Customized arthroplasty cutting guides and surgical methods using the same

Information

  • Patent Grant
  • 9402637
  • Patent Number
    9,402,637
  • Date Filed
    Thursday, January 24, 2013
    11 years ago
  • Date Issued
    Tuesday, August 2, 2016
    8 years ago
Abstract
Implementations described and claimed herein provide an arthroplasty system for making resections in a patient knee. In one implementation, the system includes a femoral cutting guide having a patient specific mating region, and a distal planar surface distally spaced from a distal resection surface based on thicknesses of femoral and tibial implants. The distal planar surface may be used to check ligament balance. The system further includes a tibial cutting guide having a patient specific mating region and a an anchor pin hole intersecting with a proximal resection slot near a medial or lateral edge of the proximal resection slot. The anchor pin hole being configured to receive an anchor pin that may serve as a sawing stop during a proximal resection.
Description
FIELD OF THE INVENTION

Aspects of the presently disclosed technology relate to medical apparatuses and methods. More specifically, the presently disclosed technology relates to unicompartmental customized arthroplasty cutting guides and surgical methods using such cutting guides.


BACKGROUND OF THE INVENTION

Over time and through repeated use, bones and joints can become damaged or worn. For example, repetitive strain on bones and joints (e.g., through athletic activity), traumatic events, and certain diseases (e.g., arthritis) can cause cartilage in joint areas, which normally provides a cushioning effect, to wear down. When the cartilage wears down, fluid can accumulate in the joint areas, resulting in pain, stiffness, and decreased mobility.


Arthroplasty procedures can be used to repair damaged joints. During a typical arthroplasty procedure, an arthritic or otherwise dysfunctional joint can be remodeled or realigned or an implant can be implanted into the damaged region. Arthroplasty procedures may take place in any of a number of different regions of the body, such as a knee, a hip, a shoulder, or an elbow.


One type of arthroplasty procedure is a total knee arthroplasty (“TKA”), in which a damaged knee joint is replaced with prosthetic implants. The knee joint may have been damaged by, for example, arthritis (e.g., severe osteoarthritis or degenerative arthritis), trauma, or a rare destructive joint disease. Typically, a candidate for a TKA has significant wear or damage in tow or more “compartments” of the knee. The knee is generally divided into three “compartments, including: medial (the inside part of the knee), lateral (the outside part of the knee), and the patellofemoral (the joint between the knee cap and the thighbone). During a TKA procedure, a damaged portion in the distal region of the femur may be removed and replaced with a metal shell, and a damaged portion in the proximal region of the tibia may be removed and replaced with a channeled piece of plastic having a metal stem. In some TKA procedures, a plastic button may also be added under the surface of the patella, depending on the condition of the patella.


Another type of arthroplasty procedure is a unicompartmental (knee) arthroplasty or a partial knee replacement (“UKA”) in which only a portion (or a single compartment) of the knee is removed and replaced with prosthetic implants. Typically, a candidate for a UKA has significant wear or damage confined to primarily one compartment of the knee. A UKA may be a less invasive approach than a TKA and may have a quicker recovery time. A UKA may be utilized to prevent the spread of disease, such as in the early stages of osteoarthritis where the disease has only affected a portion of the knee and it is desirable to prevent the disease from spreading to other portions of the knee.


Implants that are implanted into a damaged region may provide support and structure to the damaged region and may help to restore the damaged region, thereby enhancing its functionality. Prior to implantation of an implant in a damaged region, the damaged region is prepared to receive the implant. For example, in a knee arthroplasty procedure, one or more of the bones in the knee area, such as the femur and/or the tibia, may be treated (e.g., cut, drilled, reamed, and/or resurfaced) to provide one or more surfaces that can align with the implant and thereby accommodate the implant.


Accuracy in implant alignment is an important factor to the success of a TKA or UKA procedure. A one to two millimeter translational misalignment may result in imbalanced ligaments and thus may significantly affect the outcome of the procedure. For example, implant misalignment may result in intolerable post-surgery pain and also may prevent the patient from having full leg extension and stable leg flexion.


To achieve accurate implant alignment, prior to treating (e.g., cut, drilled, reamed, and/or resurfaced) any regions of a bone, it is important to correctly determine the location at which the treatment will take place and how the treatment will be oriented. In some methods, an arthroplasty jig may be used to position and orient a resection or sawing instrument, such as a cutting, drilling, reaming, or resurfacing instrument on the regions of the bone. The arthroplasty jig may, for example, include one or more apertures and/or slots that are configured to accept such an instrument. However, under some methods, it is difficult to determine the proper orientation of an arthroplasty jig and more specifically, of a unicompartmental arthroplasty jig. Some methods utilize customized arthroplasty jigs to provide orientation of the treatment relative to the regions of the bone. However, such jigs often rely on a human to subjectively determine or “eyeball” rotational angles and the extent of the treatment. For example, when performing a resection in a knee region of a patient femur and/or tibia, many jigs rely on a surgeon to determine the proper orientation of the jig as well as how much of the bone to remove. In other words, once a surgeon has begun cutting to perform a resection, it is often difficult to accurately stop the cut.


Accordingly, there is a need in the art for customized arthroplasty cutting guides and surgical methods of using such cutting guides that increases the accuracy of arthroplasty procedures.


BRIEF SUMMARY OF THE INVENTION

Implementations described and claimed herein address the foregoing problems by providing an arthroplasty cutting guide for making resections in a knee region of a patient femur in preparing a patient knee for the implantation of a femoral implant and a tibial implant.


The knee region includes surface topography including surface contours of a femoral condylar surface and a trochlear groove surface. In one implementation, the femoral implant includes: an articular condylar surface; a femur contacting side opposite the articular condylar surface and including a distal resection contacting surface, a posterior resection contacting surface, and a chamfer resection contacting surface. The femoral implant has a first distal-proximal thickness extending perpendicular from the distal resection contacting surface to the articular condylar surface. In one implementation, the tibial implant includes an articular plateau surface and a tibia contacting side, which includes a proximal resection contacting surface, opposite the articular plateau surface. The tibial implant includes a second distal-proximal thickness extending perpendicular from the proximal resection contacting surface to the articular plateau surface.


