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090088758 | Bennett | Apr 2009 | A1 |
20090088759 | Aram | Apr 2009 | A1 |
20090088760 | Aaram et al. | Apr 2009 | A1 |
20090088761 | Roose et al. | Apr 2009 | A1 |
20090088763 | Aram et al. | Apr 2009 | A1 |
20090089034 | Penney et al. | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090112213 | Heavener et al. | Apr 2009 | A1 |
20090125114 | May et al. | May 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090131942 | Aker et al. | May 2009 | A1 |
20090138020 | Park et al. | May 2009 | A1 |
20090151736 | Belcher et al. | Jun 2009 | A1 |
20090163923 | Flett et al. | Jun 2009 | A1 |
20090209884 | Van Vorhis et al. | Aug 2009 | A1 |
20090222014 | Bojarski et al. | Sep 2009 | A1 |
20090222015 | Park et al. | Sep 2009 | A1 |
20090222016 | Park et al. | Sep 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090248044 | Amiot et al. | Oct 2009 | A1 |
20090254093 | White et al. | Oct 2009 | A1 |
20090254367 | Belcher et al. | Oct 2009 | A1 |
20090270868 | Park et al. | Oct 2009 | A1 |
20090274350 | Pavlovskaia et al. | Nov 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090285465 | Haimerl et al. | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100016986 | Trabish | Jan 2010 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100042105 | Park et al. | Feb 2010 | A1 |
20100082035 | Keefer | Apr 2010 | A1 |
20100087829 | Metzger et al. | Apr 2010 | A1 |
20100099977 | Hershberger | Apr 2010 | A1 |
20100145344 | Jordan et al. | Jun 2010 | A1 |
20100152741 | Park et al. | Jun 2010 | A1 |
20100153076 | Bellettre et al. | Jun 2010 | A1 |
20100153081 | Bellettre et al. | Jun 2010 | A1 |
20100160917 | Fitz et al. | Jun 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100174376 | Lang | Jul 2010 | A1 |
20100185202 | Lester et al. | Jul 2010 | A1 |
20100191242 | Massoud | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100198351 | Meulink | Aug 2010 | A1 |
20100209868 | De Clerck | Aug 2010 | A1 |
20100212138 | Carroll et al. | Aug 2010 | A1 |
20100217109 | Belcher | Aug 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217336 | Crawford et al. | Aug 2010 | A1 |
20100217338 | Carroll et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100256479 | Park et al. | Oct 2010 | A1 |
20100262150 | Lian | Oct 2010 | A1 |
20100274253 | Ure | Oct 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100292963 | Schroeder | Nov 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20100332194 | McGuan et al. | Dec 2010 | A1 |
20110016690 | Narainasamy et al. | Jan 2011 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110029116 | Jordan et al. | Feb 2011 | A1 |
20110046735 | Metzger et al. | Feb 2011 | A1 |
20110054486 | Linder-Ganz et al. | Mar 2011 | A1 |
20110060341 | Angibaud et al. | Mar 2011 | A1 |
20110066193 | Lang et al. | Mar 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071533 | Metzger et al. | Mar 2011 | A1 |
20110071537 | Koga et al. | Mar 2011 | A1 |
20110071581 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110087465 | Mahfouz | Apr 2011 | A1 |
20110092804 | Schoenefeld et al. | Apr 2011 | A1 |
20110092977 | Salehi et al. | Apr 2011 | A1 |
20110092978 | McCombs | Apr 2011 | A1 |
20110093108 | Ashby et al. | Apr 2011 | A1 |
20110106093 | Romano et al. | May 2011 | A1 |
20110112808 | Anderson et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110160736 | Meridew et al. | Jun 2011 | A1 |
20110166578 | Stone et al. | Jul 2011 | A1 |
20110166666 | Meulink et al. | Jul 2011 | A1 |
20110172672 | Dubeau et al. | Jul 2011 | A1 |
20110184526 | White et al. | Jul 2011 | A1 |
20110190899 | Pierce et al. | Aug 2011 | A1 |
20110196377 | Hodorek et al. | Aug 2011 | A1 |
20110213368 | Fitz et al. | Sep 2011 | A1 |
20110213373 | Fitz et al. | Sep 2011 | A1 |
20110213374 | Fitz et al. | Sep 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110213377 | Lang et al. | Sep 2011 | A1 |
20110213427 | Fitz et al. | Sep 2011 | A1 |
20110213428 | Fitz et al. | Sep 2011 | A1 |
20110213429 | Lang et al. | Sep 2011 | A1 |
20110213430 | Lang et al. | Sep 2011 | A1 |
20110213431 | Fitz et al. | Sep 2011 | A1 |
20110214279 | Park | Sep 2011 | A1 |
20110218539 | Fitz et al. | Sep 2011 | A1 |
20110218542 | Lian | Sep 2011 | A1 |
20110218545 | Catanzarite et al. | Sep 2011 | A1 |
20110218584 | Fitz et al. | Sep 2011 | A1 |
20110230888 | Lang et al. | Sep 2011 | A1 |
20110238073 | Lang et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110257653 | Hughes et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110268248 | Simon et al. | Nov 2011 | A1 |
20110270072 | Feilkas et al. | Nov 2011 | A9 |
20110276145 | Carignan et al. | Nov 2011 | A1 |
20110295329 | Fitz et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110305379 | Mahfouz | Dec 2011 | A1 |
20110313423 | Lang et al. | Dec 2011 | A1 |
20110319897 | Lang et al. | Dec 2011 | A1 |
20110319900 | Lang et al. | Dec 2011 | A1 |
20120004725 | Shterling et al. | Jan 2012 | A1 |
20120010711 | Antonyshyn et al. | Jan 2012 | A1 |
20120029520 | Lang et al. | Feb 2012 | A1 |
20120041446 | Wong et al. | Feb 2012 | A1 |
20120053591 | Haines et al. | Mar 2012 | A1 |
20120066892 | Lang et al. | Mar 2012 | A1 |
20120071881 | Lang et al. | Mar 2012 | A1 |
20120071882 | Lang et al. | Mar 2012 | A1 |
20120071883 | Lang et al. | Mar 2012 | A1 |
20120072185 | Lang et al. | Mar 2012 | A1 |
20120078254 | Ashby et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120078259 | Meridew | Mar 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120101503 | Lang et al. | Apr 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120123420 | Honiball | May 2012 | A1 |
20120130382 | Lannotti et al. | May 2012 | A1 |
20120130434 | Stemniski | May 2012 | A1 |
20120143197 | Lang et al. | Jun 2012 | A1 |
20120143198 | Boyer et al. | Jun 2012 | A1 |
20120150243 | Crawford et al. | Jun 2012 | A9 |
20120151730 | Fitz et al. | Jun 2012 | A1 |
20120158001 | Burdulis, Jr. et al. | Jun 2012 | A1 |
20120158002 | Carignan et al. | Jun 2012 | A1 |
20120165820 | De Smedt et al. | Jun 2012 | A1 |
20120165821 | Carignan et al. | Jun 2012 | A1 |
20120172882 | Sato | Jul 2012 | A1 |
20120179147 | Geebelen et al. | Jul 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120197260 | Fitz et al. | Aug 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120203233 | Yoshida et al. | Aug 2012 | A1 |
20120209276 | Schuster | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120215226 | Bonutti | Aug 2012 | A1 |
20120221008 | Carroll et al. | Aug 2012 | A1 |
20120230566 | Dean et al. | Sep 2012 | A1 |
20120230573 | Ito et al. | Sep 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski et al. | Sep 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120265496 | Mahfouz | Oct 2012 | A1 |
20120265499 | Mahfouz et al. | Oct 2012 | A1 |
20120310400 | Park | Dec 2012 | A1 |
20130115474 | Park | May 2013 | A1 |
20130116697 | Park et al. | May 2013 | A1 |
20130123789 | Park | May 2013 | A1 |
20130190767 | Park et al. | Jul 2013 | A1 |
20130197526 | Park et al. | Aug 2013 | A1 |
20130197687 | Pavlovskaia et al. | Aug 2013 | A1 |
20140005997 | Park | Jan 2014 | A1 |
20140078139 | Park et al. | Mar 2014 | A1 |
20140081277 | Park et al. | Mar 2014 | A1 |
20140128875 | Park et al. | May 2014 | A1 |
20140276872 | Song | Sep 2014 | A1 |
20140324205 | Park et al. | Oct 2014 | A1 |
20140330278 | Park et al. | Nov 2014 | A1 |
20140330279 | Park et al. | Nov 2014 | A1 |
20140378978 | Park | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
3305237 | Aug 1983 | DE |
102005023028 | Nov 2006 | DE |
0097001 | Dec 1983 | EP |
0574098 | Dec 1993 | EP |
0622052 | Nov 1994 | EP |
0709061 | May 1996 | EP |
0908836 | Apr 1999 | EP |
0908836 | Dec 1999 | EP |
1059153 | Dec 2000 | EP |
1486900 | Dec 2004 | EP |
1532939 | May 2005 | EP |
1669033 | Jun 2006 | EP |
2478462 | Sep 1981 | FR |
2215610 | Sep 1989 | GB |
2420717 | Jun 2006 | GB |
2447702 | Sep 2008 | GB |
10-94538 | Apr 1998 | JP |
2001-092950 | Apr 2001 | JP |
P 2005-287813 | Oct 2005 | JP |
WO 9325157 | Dec 1993 | WO |
WO 9507509 | Mar 1995 | WO |
WO 9527450 | Oct 1995 | WO |
WO 9723172 | Jul 1997 | WO |
WO 9812995 | Apr 1998 | WO |
WO 9832384 | Jul 1998 | WO |
WO 0035346 | Jun 2000 | WO |
WO 0100096 | Jan 2001 | WO |
WO 0170142 | Sep 2001 | WO |
WO 0185040 | Nov 2001 | WO |
WO 0296268 | Dec 2002 | WO |
WO 2004032806 | Apr 2004 | WO |
WO 2004049981 | Jun 2004 | WO |
WO 2005051240 | Jun 2005 | WO |
WO 2005087125 | Sep 2005 | WO |
WO 2006058057 | Jun 2006 | WO |
WO 2006060795 | Jun 2006 | WO |
WO 2006092600 | Sep 2006 | WO |
WO 2006127486 | Nov 2006 | WO |
WO 2006134345 | Dec 2006 | WO |
WO 2007014164 | Feb 2007 | WO |
WO 2007058632 | May 2007 | WO |
WO 2007092841 | Aug 2007 | WO |
WO 2007097853 | Aug 2007 | WO |
WO 2007097854 | Aug 2007 | WO |
WO 2007137327 | Dec 2007 | WO |
WO 2008014618 | Feb 2008 | WO |
WO 2008091358 | Jul 2008 | WO |
WO 2011106409 | Sep 2011 | WO |
WO 2012051542 | Apr 2012 | WO |
Entry |
---|
U.S. Appl. No. 14/272,147, filed May 7, 2014, Park et al. |
U.S. Appl. No. 14/335,431, filed Jul. 18, 2014, Park et al. |
U.S. Appl. No. 14/335,460, filed Jul. 18, 2014, Park et al. |
U.S. Appl. No. 13/923,093, filed Jun. 20, 2013, Park. |
U.S. Appl. No. 13/960,498, filed Aug. 6, 2013, Song. |
U.S. Appl. No. 14/011,998, filed Aug. 28, 2013, Park et al. |
U.S. Appl. No. 14/084,255, filed Nov. 19, 2013, Park et al. |
U.S. Appl. No. 14/086,849, filed Nov. 21, 2013, Park et al. |
U.S. Appl. No. 14/086,878, filed Nov. 21, 2013, Park et al. |
Advisory Action, U.S. Appl. No. 11/642,385, dated Aug. 1, 2014. |
Amendment and Response After Final Office Action, U.S. Appl. No. 11/656,323, dated Aug. 25, 2014. |
Appeal Brief, U.S. Appl. No. 11/642,385, dated Oct. 7, 2014. |
Canadian Office Action, Appl. No. 2708393, dated Jul. 29, 2014. |
European Search Report, EP09823986.6, dated Sep. 23, 2014. |
Final Office Action, U.S. Appl. No. 11/946,002, dated Sep. 17, 2014. |
International Search Report and Written Opinion, PCT/US2014/030496, dated Aug. 6, 2014. |
Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Sep. 18, 2014. |
Banks et al. “Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy.” IEEE Transactions on Biomedical Engineering, vol. 43, No. 6, Jun. 1996. |
Delp et al. “An Interactive Graphics-Based Model of the lower Extremity to Study Orthopaedic Surgical Procedures.” IEEE Transactions on Biomedical Engineering, vol. 37, No. 8, Aug. 1990. |
Garg, A. et al . . . “Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphics Model.” J. Biomechanics, vol. 23, No. 1, pp. 45-58, 1990. |
Richolt et al. “Planning and Evaluation of Reorienting Osteotomies of the Proximal Femur in Cases of SCFE Using Virtual Three-Dimensional Models.” Lecture Notes in Computer Science, vol. 1496, 1998, pp. 1-8. |
Walker, P. S. et al. “Range of Motion in Total Knee Arthroplasty: A Computer Analysis.” Clinical Orthopaedics and Related Research, No. 262, Jan. 1991. |
European Search Report, EP 09835583.7, dated May 9, 2014. |
European search Report, European Appl. No. 08863202.1, dated May 16, 2014. |
Extended European search Report, European Appl. No. 13188389.4, dated Jan. 8, 2014. |
Final Office Action, U.S. Appl. No. 11/642,385, dated Apr. 25, 2014. |
Final Office Action, U.S. Appl. No. 11/656,323, dated Apr. 3, 2014. |
Final Office Action, U.S. Appl. No. 12/505,056, dated Dec. 30, 2013, 48 pages. |
Final Office Action, U.S. Appl. No. 13/723,904, dated Dec. 24, 2013, 10 pages. |
Final Office Action, U.S. Appl. No. 13/730,585, dated Dec. 27, 2013, 8 pages. |
Japanese Office Action, JP Application No. 2011-507530, dated Dec. 17, 2013, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Feb. 6, 2014, 46 pages. |
Non-Final Office Action, U.S. Appl. No. 13/488,505, dated Jul. 17, 2014. |