In one implementation, the arthroplasty cutting guide comprises: a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with the topography of the knee region and comprises surface contours that are a general negative image of the surface contours of the femoral condylar surface and the surface contours of the trochlear groove. The distal resection slot is configured to guide a distal resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove. The distal planar surface is parallel to the distal resection slot and is distally spaced apart from the distal resection surface by a distance equal to the sum of the first distal-proximal thickness of the femoral implant and the second distal-proximal thickness of the tibial implant.


Other implementations described and claimed herein provide an arthroplasty system for making resections in a knee region of a patient tibia in preparing a patient knee for the implantation of a tibial implant. The knee region includes surface topography including surface contours of a tibial plateau surface. In one implementation, the arthroplasty system comprises a cutting guide and an anchor pin.


The cutting guide comprises a patient specific mating region, a proximal resection slot, and an anchor pin hole. The patient specific mating region is custom configured to interdigitate with the topography of the knee region and comprises surface contours that are a general negative image of the surface contours of the tibial plateau surface. The proximal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide. The proximal resection slot extends anterior-posterior and medial-lateral in the cutting guide and is configured to guide a proximal resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the tibial plateau surface. The anchor pin hole comprises an exterior opening defined in the exterior anterior surface of the cutting guide. The anchor pin hole extends generally anterior-posterior through the cutting guide and intersects the proximal resection slot near a medial or lateral edge of the proximal resection slot. The anchor pin comprises an elongated shaft configured to be received in the anchor pin hole in securing the cutting guide to the patient tibia.


Other implementations described and claimed herein provide methods of performing a knee arthroplasty. In one implementation, a tibia cutting guide is placed a tibial plateau of a patient tibia. The tibia cutting guide includes a patient specific mating region, a proximal resection slot, and an anchor pin hole. The patient specific mating region is custom configured to interdigitate with a topography of the tibial plateau and comprises surface contours that are a general negative image of surface contours of the tibial plateau. The proximal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide, and the proximal resection slot extends anterior-posterior and medial-lateral in the cutting guide. The anchor pin hole comprises an exterior opening defined in the exterior anterior surface of the cutting guide, and the anchor pin hole extends generally anterior-posterior through the cutting guide, intersecting the proximal resection slot near a medial or lateral edge of the proximal resection slot. The patient specific mating region is caused to interdigitate with the topography of the tibial plateau. The anchor pin is inserted into the patient tibia via the anchor pin hole such that the anchor pin is present within both the anchor pin hole and the patient tibia. With the mating region interdigitated with the topography of the tibial plateau, a proximal resection of the patient tibia is made via the proximal resection slot.


In another implementation, a proximal resection is created a patient tibia near a tibial plateau of the patient tibia. A femoral cutting guide is placed on a condylar region of a patient femur. The femoral cutting guide includes a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with a topography of the condylar region and comprises surface contours that are a general negative image of surface contours of the condylar region. The distal resection slot comprises an exterior opening defined in an exterior anterior surface of the cutting guide, and the distal resection slot extends anterior-posterior and medial-lateral in the cutting guide. The distal planar surface is parallel to the distal resection slot and distally spaced apart from the distal resection surface. The patient specific mating region is caused to interdigitate with the topography of the condylar region. With the patient specific mating region intedigitated with the topography of the condylar region, the distal planar surface is caused to abut against the proximal resection.


Other implementations are also described and recited herein. Further, while multiple implementations are disclosed, still other implementations of the presently disclosed technology will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the presently disclosed technology. As will be realized, the presently disclosed technology is capable of modifications in various aspects, all without departing from the spirit and scope of the presently disclosed technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of femoral and tibial unicompartmental implants interfaced with each other.



FIG. 2A illustrates an example tibia cutting guide and proximal tibia plateau.



FIGS. 2B and 2C show the tibia cutting guide and the tibia of FIG. 2A with the tibia cutting guide interdigitated with the tibia.



FIGS. 3A and 3B show side and top views, respectively, of the interdigitated tibia cutting guide of FIG. 2A.



FIG. 4 illustrates a proximal resection of and a vertical score in the tibia with an anchor pin inserted.



FIG. 5 is the same view as FIG. 4 with the vertical resection of the tibia completed.



FIG. 6 depicts an anterior elevation view of the tibia of FIG. 5 with the anchor pin removed.



FIG. 7A shows an example femoral cutting guide and femur.



FIG. 7B illustrates the femoral cutting guide and the femur of FIG. 7A with the femoral cutting guide interdigitated with the femur.



FIG. 8 shows a side perspective view of the interdigitated femoral cutting guide of FIG. 7B with anchor pins inserted.



FIG. 9 illustrates a distal plane of the femoral cutting guide in planar contact with the proximal resection of the tibia.



FIG. 10A shows a side perspective view of the interdigitated femoral cutting guide of FIG. 7B with a resection or sawing instrument inserted into a distal resection slot.



FIG. 10B depicts the same view as FIG. 10A with the resection or sawing instrument inserted into a posterior resection slot.



FIG. 10C depicts the same view as FIG. 10A with the resection or sawing instrument inserted into a chamfer resection slot.



FIG. 11 shows a distal resection, a posterior resection, and a chamfer resection of the femur.



FIGS. 12A and 12B illustrate a coronal view and a sagittal view of the knee joint, respectively, showing trialing of the femoral and tibial implants.



FIG. 13 is a flow chart showing example operations for performing treatment of the tibia for the tibial implant and of the femur for checking for ligament balance.



FIG. 14 is a flow chart showing example operations for performing treatment of the femur for the femoral implant.





DETAILED DESCRIPTION

Aspects of the presently disclosed technology involve customized unicompartmental arthroplasty cutting guides and methods of using the same during arthroplasty procedures. In one aspect, the cutting guides are customized to fit specific bone surfaces of a joint (e.g., knee, elbow, ankle, wrist, hip, shoulder, skull/vertebrae, vertebrae/vertebrae interface, etc.) of a specific patient to treat (e.g., cut, drilled, reamed, and/or resurfaced) the bone to provide one or more surfaces that can align with an implant and thereby accommodate the implant. In some aspects, depending on the implementation, both the implant and the cutting guide are automatically planned and generated according to the systems, apparatuses, and methods similar to those disclosed in U.S. patent application Ser. No. 12/636,939 to Park et al., entitled “Unicompartmental Customized Arthroplasty Cutting Jigs and Methods of Making the Same and filed on Dec. 14, 2009, which is incorporated by reference in its entirety into this Detailed Description.