Non-Final Office Action, U.S. Appl. No. 13/730,467, dated Jan. 15, 2014, 8 pages. |
Notice of Allowance, U.S. Appl. No. 11/641,569, dated Feb. 5, 2014, 11 pages. |
Notice of Allowance, U.S. Appl. No. 12/390,667, dated Jan. 17, 2014, 9 pages. |
Notice of Allowance, U.S. Appl. No. 12/505,056, dated Mar. 6, 2014, 10 pages. |
Notice of Allowance, U.S. Appl. No. 12/546,545, dated Dec. 26, 2013, 9 pages. |
Notice of Allowance, U.S. Appl. No. 12/760,388, dated Jan. 22, 2014, 13 pages. |
Notice of Allowance, U.S. Appl. No. 13/723,904, dated Mar. 7, 2014, 8 pages. |
Notice of Allowance, U.S. Appl. No. 13/730,467, dated May 5, 2014. |
Notice of Allowance, U.S. Appl. No. 13/730,585, dated Mar. 18, 2014, 10 pages. |
Notice of Allowance, U.S. Appl. No. 13/730,608, dated Apr. 18, 2014. |
Notice of Allowance, U.S. Appl. No. 13/731,850, dated Jun. 6, 2014. |
Preliminary Amendment, U.S. Appl. No. 13/731,850, filed Apr. 11, 2014, 8 pages. |
Response to Final Office Action, U.S. Appl. No. 11/641,569, dated Jan. 29, 2014, 10 pages. |
Response to Final Office Action, U.S. Appl. No. 11/642,385, dated Jul. 22, 2014. |
Response to Final Office Action, U.S. Appl. No. 12/390,667, dated Dec. 23, 2013, 5 pages. |
Response to Final Office Action, U.S. Appl. No. 12/505,056, dated Feb. 26, 2014, 19 pages. |
Response to Final Office Action, U.S. Appl. No. 13/723,904, dated Feb. 19, 2014, 7 pages. |
Response to Final Office Action, U.S. Appl. No. 13/730,585, dated Feb. 26, 2014, 9 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 13/730,608, dated Jan. 7, 2014, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Jan. 17, 2014, 10 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/642,385, dated Feb. 24, 2014, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 13/730,467, dated Apr. 11, 2014, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Jul. 7, 2014. |
Response to Restriction, U.S. Appl. No. 13/488,505, dated May 5, 2014, 7 pages. |
Restriction Requirement, U.S. Appl. No. 13/488,505, dated Mar. 4, 2014, 5 pages. |
Siemens Magnetom Sonata 1.5T Technical Specifications, pp. 1-4, accessed online Jan. 28, 2014. |
Supplementary European Search Report and Opinion, EP 09739474.6, dated Feb. 27, 2014, 7 pages. |
U.S. Appl. No. 14/476,500, filed Sep. 3, 2014, Park. |
Advisory Action and Interview Summary, U.S. Appl. No. 12/390,667, mailed Apr. 27, 2012, 23 pages. |
Advisory Action, U.S. Appl. No. 11/642,385, dated Oct. 29, 2010, 3 pages. |
Amendment and Response to Ex Parte Quayle Action, U.S. Appl. No. 29/296,687 dated Mar. 24, 2011, 17 pages. |
Amendment and Response to Final Office Action, U.S. Appl. No. 11/642,385, filed Oct. 4, 2010, 16 pages. |
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, dated Apr. 20, 2010, 23 pages. |
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/959,344, dated Jul. 15, 2011, 13 pages. |
Amendment and Response to Office Action and Petition to Revive, U.S. Appl. No. 10/146,862, filed Jan. 18, 2006, 29 pages. |
Amendment and Response to Office Action, U.S. Appl. No. 11/656,323, filed Jun. 25, 2010, 7 pages. |
Amendment and Response to Office Action, U.S. Appl. No. 11/641,569, dated Feb. 5, 2010, 20 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,569, dated May 27, 2009, 12 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,382, dated Oct. 5, 2009, 10 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/642,385, filed Nov. 24, 2009, 10 pages. |
Amendment and Response to Restriction/Election Requirement, U.S. Appl. No. 11/656,323, filed Dec. 8, 2009, 6 pages. |
Amendment and Response, U.S. Appl. No. 11/642,385, filed May 28, 2010, 11 pages. |
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 12/386,105, filed Oct. 1, 2012, 6 pages. |
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 13/374,960, filed May 7, 2013, 6 pages. |
Appeal Brief, U.S. Appl. No. 12/390,667, filed Jul. 12, 2012, 32 pages. |
Appeal Brief, U.S. Appl. No. 12/391,008, filed Oct. 16, 2012, 24 pages. |
European Search Report, 10192631.9-2310, dated Mar. 17, 2011, 5 pages. |
European Search Report, EP09739422.5, dated Mar. 28, 2013, 9 pages. |
Ex Parte Quayle Action, U.S. Appl. No. 29/296,687, mailed Jan. 24, 2011, 11 pages. |
Examiner's Answer in appeal, U.S. Appl. No. 12/391,008, mailed Dec. 13, 2012, 27 pages. |
Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Aug. 5, 2010, 13 pages. |
Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Sep. 3, 2010, 11 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, mailed May 10, 2010, 9 pages. |
Final Office Action, U.S. Appl. No. 11/959,344, mailed Oct. 27, 2011, 12 pages. |
Final Office Action, U.S. Appl. No. 12/390,667, mailed Jan. 13, 2012, 27 pages. |
Final Office Action, U.S. Appl. No. 12/546,545, dated Dec. 20, 2012, 16 pages. |
Final Office Action, U.S. Appl. No. 12/636,939, mailed Jan. 25, 2013, 9 pages. |
Final Office Action, U.S. Appl. No. 11/641,382, mailed Jul. 25, 2012, 12 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, dated Nov. 29, 2013, 20 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, mailed Mar. 1, 2012, 12 pages. |
Final Office Action, U.S. Appl. No. 11/924,425, mailed Jul. 6, 2012, 14 pages. |
Final Office Action, U.S. Appl. No. 11/946,002, mailed May 9, 2012, 24 pages. |
Final Office Action, U.S. Appl. No. 12/390,667, dated Oct. 25, 2013, 17 pages. |
Final Office Action, U.S. Appl. No. 12/391,008, mailed May 17, 2012, 28 pages. |
Final Office Action, U.S. Appl. No. 12/546,545, dated Oct. 7, 2013, 24 pages. |
Final Office Action, U.S. Appl. No. 12/563,809, mailed Mar. 7, 2013, 14 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/034983, mailed May 22, 2009, 15 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/034967, mailed Jun. 16, 2009, 15 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/041519, mailed Jun. 17, 2009, 10 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/040629, mailed Aug. 6, 2009, 9 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/051109, mailed Nov. 6, 2009, 13 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/058946, mailed Jan. 28, 2010, 14 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/068055, mailed Mar. 11, 2010, 10 pages. |
International Search Report and Written Opinion, PCT/US2007/001624, dated Dec. 12, 2007, 14 pages. |
International Search Report and Written Opinion, PCT/US2007/001622, dated Jun. 11, 2007, 14 pages. |
International Search Report and Written Opinion, PCT/US2008/083125, dated Mar. 9, 2009, 13 pages. |
International Search Report and Written Opinion, PCT/US2011/032342, dated Jul. 1, 2011, 8 pages. |
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Jan. 20, 2010, 12 pages. |
NonFinal Office Action and PTO-892, U.S. Appl. No. 11/642,385, mailed Mar. 2, 2010, 11 pages. |
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Mar. 30, 2010, 10 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Aug. 3, 2011, 14 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Jan. 3, 2013, 12 pages. |
Non-Final Office Action, U.S. Appl. No. 11/924,425, mailed Jan. 25, 2012, 35 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, dated Aug. 24, 2011, 49 pages. |
Non-Final Office Action, U.S. Appl. No. 13/086,275, mailed Feb. 7, 2013, 36 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,382, mailed Mar. 29, 2012, 24 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, mailed Jul. 12, 2013, 21 pages. |
NonFinal Office Action, U.S. Appl. No. 11/641,569, mailed Nov. 12, 2009, 9 pages. |
Non-Final Office Action, U.S. Appl. No. 11/642,385, dated Oct. 22, 2013, 37 pages. |
Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Oct. 22, 2013, 36 pages. |
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 25, 2011, 44 pages. |
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Oct. 2, 2013, 39 pages. |
Nonfinal Office Action, U.S. Appl. No. 11/959,344, dated Feb. 15, 2011, 29 pages. |
Non-Final Office Action, U.S. Appl. No. 12/111,924, mailed Jun. 29, 2012, 35 pages. |
Non-Final Office Action, U.S. Appl. No. 12/386,105, dated Feb. 9, 2012, 30 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed Sep. 26, 2012, 21 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed May 8, 2013, 20 pages. |
Non-Final Office Action, U.S. Appl. No. 12/391,008, mailed Oct. 31, 2011, 44 pages. |
Non-Final Office Action, U.S. Appl. No. 12/505,056, mailed Jun. 28, 2013, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Jul. 19, 2012, 28 pages. |
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Mar. 13, 2013, 10 pages. |
Non-Final Office Action, U.S. Appl. No. 12/563,809, mailed Sep. 21, 2012, 32 pages. |
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Jul. 20, 2012, 25 pages. |
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Apr. 25, 2013, 16 pages. |
Non-Final Office Action, U.S. Appl. No. 12/760,388, mailed Jun. 20, 2013, 54 pages. |
Non-Final Office Action, U.S. Appl. No. 13/374,960, mailed Aug. 1, 2012, 6 pages. |
Non-Final Office Action, U.S. Appl. No. 13/723,904, mailed Aug. 9, 2013, 6 pages. |
Non-Final Office Action, U.S. Appl. No. 13/730,585, mailed Jun. 11, 2013, 10 pages. |
Non-Final Office Action, U.S. Appl. No. 13/730,608, dated Oct. 7, 2013, 10 pages. |
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Feb. 6, 2013, 14 pages. |
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Feb. 5, 2013, 16 pages. |
Notice of Allowance, U.S. Appl. No. 12/111,924, dated Dec. 24, 2012, 10 pages. |
Notice of Allowance, U.S. Appl. No. 13/066,568, mailed Oct. 26, 2011, 28 pages. |
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed Feb. 4, 2013, 32 pages. |
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed May 24, 2013, 16 pages. |
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Oct. 9, 2012, 9 pages. |
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Sep. 25, 2012, 18 pages. |
Notice of Allowance, U.S. Appl. No. 11/959,344, mailed Mar. 5, 2012, 13 pages. |
Notice of Allowance, U.S. Appl. No. 12/111,924, mailed Mar. 11, 2013, 14 pages. |
Notice of Allowance, U.S. Appl. No. 12/386,105, mailed Jul. 5, 2012, 11 pages. |
Notice of Allowance, U.S. Appl. No. 12/563,809, mailed May 28, 2013, 11 pages. |
Notice of Allowance, U.S. Appl. No. 12/636,939, dated Oct. 7, 2013, 28 pages. |
Notice of Allowance, U.S. Appl. No. 13/086,275, mailed Aug. 27, 2013, 31 pages. |
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed Nov. 2, 2012, 24 pages. |
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed May 6, 2013, 20 pages. |
Notice of Allowance, U.S. Appl. No. 13/573,662, mailed Mar. 19, 2013, 34 pages. |
Notice of Allowance, U.S. Appl. No. 29,296,687, mailed Mar. 31, 2011, 18 pages. |
Notice of Non-Compliant Amendment, U.S. Appl. No. 11/641,569, mailed Aug. 7, 2009, 3 pages. |
Office Action (Restriction Requirement), U.S. Appl. No. 12/563,809, dated Feb. 2, 2012, 7 pages. |
Office Action, U.S. Appl. No. 10/146,862, mailed Jan. 13, 2005, 10 pages. |
Preliminary Amendment, U.S. Appl. No. 11/641,569, dated Aug. 14, 2008, 13 pages. |
Preliminary Amendment, U.S. Appl. No. 11/642,385, filed Aug. 22, 2008, 42 pages. |
Preliminary Amendment, U.S. Appl. No. 13/731,697, filed May 10, 2013, 6 pages. |
RCE/Amendment, U.S. Appl. No. 11/641,569, filed Aug. 9, 2010, 18 pages. |
RCE/Amendment, U.S. Appl. No. 11/642,382, filed Oct. 26, 2010, 14 pages. |
RCE/Amendment, U.S. Appl. No. 11/642,385, filed Dec. 6, 2010, 13 pages. |
RCE/Amendment, U.S. Appl. No. 11/656,323, filed Nov. 19, 2010, 12 pages. |
RCE/Amendment, U.S. Appl. No. 11/946,002, filed Sep. 6, 2012, 38 pages. |
Response to Final Office Action, U.S. Appl. No. 12/546,545, filed Feb. 20, 2013, 13 pages. |
Response to Final Office Action, U.S. Appl. No. 11/641,569, filed Jun. 28, 2012, 10 pages. |