For an overview discussion of the implants for which bone surfaces in a knee area are treated to align with and accommodate, reference is made to FIG. 1, which illustrates an isometric view of a femoral unicompartmental implant 100 interfaced with a tibial unicompartmental implant 102.


In one implementation, the femoral implant 100 includes an articular condylar surface 104 and a femur contacting side 106 opposite the articular condylar surface 104. The femur contacting side 106 includes one or more surfaces each adapted to contact or otherwise engage a bone surface in a patient femur. In one implementation, the femur contacting side 106 includes a distal resection contacting surface 108, a chamfer resection contacting surface 110, and a posterior resection contacting surface 112, which are adapted to engage a distal resection, chamfer resection, and a posterior resection in the patient femur that are made using a femoral cutting guide as described herein. The femoral implant 100 includes a distal-proximal thickness 114 extending perpendicular from the distal resection contacting surface 108 to the articular condylar surface 104.


Similarly, in one implementation, the tibial implant 102 includes an articular plateau surface 116 and a tibia contacting side 118. The tibia contacting side 118 includes one or more surfaces, each of which is adapted to contact or otherwise engage a bone surface in a patient tibia. In one implementation, the tibia contacting side 118 includes a proximal resection contacting surface 120, which is adapted to engage a proximal resection in the patient tibia that is made using a tibial cutting guide as described herein. The tibial implant 102 includes a distal-proximal thickness 122 extending perpendicular from the proximal resection contacting surface 120 to the articular plateau surface 116.


Prior to implantation of the femoral implant 100 or the tibial implant 102, the damaged region in the femur or the tibia, respectively, is prepared to receive the implant. Stated differently, the femur or the tibia is treated (e.g., cut, drilled, reamed, and/or resurfaced) using an arthroplasty cutting guide to provide one or more resections that can align and mate with corresponding surfaces of the implant 100 or 102 and thereby accommodate the implant 100 or 102.


For a detailed discussion of an arthroplasty system for making resections in a knee region to prepare a patient knee for the implantation of the tibial implant 102, reference is made to FIG. 2A, which shows a tibia cutting guide 200 and a patient tibia 202 in the patient knee. As can be understood from FIG. 2A, the patient tibia 202 includes a surface topology including surface contours of a tibial plateau surface 204.


In one implementation, the tibia cutting guide 200 is custom generated to allow a surgeon to accurately and quickly perform an arthroplasty procedure. In other words, the tibia cutting guide 200 includes a patient specific mating region 206 configured to interdigitate with the topography of the knee region. The patient specific mating region 206 includes surface contours that are a general negative image of the surface contours of the tibial plateau surface 204.


The tibia cutting guide 200 includes a proximal resection slot 208 defined in an exterior anterior surface 210 and a vertical resection slot 212 defined in an exterior proximal surface 214. The proximal resection slot 208 is configured to guide a proximal resection in the tibia 202, and the vertical resection slot 212 is configured to guide at least a beginning of a vertical (i.e., distal-proximal) resection in the tibia 202.


As can be understood from FIGS. 2B and 2C, when the tibia cutting guide 200 is used during an arthroplasty procedure, the patient specific mating region 206 interdigitates with the topography of the knee region such that the surface contours of the patient specific mating region 206 make corresponding surface contact with the surface contours of the tibial plateau surface 204. As such, when the surface topography of the knee region is received into the patient specific mating region 206, the surfaces 204 and 206 matingly match, thereby increasing stability during and accuracy of the arthroplasty procedure.


Turning to FIGS. 3A and 3B, which are side and top views, respectively, of the tibia cutting guide 200 interdigitated with the tibia 202, it will be understood that in one implementation, the proximal resection slot 208 is an exterior opening extending anterior-posterior and medial-lateral in the tibia cutting guide 200, and the vertical resection slot 212 is an exterior opening extending anterior-posterior and distal-proximal in the tibia cutting guide 200. The exterior openings are adapted to receive and guide a resection or sawing instrument to perform proximal and vertical resections of the tibia 202.


The tibia cutting guide 200 is configured to assist a surgeon during the performance of such resections by increasing, for example, accuracy and stability. To achieve this, in one implementation, the tibia cutting guide 200 includes one or more anchor pin holes 216, 218, and 222 including exterior openings that are adapted to receive an elongated shaft of an anchor pin 228 (shown in FIG. 4) in an interference fit (e.g., using friction) to secure the tibia cutting guide 200 to the patient tibia 202. When the anchor pin 228 is inserted into the patient tibia 202 via one of the anchor pin holes 216, 218, or 222, the anchor pin 228 is present in both the anchor pin hole 216, 218, or 222 and the patient tibia 202. In one implementation, the anchor pin holes include an anterior pin hole 216 defined in the exterior anterior surface 210, a medial/lateral pin hole 218 defined in the exterior anterior surface 210, and a proximal pin hole 222 defined in the exterior proximal surface 214.


The anterior pin hole 216 extends generally anterior-posterior through the tibia cutting guide 200. As shown in the example in FIGS. 3A and 3B, the anterior pin hole 216 may be substantially coplanar with the proximal resection slot 208 and/or the vertical resection slot 212. The anterior pin hole 216 includes a longitudinal center axis 220 positioned at the general center of the exterior opening of the anterior pin hole 216. In one implementation, the longitudinal center axis 220 is substantially centered distal-proximal relative to a distal-proximal thickness of the proximal resection slot 208 and medial-lateral relative to a medial-lateral thickness of the vertical resection slot 212.


The characteristics of the proximal resection slot 208 and the anterior pin hole 216 are configured to assist a surgeon during the performance of proximal resections. In one implementation, the anterior pin hole 216 intersects with the proximal resection slot 208 near a medial or lateral edge of the proximal resection slot 208 such that the anterior pin hole 216 defines the medial or lateral edge of the proximal resection slot 208. When the proximal resection is performed, the surgeon begins the proximal resection until the anchor pin in the proximal pin hole 222 is reached, which is removed to complete the proximal resection. At the end of the proximal resection, the anchor pin 228 in the anterior pin hole 216 serves as a sawing stop to prevent the surgeon from cutting too far into the tibia 202. As such, the anchor pin 228 is made from a material that is harder and more saw resistant than a material of the tibia cutting guide 200 around a border of the proximal resection slot 208. For example, the anchor pin 228 may be made from a metal or ceramic, and the material bordering the proximal resection slot in the tibia cutting guide 200 may be made from a polymer.