Response to Final Office Action, U.S. Appl. No. 11/641,382, filed Sep. 24, 2012, 11 pages. |
Response to Final Office Action, U.S. Appl. No. 11/959,344, filed Dec. 27, 2011, 16 pages. |
Response to Final Office Action, U.S. Appl. No. 11/924,425, filed Sep. 5, 2012, 9 pages. |
Response to Final Office Action, U.S. Appl. No. 12/390,667, filed Mar. 12, 2012, 19 pages. |
Response to Final Office Action, U.S. Appl. No. 12/563,809, filed May 6, 2013, 15 pages. |
Response to Final Office Action, U.S. Appl. No. 12/546,545, dated Dec. 9, 2013, 8 pages. |
Response to Final Office Action, U.S. Appl. No. 12/636,939, filed Apr. 8, 2013, 10 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Feb. 26, 2013, 36 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/563,809, filed Dec. 13, 2012, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Nov. 18, 2011, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Dec. 2, 2011, 7 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/391,008, filed Feb. 24, 2012, 18 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Mar. 8, 2012, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/924,425, filed Apr. 25, 2012, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/386,105, filed Jun. 8, 2012, 13 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, filed Jun. 27, 2012, 12 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/111,924, filed Sep. 28, 2012, 10 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Oct. 10, 2012, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Oct. 19, 2012, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Apr. 3, 2013, 9 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 13/086,275, filed May 7, 2013, 11 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Jul. 15, 2013, 14 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Jul. 16, 2013, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Aug. 7, 2013, 22 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/760,388, filed Sep. 12, 2013, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/505,056, filed Oct. 9, 2013, 17 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 13/730,585, filed Oct. 9, 2013, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Oct. 11, 2013, 12 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 13/723,904, filed Nov. 6, 2013, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Dec. 6, 2013, 18 pages. |
Response to Notice of Non-Complaint Amendment, U.S. Appl. No. 11/641,569, dated Aug. 19, 2009, 11 pages. |
Response to Restriction Requirement U.S. Appl. No. 29/296,687, filed Oct. 7, 2010, 3 pages. |
Response to Restriction Requirement, U.S. Appl. No. 11/959,344, filed Nov. 24, 2010, 13 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 27, 2011, 8 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/391,008, filed Aug. 29, 2011, 9 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/386,105, filed Dec. 21, 2011, 9 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/563,809, filed Feb. 24, 2012, 10 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/111,924, filed Apr. 16, 2012, 8 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/636,939, filed Apr. 19, 2012, 6 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/760,388, filed Apr. 5, 2013, 7 pages. |
Response to Restriction, U.S. Appl. No. 12/563,809, filed Aug. 6, 2012, 10 pages. |
Response to Restriction, U.S. Appl. No. 11/924,425, filed Nov. 8, 2011, 5 pages. |
Response to Restriction, U.S. Appl. No. 11/946,002, filed Sep. 23, 2011, 7 pages. |
Response to Restriction, U.S. Appl. No. 12/505,056, filed Apr. 11, 2012, 9 pages. |
Response to Restriction, U.S. Appl. No. 12/546,545, filed Jun. 4, 2012, 7 pages. |
Response to Restriction, U.S. Appl. No. 13/573,662, filed Feb. 8, 2013, 8 pages. |
Restriction Requirement, U.S. Appl. No. 13/573,662, mailed Jan. 17, 2013, 6 pages. |
Restriction Requirement, U.S. Appl. No. 11/641,382, mailed Sep. 3, 2009, 6 pages. |
Restriction Requirement, U.S. Appl. No. 11/641,569, mailed Apr. 27, 2009, 7 pages. |
Restriction Requirement, U.S. Appl. No. 11/642,385, mailed Oct. 27, 2009, 7 pages. |
Restriction Requirement, U.S. Appl. No. 11/656,323, mailed Nov. 13, 2009, 10 pages. |
Restriction Requirement, U.S. Appl. No. 11/924,425, dated Oct. 13, 2011, 6 pages. |
Restriction Requirement, U.S. Appl. No. 11/946,002, dated Sep. 1, 2011, 8 pages. |
Restriction Requirement, U.S. Appl. No. 11/959,344, dated Oct. 29, 2010, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/111,924, mailed Mar. 19, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/386,105, dated Oct. 24, 2011, 7 pages. |
Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 14, 2011, 9 pages. |
Restriction Requirement, U.S. Appl. No. 12/391,008, dated Aug. 18, 2011, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/505,056, mailed Mar. 14, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/546,545, mailed May 3, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/563,809, mailed Jul. 6, 2012, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/636,939, mailed Apr. 13, 2012, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/760,388, mailed Mar. 6, 2013, 7 pages. |
Restriction Requirement, U.S. Appl. No. 29/296,687, mailed Sep. 21, 2010, 7 pages. |
Akca, “Matching of 3D Surfaces and Their Intensities,” ISPRS Journal of Photogrammetry & Remote Sensing, 62(2007), 112-121. |
Akenine-Möller et al., Real-Time Rendering, Second Edition, AK Peters, Natick, MA, 6 pages (Table of Contents), 2002. |
Arima et al., “Femoral Rotational Alignment, Based on the Anteroposterior Axis, in Total Knee Arthroplasty in a Valgus Knee. A Technical Note,” Journal Bone Joint Surg Am. 1995;77(9):1331-4. |
Audette et al. “An algorithmic overview of surface registration techniques for medical imaging.” Medical Image Analysis, vol. 4, No. 3, Sep. 1, 2000, pp. 201-217. |
Author Unknown, “MRI Protocol Reference Guide for GE Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Author Unknown, “MRI Protocol Reference Guide for Phillips Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 19 pages. |
Author Unknown, “MRI Protocol Reference Guide for Siemens Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Author Unknown, “MRI Protocol Reference,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Barequet et al., “Filling Gaps in the Boundary of a Polyhedron,” Computer Aided Geometric Design, vol. 12, pp. 207-229, 1995. |
Barequet et al., “Repairing CAD Models,” Proceedings of the 8th IEEE Visualization '97 Conference, pp. 363-370, Oct. 1997. |
Bargar et al., “Robotic Systems in Surgery,” Orthopedic and Spine Surgery, Surgical Technology International II, 1993, 419-423. |
Berry et al., “Personalised image-based templates for intra-operative guidance,” Proc. Inst. Mech. Eng. Part H: J. Engineering in Medicine, vol. 219, pp. 111-118, Oct. 7, 2004. |
Besl et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239-256, Feb. 1992. |
Bi{hacek over (s)}{hacek over (c)}ević et al., “Variations of Femoral Condyle Shape,” Coll. Antropol., vol. 29 No. 2, pp. 409-414, 2005. |
Blaha et al., “Using the Transepicondylar Axis to Define the Sagittal Morphology of the Distal Part of the Femur,” J Bone Joint Surg Am. 2002;84-A Suppl 2:48-55. |
Blinn, Jim Blinn's Corner—A Trip Down the Graphics Pipeline, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 5 pages (Table of Contents), 1996. |
Bøhn et al., “A Topology-Based Approach for Shell-Closure,” Geometric Modeling for Product Realization (P.R. Wilson et al. editors), pp. 297-319, Elsevier Science Publishers B.V., North-Holland, 1993. |
Bullough et al., “The Geometry of Diarthrodial Joints, Its Physiologic Maintenance and the Possible significance of Age-Related Changes in Geometry-to-Load distribution and the Development of Osteoarthritis,” Clin Orthop Rel Res 1981, 156:61-6. |
Burgkart et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value,” Arthritis Rheum 2001, 44:2072-7. |
Canny, “A computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 8(6), pp. 679-698 (1986). |
Chauhan et al., “Computer-assisted knee arthroplasty versus a conventional jig-based technique—a randomised, prospective trial,” The Journal of Bone and Joint Surgery, vol. 86-B, No. 3, pp. 372-377, Apr. 2004. |
Churchill et al., “The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee,” Clin Orthop Relat Res. 1998(356):111-8. |
Cicuttini et al., “Gender Differences in Knee Cartilage Volume as Measured by Magnetic Resonance Imaging,” Osteoarthritis Cartilage 1999, 7:265-71. |
Cicuttini et al., “Longitudinal Study of the Relationship Between Knee angle and Tibiofemoral cartilage Volume in Subjects with Knee Osteoarthritis,” Rheumatology (Oxford) 2004, 43:321-4. |
Cohen et al., Radiosity and Realistic Image Synthesis, Academic Press Professional, Cambridge, MA, 8 pages (Table of Contents), 1993. |
Couglin et al., “Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting,” The Journal of Arthroplasty, vol. 18, No. 8, Elsevier, 2003. |
Delp et al., “Computer Assisted Knee Replacement,” Clinical Orthopaedics and Related Research, No. 354, pp. 49-56, Sep. 1998. |
Dutré et al., Advanced Global Illumination, AK Peters, Natick, MA, 5 pages (Table of Contents), 2003. |
Eckhoff et al., “Difference Between the Epicondylar and Cylindrical Axis of the Knee,” Clin Orthop Relat Res. 2007;461:238-44. |
Eckhoff et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Realty,” The Journal of Bone and Joint Surgery, vol. 87-A, Supplement 2, pp. 71-80, 2005. |
Eisenhart-Rothe et al., “Femorotibial and Patellar Cartilage Loss in Patients Prior to Total Knee arthroplasty, Heterogeneity, and Correlation with alignment of the Knee,” Ann Rheum Dis., Jun. 2005 (BMJ Publishing Group Ltd & European League Against Rheumatism). |
Eisenhart-Rothe et al., “The Role of Knee alignment in Disease Progression and Functional Decline in Knee Osteoarthritis,” JAMA 2001, 286:188-95. |
Elias et al., “A Correlative Study of the Geometry and anatomy of the Distal Femur,” Clin orthop Relat Res. 1990(260):98-103. |
Erikson, “Error Correction of a Large Architectural Model: The Henderson County Courthouse,” Technical Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, pp. 1-11, 1995. |
Ervin et al., Landscape Modeling, McGraw-Hill, New York, NY, 8 pages (Table of Contents), 2001. |
Farin, NURB Curves and Surfaces: From Projective Geometry to Practical Use, AK Peters, Wellesley, MA, 7 pages (Table of Contents), 1995. |
Favorito et al., “total Knee Arthroplasty in the Valgus Knee,” Journal Am Acad Orthop surg. 2002;10(1):16-24. |
Fleischer et al., “Accurate Polygon Scan Conversion Using Half-Open Intervals,” Graphics Gems III, pp. 362-365, code: pp. 599-605, 1992. |
Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley Publishing Company, Reading, MA, 9 pages (Table of Contents), 1990. |
Freeman et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging,” Clinical orthop Relat Res. 2003 (410):35-43. |
Freeman et al., “The Movement of the Normal Tibio-Femoral Joint,” Journal Biomech. 2005;38(2):197-208. |
Glassner (editor), An Introduction to Ray Tracing, Academic Press Limited, San Diego, CA, 4 pages (Table of Contents), 1989. |
Glassner, Principles of Digital Image Synthesis, vols. One and Two, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 32 pages (Table of Contents), 1995. |
Gooch et al., Non-Photorealistic Rendering, AK Peters, Natick, MA, 4 pages (Table of Contents), 2001. |
Graichen et al., “Quantitative Assessment of Cartilage Status in Osteoarthritis by Quantitative Magnetic Resonance Imaging: Technical Validation for Use in analysis of Cartilage Volume and Further Morphologic Parameters,” Arthritis Rheum 2004, 50:811-16. |