In some implementations, the anchor pin 228 in the anterior pin hole 216 may serve as a sawing stop during a vertical resection while the tibia cutting guide 200 is interdigitated with the topography of the tibial plateau surface 204. In other implementations, the anterior pin hole 216 and the vertical resection slot 212 do not intersect. Accordingly, at least a beginning of the vertical resection is performed using the vertical resection slot 212. In other words, a vertical resection line is scored using the vertical resection slot 212.


Turning to FIG. 4, after making the proximal resection 224 and scoring the vertical resection line 226, the anchor pin 228 and the tibia cutting guide 200 may be removed from the tibia 202. The anchor pin 228 is then reinserted into a hole in the patient tibia that was formerly occupied by the anchor pin 228 when the anchor pin 228 was inserted through the anterior pin hole 216 into the patient tibia 202. As can be understood from FIG. 5, in one implementation, the vertical resection 230 is completed using the anchor pin 228 as a guide and sawing stop without the tibia cutting guide 200 being mounted on the patient tibia 202. Using the anchor pin 228 as a sawing stop for the proximal resection and/or the vertical resection, not only prevents the surgeon from cutting too far into the tibia 202, but stress risers that could otherwise cause a crack to propagate horizontally or vertically from a respective resection are substantially eliminated. As shown in FIG. 6, after the anchor pin 228 is removed, the proximal resection 224 and the vertical resection 230 are complete, and the tibia 202 is prepared to receive the tibial implant 102.


For a detailed discussion of an arthroplasty system for making resections in a knee region to prepare a patient knee for the implantation of the femoral implant 100, reference is made to FIG. 7A, which shows a femur cutting guide 300 and a patient femur 302 in the patient knee. The patient femur 302 includes a trochlear groove surface 304 having a distal trochlear groove 306 and an anterior trochlear groove 308. The patient femur 302 further includes a condylar surface 310 having a distal condyle 312. As can be understood from FIG. 7A, the femur 302 has a surface topography including surface contours of the condylar surface 310 and the trochlear groove surface 304.


The femur cutting guide 300 is custom generated to allow a surgeon to accurately and quickly perform an arthroplasty procedure. In other words, the femur cutting guide 300 includes a patient specific mating region 314 configured to interdigitate with the topography of the knee region. The patient specific mating region 314 includes surface contours that are a general negative image of the surface contours of the condylar surface 310 and the trochlear groove surface 304. In one implementation, the patient specific mating region 314 includes: a distal trochlear groove region 316 adapted to receive the distal trochlear groove 306; an anterior trochlear groove mating region 318 adapted to receive the anterior trochlear groove 308; and a distal condylar mating region 320 adapted to receive the distal condyle 312.


In one implementation, the femur cutting guide 300 includes a distal planar surface 322, a distal resection slot 324, a chamfer resection slot 326, a posterior resection slot 328, and one or more anchor pin holes 330, 332, and 334. The distal resection slot 324, the chamfer resection slot 326, and the posterior resection slot 328 are configured to guide a distal resection, chamfer resection, and posterior resection, respectively. In one implementation, the distal resection slot 324 is positioned generally parallel to the distal planar surface 322, and the chamfer resection slot 326 is defined in the distal planar surface 322. The posterior resection slot 328 is positioned generally perpendicular to the distal resection slot 324, and the chamfer resection slot 326 is positioned at angle (e.g., approximately 45 degrees) relative to the distal resection slot 324. In one implementation, the chamfer resection slot is further positioned at an angle (e.g., approximately 45 degrees) relative to the posterior resection slot 328. The angular relationship of the chamfer resection slot 326 to the distal resection slot 324 and/or the posterior resection slot 328 may be based on the geometry of the femoral implant 100, such as the distal resection contacting surface 108, the chamfer resection contacting surface 110, and the posterior resection contacting surface 112.


As can be understood from FIG. 7B, when the femur cutting guide 300 is used during an arthroplasty procedure, the patient specific mating region 314 interdigitates with the topography of the knee region such that the surface contours of the patient specific mating region 314 make corresponding surface contact with the surface contours of the condylar surface 310 and the trochlear groove surface 304. As such, when the surface topography of the knee region is received into the patient specific mating region 314, the condylar surface 310 and the trochlear groove surface 304 matingly match with the patient specific mating region 314, thereby increasing stability during and accuracy of the arthroplasty procedure.


Turning to FIG. 8, the femur cutting guide 300 is fixed into place on the patient femur 302 using anchor pins 336. In one implementation, one of the anchor pins 336 is inserted into the patient femur 302 via the first anchor pin hole 330, which extends through the anterior trochlear groove mating region 318 in a direction generally parallel to the distal resection slot 324. Another of the anchor pins 336 is inserted into the patient femur 302 via the second anchor pin hole 332, which extends through the distal trochlear mating region 316 in a direction angled relative the distal resection slot 324. Yet another of the anchor pins 336 is inserted into the patient femur 302 via the third anchor pin hole 334, which extends through the distal condylar mating region 320 in a direction generally perpendicular relative to the distal resection slot 324.


As can be understood from FIG. 9, in one implementation, before performing the distal, chamfer, and/or posterior resections, ligament balance may be checked by placing the distal planar surface 322 in planar contact with the proximal resection 224 of the patient tibia 202. While the distal planar surface 322 is in such planar contact with the proximal resection 224, the femoral cutting guide 300 is engaged with the condylar surface 310 of the patient femur 302 and with the proximal resection 224 of the patient tibia 202. In one implementation, the distal planar surface 322 is distally spaced apart from the distal resection slot 324 by a distance 338 equal to a sum of the first and second distal-proximal thicknesses 114 and 122 of the femoral and tibial implants 100 and 102 (see FIG. 1). As such, by checking the ligament balance using the femur cutting guide 200, it may be verified that the ligament balance will be achieved with the implants 100 and 102.


Referring to FIGS. 10A-10C, which show a resection or sawing instrument 340 inserted into the distal resection slot 324, the posterior resection slot 328, and the chamfer resection slot 326, respectively, after checking the ligament balance, the knee is flexed to make resections in the femur 302. The distal resection slot 324 guides the distal resection of the patient femur 302, the posterior resection slot 328 guides the posterior resection of the patient femur 302, and the chamfer resection slot 326 guides the chamfer resection of the patient femur 302.


As shown in FIG. 11, after the femur cutting guide 300 is removed, a distal resection 342, a chamfer resection 344, and a posterior resection 346 are complete, and the femur 302 is prepared to receive the femoral implant 100. After the femoral and tibial implants 100 and 102 are implanted on the femur 302 and tibia 202, respectively, trialing of the femoral and tibial implants 100 and 102 may be performed, as shown in FIGS. 12A and 12B.


Turning to FIG. 13, example operations 400 for performing treatment of the tibia for the tibial implant and of the femur for checking for ligament balance are shown. A placing operation 402 places a tibia cutting guide on a tibial plateau of a patient tibia. In one implementation, the tibia cutting guide includes a patient specific mating region custom configured to interdigitate with a topography of the tibial plateau. To achieve this, the patient specific mating region may have surface contours that are a general negative image of surface contours of the tibial plateau.


The tibia cutting guide further includes a proximal resection slot and an anchor pin hole. In one implementation, the proximal resection slot includes an exterior opening that is defined in an exterior anterior surface of the tibia cutting guide. The proximal resection slot extends anterior-posterior and medial-lateral in the tibia cutting guide such that the proximal resection slot is configured to guide a proximal resection. In one implementation, the anchor pin hole includes an exterior opening that is defined in the exterior anterior surface of the tibia cutting guide. The anchor pin hole extends generally anterior-posterior through the tibia cutting guide and intersects with the proximal resection slot near a medial or later edge of the proximal resection slot. In one implementation, the tibia cutting guide includes a vertical resection slot having an exterior opening extending anterior-posterior and distal-proximal in the tibia cutting guide.


A causing operation 404 causes the patient specific mating region of the tibia cutting guide to interdigitate with the topography of the tibial plateau. An inserting operation 406 inserts an anchor pin into the patient tibia via the anchor pin hole such that the anchor pin is present within both the anchor pin hole and the patient tibia. With the patient specific mating region interdigitated with the topography of the tibial plateau, a making operation 408 makes a proximal resection of the patient tibia via the proximal resection slot. In one implementation, the making operation 408 uses the anchor pin as a sawing stop.


In one implementation, a beginning operation 410 at least begins a vertical resection in the patient tibia via the vertical resection slot. For example, the beginning operation 410 scores a vertical resection line in the patient tibia using the vertical resection slot as guidance. Once the making operation 408 and/or the beginning operation 410 are complete, a removing operation 412 removes the anchor pin from the tibia cutting guide. In one implementation, the removing operation 412 further removes the tibia cutting guide from the tibial plateau. A completing operation 414 reinserts the anchor pin into a hole in the patient tibia formerly occupied by the anchor pin when the anchor pin was present in both the anchor pin hole and the patient tibia. In one implementation, the completing operation 414 completes the vertical resection without the tibia cutting guide mounted on the patient tibia by using the anchor pin as a sawing stop. It will be appreciated by those skilled in the art that the completing operation 414 may comprise completing the proximal resection without the tibia cutting guide mounted on the patient tibia by using the anchor pin as a sawing stop in other implementations.


A placing operation 416 places a femur cutting guide on a condylar region of a patient femur. In one implementation, the femur cutting guide includes a custom mating region having a topography that makes interdigitating surface engagement with a topography of the condylar region. The femur cutting guide further includes a planar portion generally parallel with and distally offset from a distal resection slot of the femur cutting guide. A checking operation 418 places the planar portion of the femur cutting guide in planar contact with the proximal resection made during the making operation 408. The checking operation 418 checks for ligament balance with the planar portion in planar contact with the proximal resection.



FIG. 14 is a flow chart showing example operations 500 for performing treatment of the femur for the femoral implant. In one implementation, a creating operation 502 creates a proximal resection in a patient tibia near a tibial plateau of the patient tibia. For example, the creating operation 502 may create the proximal resection according to the operations 402-408 described with respect to FIG. 13.


A placing operation 504 places a femoral cutting guide on a condylar region of a patient femur. In one implementation, the femoral cutting guide includes a patient specific mating region, a distal resection slot, and a distal planar surface. The patient specific mating region is custom configured to interdigitate with a topography of the condylar region, and the patient specific mating region has surface contours that are a general negative image of surface contours of the condylar region. The distal resection slot includes an exterior opening defined in an exterior anterior surface of the femoral cutting guide, and the distal resection slot extends anterior-posterior and medial-lateral in the femoral cutting guide. The distal planar surface is generally parallel to the distal resection slot and distally spaced apart from the distal resection surface. In one implementation, the femoral cutting guide further includes a posterior resection slot configured to guide a posterior resection of the patient femur. In another implementation, the femoral cutting guide further includes a chamfer resection slot configured to guide a chamfer resection of the patient femur.


A causing operation 508 causes the patient specific mating region to interdigitate with the topography of the condylar region. With the patient specific mating region interdigitated with the topography of the condylar region, a checking operation 510 causes the distal planar surface of the femoral cutting guide to abut against the proximal resection made in the creating operation 502. The checking operation 510 checks a ligament balance of the patient knee with the femoral cutting guide engaged with the condylar region and the proximal resection.


A first making operation 512 makes a posterior resection of the patient femur via the posterior resection slot. A second making operation 514 makes a chamfer resection of the patient femur via the chamfer resection slot, and a third making operation 516 makes a distal resection of the patient femur via the distal resection slot. In one implementation, prior to the second making operation 514 and the third making operation 516, during which the chamfer and distal resections are performed, a distal pin is removed from the femoral cutting guide.


The discussion provided herein is given in the context of a unicompartmental knee arthroplasty cutting guides. However, the disclosure herein is readily applicable to other arthroplasty cutting guides as well as total or unicompartmental arthroplasty procedures in the knee or other joint contexts. Thus, the disclosure provided herein should be considered as encompassing cutting guides and the use thereof for both total and unicompartmental arthroplasty procedures. Additionally, the discussion given herein is applicable to cutting guides and methods applicable to restoring the patient to his or her natural alignment and also to cutting guides and methods applicable to arthroplasty procedures causing the patient's knee to be zero mechanical axis. Further, the discussion herein should be considered to encompass both medial and lateral unicompartmental cutting guides and arthroplasty procedures.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the spirit and scope of the presently disclosed technology. For example, while the embodiments described above refer to particular features, the scope of this disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the presently disclosed technology is intended to embrace all such alternatives, modifications, and variations together with all equivalents thereof.