Gruen et al., “Least Squares 3D Surface and Curve Matching,” ISPRS Journal of Photogrammetry & Remote Sensing, 59(2005), 151-174. |
Grüne et al., “On numerical algorithm and interactive visualization for optimal control problems,” Journal of Computation and Visualization in Science, vol. 1, No. 4, pp. 221-229, Jul. 1999. |
Guéziec et al., “Converting Sets of Polygons to Manifold Surfaces by Cutting and Stitching,” Proc. IEEE Visualization 1998, pp. 383-390, Oct. 1998. |
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?”, Computer Aided Surgery, vol. 9, No. 3, pp. 93-94, 2004. |
Hafez et al., “Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templating,” Clinical Orthopaedics and Related Research, No. 0, pp. 1-9, 2006. |
Hafez et al., “Patient Specific Instrumentation for TKA: Testing the Reliability Using a Navigational System,” MIS Meets CAOS Symposium & Instructional Academy, Less and Minimally Invasive Surgery for Joint Arthroplasty: FACT and FICTION Syllabus, San Diego, CA, 8 pages, Oct. 20-22, 2005. |
Hollister et al., “The Axes of Rotation of the Knee,” Clin Orthop Relat Res. 1993(290):259-68. |
Howell et al., “In Vivo Adduction and Reverse Axial Rotation (External) of the Tibial Component can be Minimized During Standing and Kneeling,” Orthopedics|ORTHOSupersite.com vol. 32 No. 5, 319-326 (May 2009). |
Howell et al., “Longitudinal Shapes of the Tibia and Femur are Unrelated and Variable,” Clinical Orthopaedics and Related Research (2010) 468: 1142-1148. |
Howell et al., “Results of an Initial Experience with Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients,” Orthopedics, 2008;31(9):857-63. |
Ibáñez et al., The ITK Software Guide, Second Edition, Updated for ITK version 2.4, Nov. 21, 2005, pp. 114, 396-411, and 426. |
Iwaki et al., “Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee,” Journal Bone Joint Surg Br. 2000;82(8):1189-95. |
Jacobs et al., “Hip Resurfacing Through an Anterolateral Approach,” J. Bone Joint Surg Am. 2008:90 Suppl 3:38-44. |
Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters, Natick, MA, 7 pages (Table of Contents), 2001. |
Johnson, “Joint Remodeling as the Basis for Osteoarthritis,” Journal Am Vet Med Assoc. 1962, 141:1233-41. |
Jones et al., “A new approach to the construction of surfaces from contour data,” Computer Graphics Forum, vol. 13, No. 3, pp. 75-84, 1994 [ISSN 0167-7055]. |
Kass et al., “Active Contour Models,” International Journal of Computer Vision, pp. 321-331 (1988). |
Kellgren et al., “Radiological Assessment of Osteoarthrosis,” Ann Rheum Dis 1957, 10:494-501. |
Kessler et al, “Sagittal Curvature of Total Knee Replacements Predicts in vivo Kinematics,” Clin Biomech (Bristol, Avon) 2007; 22(1):52-8. |
Khorramabadi, “A Walk Through the Planned CS Building,” Technical Report UCB/CSD 91/652, Computer Science Department, University of California at Berkeley, 74 pages, 1991. |
Kidder et al., “3-D Model Acquisition, Design, Planning and Manufacturing of Orthopaedic Devices: A Framework,” Advanced Sensor and Control-System Interface (B.O. Nnaji editor), Proceedings SPIE—The International Society for Optical Engineering, Bellingham, WA, vol. 2911, pp. 9-22, Nov. 21-22, 1996. |
Kienzel III et al., “An Integrated CAD-Robotics System for Total Knee Replacement Surgery”, IEEE International Conference, pp. 889-894, vol. 1, May 1993. |
Kienzel III et al., “Total Knee Replacement,” IEEE May/Jun. 1995. |
Krackow et al., “Flexion-Extension Joint Gap Changes After Lateral Structure Release for Valgus Deformity Correction in Total Knee Arthroplasty: A Cadaveric Study,” Journal Arthroplasty, 1999;14(8):994-1004. |
Krackow et al., “Primary Total Knee Arthroplasty in Patients with Fixed Valgus Deformity,” Clin Orthop Relat Res. 1991(273):9-18. |
Krackow, “Approaches to Planning lower Extremity alignment for Total Knee arthroplasty and Osteotomy About the Knee,” adv Orthop surg 7:69, 1983. |
Kumar, Robust Incremental Polygon Triangulation for Surface Rendering, Center for Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore, MD, WSCG, The International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 381-388, 2000. |
Kunz et al., “Computer Assisted Hip Resurfacing Using Individualized Drill Templates,” The Journal of Arthroplasty, vol. 00, No. 0, pp. 1-7, 2009. |
Kusumoto et al., “Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery”, Graduate School of Dentistry Course for Integrated Oral Science and Stomatology, Jun. 16, 2005. |
Lea et al., “Registration and immobilization in robot-assisted surgery”, Journal of Image Guided Surgery, pp. 1-10, 1995. |
Lorensen et al., “Marching Cubes: A High Resolution 3d Surface Construction Algorithm,” Computer Graphics, vol. 21, No. 4, pp. 163-169, 1987. |
Manner et al., “Knee Deformity in Congenital Longitudinal Deficiencies of the Lower Extremity,” Clin Orthop Relat Res. 2006;448:185-92. |
Matsuda et al., “Anatomical Analysis of the Femoral Condyle in Normal and Osteoarthritic Knees,” Journal Orthopaedic Res. 2004;22(1):104-9. |
Matsuda et al., “Femoral Condyle Geometry in the Normal and Varus Knee,” Clinical Orthop Relat Res. 1998(349):183-8. |
Messmer et al., “Volumetric Determination of the Tibia Based on 2d Radiographs Using A 2d/3d Database”, Dept. of Surgery, Trauma Unit, University Hospital, Bassel, Switzerland, Computer Aided Surgery 6:183-194 (2001). |
Mihalko et al., “The Variability of Intramedullary Alignment of the Femoral Component During Total Knee Arthroplasty,” Journal Arthroplasty. 2005;20(1):25-8. |
Mole et al., “A New Three-Dimensional Treatment Algorithm for Complex Surfaces: Applications in Surgery”, Feb. 1995. |
Morvan et al., IVECS, Interactively Correcting .STL Files in a Virtual Environment, Clemson University, Clemson, SC, Proc. Conf. Virtual Design, Aug. 1996. |
Nooruddin et al., Simplification and Repair of Polygonal Models Using Volumetric Techniques, IEEE Transactions on Visualization and Computer Graphics, vol. 9, No. 2, pp. 191-205, Apr.-Jun. 2003. |