Claims
  • 1. An arthroplasty cutting guide for making resections in a knee region of a patient femur in preparing a patient knee for the implantation of a femoral implant and a tibial implant, the knee region including surface topography including surface contours of a femoral condylar surface and a trochlear groove surface, the femoral implant including: an articular condylar surface; a femur contacting side opposite the articular condylar surface and including a distal resection contacting surface, a posterior resection contacting surface, and a chamfer resection contacting surface; and a first distal-proximal thickness extending perpendicular from the distal resection contacting surface to the articular condylar surface, the tibial implant including: an articular plateau surface; a tibia contacting side opposite the articular plateau surface and including a proximal resection contacting surface; and a second distal-proximal thickness extending perpendicular from the proximal resection contacting surface to the articular plateau surface, the arthroplasty cutting guide comprising: a patient specific mating region custom configured to interdigitate with the topography of the knee region and comprising surface contours that are a general negative image of the surface contours of the femoral condylar surface and the surface contours of the trochlear groove;a distal resection slot configured to guide a distal resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove; anda distal planar surface parallel to the distal resection slot and distally spaced apart from the distal resection slot by a distance equal to the sum of the first and second distal-proximal thicknesses.
  • 2. The arthroplasty cutting guide of claim 1, further comprising a chamfer resection slot configured to guide a chamfer resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove.
  • 3. The arthroplasty cutting guide of claim 2, further comprising a posterior resection slot configured to guide a posterior resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove.
  • 4. The arthroplasty cutting guide of claim 1, further comprising a posterior resection slot configured to guide a posterior resection in the knee region when the patient specific mating region interdigitates with the topography of the knee region such that the surface contours of the mating region make corresponding surface contact with the surface contours of the femoral condylar surface and the trochlear groove.
  • 5. The arthroplasty cutting guide of claim 1, further comprising a first pin hole extending through an anterior trochlear groove region of the mating region.
  • 6. The arthroplasty cutting guide of claim 5, wherein the first pin hole extends in a direction generally parallel to the distal resection slot.
  • 7. The arthroplasty cutting guide of claim 5, further comprising a second pin hole extending through a distal trochlear groove region of the mating region.
  • 8. The arthroplasty cutting guide of claim 7, wherein the second pin hole extends in a direction generally canted relative to the distal resection slot.
  • 9. The arthroplasty cutting guide of claim 5, further comprising a second pin hole extending through a distal condylar region of the mating region.
  • 10. The guide of claim 9, wherein the second pin hole extends in a direction generally perpendicular relative to the distal resection slot.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. §119 to U.S. provisional patent application 61/712,577, which was filed Oct. 11, 2012, entitled “PKR Cutting Guide,” and is hereby incorporated by reference in its entirety into the present application.