Panjabi et al., “Errors in Kinematic Parameters of a Planar Joint: Guidelines for Optimal Experimental Design,” Journal Biomech. 1982;15(7):537-44. |
Perillo-Marcone et al., “Effect of Varus/Valgus Malalignment on Bone Strains in the Proximal Tibia After TKR: An Explicit Finite element Study,” Journal Biomechanical Engineering 2007, vol. 129, 1:1-11. |
Peterfy et al., “Quantification of articular Cartilage in the Knee with Pulsed Saturation Transfer Subtraction and Fact-Suppressed MR Imaging: Optimization and Validation,” Radiology 1994, 192:485-91. |
Pinskerova et al., “The Shapes and Relative Movements of the Femur and Tibia at the Knee,” Orthopaedics 2000;29 Suppl 1:S3-5. |
Platt et al., “Mould Arthroplasty of the Knee, A Ten-Year Follow-up Study,” The Journal of Bone and Joint Surgery (British Volume), vol. 51-B, No. 1, pp. 76-87, Feb. 1969. |
Potter, “Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and MacIntosh Design,” The Surgical Clinics of North America, vol. 49, No. 4, pp. 903-915, Aug. 1969. |
Radermacher et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, vol. 354, pp. 28-38, Sep. 1998. |
Rohlfing et al., “Chapter 11 Quo Vadis, Atlas-Based Segmentation?”, in Handbook of Biomedical Image Analysis vol. III: Registration Models 435, 435-486 (Jasjit S. Suri et al. eds., Kluwer Academic/Plenum Publishers, NY 2005). |
Rosset et al., “General Consumer Communication Tools for Improved Image Management and Communication in Medicine,” Journal Digital Imaging, 2005;18(4):270-9. |
Shakespeare D., “Conventional Instruments in Total Knee Replacement: What Should We Do With Them?” Knee. 2006;13(1):1-6. |
Shepstone et al., “The shape of the Distal Femur: A Palaeopathological Comparison of Eburnated and Non-Eburnated Femora,” Ann. Rheum Dis. 1999, 58:72-8. |
Shirley et al., Realistic Ray Tracing, Second Edition, AK Peters, Natick, MA, 7 pages (Table of Contents), 2003. |
Siston et al., “Averaging Different Alignment Axes Improves Femoral Rotational Alignment in Computer-Navigated Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2008;90(10):2098-104. |
Siston et al., “The Variability of Femoral Rotational Alignment in Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2005;87(10):2276-80. |
Soudan et al., “Methods, Difficulties and Inaccuracies in the Study of Human Joint Kinematics and Pathokinematics by the Instant axis Concept. Example: The Knee Joint,” Journal Biomech. 1979;12(1):27-33. |
Spencer et al., “Initial Experience with Custom-Fit Total Knee Replacement: Intra-operative Events and Long-Leg Coronal alignment,” International Orthopaedics (SICOT), 2009:In Press. |
Strothotte et al., Non-Photorealistic Computer Graphics—Modeling, Rendering, and Animation, Morgan Kaufmann Publishers, San Francisco, CA, 9 pages (Table of Contents), 2002. |
Stulberg et al., “Computer- and Robot-Assisted Orthopaedic Surgery”, Computer-Integrated Surgery Technology and Clinical Applications, edited by Taylor et al., Massachusetts Institute of Technology, Chapter 27, pp. 373-378, 1996. |
Teeny et al., “Primary Total Knee Arthroplasty in Patients with Severe Varus Deformity. A Comparative Study,” Clin Orthop Relat Res. 1991(273):19-31. |
Vande Berg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging,” Radiology, vol. 222, No. 2, pp. 430-436, Feb. 2002. |
Wikipedia, the Free Encyclopedia, “CNC,” (date unknown) located at http://en.wikipedia.org/wiki/CNC>, 6 pages, last visited on Apr. 12, 2007. |
Wright Medical Technology, Inc., “Prophecy Pre-Operative Navigation Guides Surgical Technique,” 2009. |
Xie et al. “Segmentation by surface-to-image registration.” proceedings of SPIE, vol. 6144, Mar. 2, 2006, pp. 614405-1-614405-7. |
Australian Patent Examination Report No. 1, AU 2013200861, dated Mar. 3, 2015. |
Non-Final Office Action, U.S. Appl. No. 13/731,697, dated Jan. 29, 2015. |
Notice of Allowance, U.S. Appl. No. 11/656,323, dated Feb. 3, 2015. |
Reply Brief, U.S. Appl. No. 11/642,385, dated Jan. 23, 2015. |
Response to Restriction, U.S. Appl. No. 14/476,500, dated Mar. 17, 2015. |
Restriction Requirement, U.S. Appl. No. 14/476,500, dated Feb. 25, 2015. |
Canadian Office Action, CA2721762, dated Nov. 10, 2015. |
Decision on Appeal, U.S. Appl. No. 12/391,008, dated Dec. 11, 2015. |
Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 30, 2015. |
Non-Final Office Action, U.S. Appl. No. 13/923,093, dated Dec. 2, 2015. |
Calvo et al., “High Resolution MRI Detects Cartilage Swelling at the Early Stages of Experimental Osteoarthritis,” OARSI, 2001, pp. 463-472. |
Canadian Office Action, Appl. No. 2642616, dated Apr. 22, 2015. |
Canadian Office Action, CA2708393, dated May 7, 2015. |
Canadian Office Action, CA2721735, dated Jul. 7, 2015. |
European Examination Report, EP10192631.9, dated Feb. 11, 2015. |
European Patent Office, Summons to Attend Oral Proceedings, EP07749030.8, dated Sep. 10, 2015. |
European Search Report, EP09718014.5, dated May 13, 2015. |
European Search Report, EP09718041.8, dated May 12, 2015. |
Japanese Office Action, JP2014-147908, dated Jun. 9, 2015. |
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Jun. 29, 2015. |
Non-Final Office Action, U.S. Appl. No. 14/476,500, dated Jun. 18, 2015. |
Notice of Allowance, U.S. Appl. No. 13/731,697, dated Jul. 29, 2015. |
Notice of Allowance, U.S. Appl. No. 14/824,731, dated Oct. 20, 2015. |
Response to Non-Final Office Action, U.S. Appl. No. 13/731,697, dated May 26, 2015. |
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Sep. 29, 2015. |
Response to Non-Final Office Action, U.S. Appl. No. 14/476,500, dated Oct. 16, 2015. |
Restriction Requirement, U.S. Appl. No. 13/960,498, dated Sep. 23, 2015. |
Number | Date | Country | |
---|---|---|---|
20140107655 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61712577 | Oct 2012 | US |