US Referenced Citations (605)
Number Name Date Kind
3195411 MacDonald et al. Jul 1965 A
3825151 Arnaud Jul 1974 A
D245920 Shen Sep 1977 S
4198712 Swanson Apr 1980 A
4298992 Burstein Nov 1981 A
4436684 White Mar 1984 A
D274093 Kenna May 1984 S
D274161 Kenna Jun 1984 S
4467801 Whiteside Aug 1984 A
4517969 Halcomb et al. May 1985 A
4575330 Hull Mar 1986 A
4646726 Westin et al. Mar 1987 A
4719585 Cline et al. Jan 1988 A
4721104 Kaufman et al. Jan 1988 A
4821213 Cline et al. Apr 1989 A
4822365 Walker et al. Apr 1989 A
4825857 Kenna May 1989 A
4841975 Woolson Jun 1989 A
4931056 Ghajar et al. Jun 1990 A
4936862 Walker et al. Jun 1990 A
4976737 Leake Dec 1990 A
5007936 Woolson Apr 1991 A
5011405 Lemchen Apr 1991 A
5027281 Rekow et al. Jun 1991 A
5030219 Matsen, III et al. Jul 1991 A
5035699 Coates Jul 1991 A
5037424 Aboczsky Aug 1991 A
5075866 Goto et al. Dec 1991 A
5078719 Schreiber Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5098383 Hemmy et al. Mar 1992 A
5098436 Ferrante et al. Mar 1992 A
5099846 Hardy Mar 1992 A
5122144 Bert et al. Jun 1992 A
5123927 Duncan et al. Jun 1992 A
5139419 Andreiko et al. Aug 1992 A
5140646 Ueda Aug 1992 A
5141512 Farmer et al. Aug 1992 A
5154717 Matsen, III et al. Oct 1992 A
5156777 Kaye Oct 1992 A
5171276 Caspari et al. Dec 1992 A
D336518 Taylor Jun 1993 S
5218427 Koch Jun 1993 A
5234433 Bert et al. Aug 1993 A
5236461 Forte Aug 1993 A
5274565 Reuben Dec 1993 A
5282803 Lackey Feb 1994 A
5298115 Leonard Mar 1994 A
5298254 Prewett et al. Mar 1994 A
5305203 Raab Apr 1994 A
D346979 Stalcup et al. May 1994 S
5320529 Pompa Jun 1994 A
5360446 Kennedy Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5365996 Crook Nov 1994 A
5368478 Andreiko et al. Nov 1994 A
D355254 Krafft et al. Feb 1995 S
D357315 Dietz Apr 1995 S
5408409 Glassman et al. Apr 1995 A
5431562 Andreiko et al. Jul 1995 A
5448489 Reuben Sep 1995 A
5452407 Crook Sep 1995 A
5462550 Dietz et al. Oct 1995 A
5484446 Burke et al. Jan 1996 A
5514140 Lackey May 1996 A
D372309 Heldreth Jul 1996 S
D374078 Johnson et al. Sep 1996 S
5556278 Meitner Sep 1996 A
5569260 Petersen Oct 1996 A
5569261 Marik et al. Oct 1996 A
5601563 Burke et al. Feb 1997 A
5601565 Huebner Feb 1997 A
5662656 White Sep 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683398 Carls et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5716361 Masini Feb 1998 A
5725376 Poirier Mar 1998 A
5735277 Schuster Apr 1998 A
5741215 D'Urso Apr 1998 A
5749876 Duvillier et al. May 1998 A
5755803 Haines et al. May 1998 A
5768134 Swaelens et al. Jun 1998 A
5769092 Williamson, Jr. Jun 1998 A
5769859 Dorsey Jun 1998 A
5798924 Eufinger et al. Aug 1998 A
D398058 Collier Sep 1998 S
5810830 Noble et al. Sep 1998 A
5824085 Sahay et al. Oct 1998 A
5824098 Stein Oct 1998 A
5824100 Kester et al. Oct 1998 A
5824111 Schall et al. Oct 1998 A
5860980 Axelson, Jr. et al. Jan 1999 A
5860981 Bertin et al. Jan 1999 A
5871018 Delp et al. Feb 1999 A
5880976 DiGioia, III et al. Mar 1999 A
5908424 Bertin et al. Jun 1999 A
5911724 Wehrli Jun 1999 A
5916221 Hodorek et al. Jun 1999 A
5964808 Blaha et al. Oct 1999 A
5967777 Klein et al. Oct 1999 A
5993448 Remmler Nov 1999 A
5995738 DiGioia, III et al. Nov 1999 A
6002859 DiGioia, III et al. Dec 1999 A
6068658 Insall et al. May 2000 A
6090114 Matsuno et al. Jul 2000 A
6096043 Techiera et al. Aug 2000 A
6106529 Techiera Aug 2000 A
6112109 D'Urso Aug 2000 A
6126690 Ateshian et al. Oct 2000 A
6132447 Dorsey Oct 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6171340 McDowell Jan 2001 B1
6173200 Cooke et al. Jan 2001 B1
6183515 Barlow et al. Feb 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6228121 Khalili May 2001 B1
6254639 Peckitt Jul 2001 B1
6285902 Kienzle, III et al. Sep 2001 B1
6327491 Franklin et al. Dec 2001 B1
6343987 Hayama et al. Feb 2002 B2
6382975 Poirier May 2002 B1
6383228 Schmotzer May 2002 B1
6385475 Cinquin et al. May 2002 B1
6415171 Gueziec et al. Jul 2002 B1
6458135 Harwin et al. Oct 2002 B1
6463351 Clynch Oct 2002 B1
6503254 Masini Jan 2003 B2
6510334 Schuster et al. Jan 2003 B1
6514259 Picard et al. Feb 2003 B2
6520964 Tallarida et al. Feb 2003 B2
6533737 Brosseau et al. Mar 2003 B1
D473307 Cooke Apr 2003 S
6540784 Barlow et al. Apr 2003 B2
6558426 Masini May 2003 B1
6575980 Roble et al. Jun 2003 B1
6602259 Masini Aug 2003 B1
6672870 Knapp Jan 2004 B2
6692448 Tanaka et al. Feb 2004 B2
6701174 Krause et al. Mar 2004 B1
6702821 Bonutti Mar 2004 B2
6711431 Sarin et al. Mar 2004 B2
6711432 Krause et al. Mar 2004 B1
6712856 Carignan et al. Mar 2004 B1
6716249 Hyde Apr 2004 B2
6738657 Franklin et al. May 2004 B1
6747646 Gueziec et al. Jun 2004 B2
6770099 Andriacchi et al. Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6799066 Steines et al. Sep 2004 B2
6814575 Poirier Nov 2004 B2
6905510 Saab Jun 2005 B2
6905514 Carignan et al. Jun 2005 B2
6923817 Carson et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6944518 Roose Sep 2005 B2
6955345 Kato Oct 2005 B2
6969393 Pinczewski et al. Nov 2005 B2
6975894 Wehrli et al. Dec 2005 B2
6978188 Christensen Dec 2005 B1
7029479 Tallarida et al. Apr 2006 B2
7033360 Cinquin et al. Apr 2006 B2
7039225 Tanaka et al. May 2006 B2
7060074 Rosa et al. Jun 2006 B2
7074241 McKinnon Jul 2006 B2
7090677 Fallin et al. Aug 2006 B2
7094241 Hodorek et al. Aug 2006 B2
RE39301 Bertin Sep 2006 E
7104997 Lionberger et al. Sep 2006 B2
7128745 Masini Oct 2006 B2
D532515 Buttler et al. Nov 2006 S
7141053 Rose et al. Nov 2006 B2
7153309 Huebner et al. Dec 2006 B2
7166833 Smith Jan 2007 B2
7172597 Sanford Feb 2007 B2
7174282 Hollister et al. Feb 2007 B2
7177386 Mostafavi et al. Feb 2007 B2
7184814 Lang et al. Feb 2007 B2
7203628 St. Ville Apr 2007 B1
7235080 Hodorek Jun 2007 B2
7238190 Schon et al. Jul 2007 B2
7239908 Alexander et al. Jul 2007 B1
7258701 Aram et al. Aug 2007 B2
7275218 Petrella et al. Sep 2007 B2
7309339 Cusick et al. Dec 2007 B2
7340316 Spaeth et al. Mar 2008 B2
7359746 Arata Apr 2008 B2
7373286 Nikolskiy et al. May 2008 B2
7383164 Aram et al. Jun 2008 B2
7388972 Kitson Jun 2008 B2
7392076 de La Barrera Jun 2008 B2
7393012 Funakura et al. Jul 2008 B2
7394946 Dewaele Jul 2008 B2
7429346 Ensign et al. Sep 2008 B2
7468075 Lang et al. Dec 2008 B2
7517365 Carignan et al. Apr 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7547307 Carson et al. Jun 2009 B2
7548638 Graessner Jun 2009 B2
7611519 Lefevre et al. Nov 2009 B2
7616800 Paik et al. Nov 2009 B2
7618421 Axelson, Jr. et al. Nov 2009 B2
7618451 Berez et al. Nov 2009 B2
7621744 Massoud Nov 2009 B2
7621920 Claypool et al. Nov 2009 B2
7630750 Liang et al. Dec 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7634306 Sarin et al. Dec 2009 B2
7641660 Lakin et al. Jan 2010 B2
7641663 Hodorek Jan 2010 B2
7643862 Schoenefeld Jan 2010 B2
7658741 Claypool et al. Feb 2010 B2
7660623 Hunter et al. Feb 2010 B2
7682398 Croxton et al. Mar 2010 B2
7693321 Lehtonen-Krause Apr 2010 B2
7695520 Metzger et al. Apr 2010 B2
7699847 Sheldon et al. Apr 2010 B2
7702380 Dean Apr 2010 B1
7715602 Richard May 2010 B2
7717956 Lang May 2010 B2
D618796 Cantu et al. Jun 2010 S
7747305 Dean et al. Jun 2010 B2
D619718 Gannoe et al. Jul 2010 S
D622854 Otto et al. Aug 2010 S
7769429 Hu Aug 2010 B2
7780672 Metzger et al. Aug 2010 B2
7780681 Sarin et al. Aug 2010 B2
7787932 Vilsmeier et al. Aug 2010 B2
7794467 McGinley et al. Sep 2010 B2
7796791 Tsougarakis et al. Sep 2010 B2
7799077 Lang et al. Sep 2010 B2
D626234 Otto et al. Oct 2010 S
7806838 Tsai et al. Oct 2010 B2
7806896 Bonutti Oct 2010 B1
7815645 Haines Oct 2010 B2
7824181 Sers Nov 2010 B2
7842039 Hodorek et al. Nov 2010 B2
7842092 Otto et al. Nov 2010 B2
7881768 Lang et al. Feb 2011 B2
7894650 Weng et al. Feb 2011 B2
7927335 Deffenbaugh et al. Apr 2011 B2
7935150 Carignan et al. May 2011 B2
7940974 Skinner et al. May 2011 B2
7950924 Brajnovic May 2011 B2
7963968 Dees, Jr. Jun 2011 B2
7967868 White et al. Jun 2011 B2
D642263 Park Jul 2011 S
7974677 Mire et al. Jul 2011 B2
7981158 Fitz et al. Jul 2011 B2
D642689 Gannoe et al. Aug 2011 S
8007448 Moctezuma de La Barrera Aug 2011 B2
8021368 Haines Sep 2011 B2
8036729 Lang et al. Oct 2011 B2
8052623 Haimerl et al. Nov 2011 B2
8059878 Feilkas et al. Nov 2011 B2
8062302 Lang et al. Nov 2011 B2
8066708 Lang et al. Nov 2011 B2
D651315 Bertoni et al. Dec 2011 S
8073521 Liew et al. Dec 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8086336 Christensen Dec 2011 B2
8092465 Metzger et al. Jan 2012 B2
8105330 Fitz et al. Jan 2012 B2
D655008 Gannoe et al. Feb 2012 S
8112142 Alexander et al. Feb 2012 B2
8115485 Maier et al. Feb 2012 B1
8122582 Burdulis, Jr. et al. Feb 2012 B2
8126234 Edwards et al. Feb 2012 B1
8126533 Lavallee Feb 2012 B2
RE43282 Alexander et al. Mar 2012 E
8133234 Meridew et al. Mar 2012 B2
8142189 Brajnovic Mar 2012 B2
8152855 Tulkis et al. Apr 2012 B2
8160345 Pavlovskaia et al. Apr 2012 B2
8165657 Krueger Apr 2012 B2
8167888 Steffensmeier May 2012 B2
8170641 Belcher May 2012 B2
8170716 Coste-Maniere et al. May 2012 B2
8175683 Roose May 2012 B2
8177850 Rudan et al. May 2012 B2
D661808 Kang Jun 2012 S
8202324 Meulink et al. Jun 2012 B2
8206153 Berckmans, III et al. Jun 2012 B2
8214016 Lavallee et al. Jul 2012 B2
8221430 Park et al. Jul 2012 B2
8224127 Woodard et al. Jul 2012 B2
8231634 Mahfouz et al. Jul 2012 B2
8234097 Steines et al. Jul 2012 B2
8241293 Stone et al. Aug 2012 B2
8265730 Alexander et al. Sep 2012 B2
8265949 Haddad Sep 2012 B2
8282646 Schoenefeld et al. Oct 2012 B2
8290564 Lang et al. Oct 2012 B2
8306601 Lang et al. Nov 2012 B2
8311306 Pavlovskaia et al. Nov 2012 B2
D672038 Frey Dec 2012 S
8323288 Zajac Dec 2012 B2
8331634 Barth et al. Dec 2012 B2
8337501 Fitz et al. Dec 2012 B2
8377066 Katrana et al. Feb 2013 B2
8398646 Metzger et al. Mar 2013 B2
8407067 Uthgenannt et al. Mar 2013 B2
8460302 Park et al. Jun 2013 B2
8460303 Park Jun 2013 B2
8480679 Park Jul 2013 B2
8483469 Pavlovskaia et al. Jul 2013 B2
8532361 Pavlovskaia et al. Sep 2013 B2
D691719 Park Oct 2013 S
8545509 Park et al. Oct 2013 B2
8617171 Park et al. Dec 2013 B2
8617175 Park et al. Dec 2013 B2
8734455 Park et al. May 2014 B2
8737700 Park et al. May 2014 B2
8777875 Park Jul 2014 B2
8777955 Park Jul 2014 B2
8801719 Park et al. Aug 2014 B2
8801720 Park et al. Aug 2014 B2
8828011 Park et al. Sep 2014 B2
8882779 Park et al. Nov 2014 B2
8961527 Park Feb 2015 B2
8968320 Park et al. Mar 2015 B2
20020160337 Klein et al. Oct 2002 A1
20030009167 Wozencroft Jan 2003 A1
20030055502 Lang et al. Mar 2003 A1
20040102792 Sarin et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040153066 Coon et al. Aug 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040220583 Pieczynski, II et al. Nov 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20050054914 Duerk et al. Mar 2005 A1
20050059978 Sherry et al. Mar 2005 A1
20050065617 de la Barrera et al. Mar 2005 A1
20050080426 Qian Apr 2005 A1
20050149091 Tanamal et al. Jul 2005 A1
20050192588 Garcia Sep 2005 A1
20050245934 Tuke et al. Nov 2005 A1
20050245936 Tuke et al. Nov 2005 A1
20050256389 Koga et al. Nov 2005 A1
20050267584 Burdulis, Jr. et al. Dec 2005 A1
20050272998 Diehl et al. Dec 2005 A1
20060015018 Jutras et al. Jan 2006 A1
20060015030 Poulin et al. Jan 2006 A1
20060015188 Grimes Jan 2006 A1
20060079755 Stazzone et al. Apr 2006 A1
20060110017 Tsai et al. May 2006 A1
20060122491 Murray et al. Jun 2006 A1
20060155293 McGinley et al. Jul 2006 A1
20060155294 Steffensmeier et al. Jul 2006 A1
20060195113 Masini Aug 2006 A1
20060244448 Ballon et al. Nov 2006 A1
20060271058 Ashton et al. Nov 2006 A1
20070010732 DeYoe et al. Jan 2007 A1
20070021838 Dugas et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070055268 Utz et al. Mar 2007 A1
20070073305 Lionberger et al. Mar 2007 A1
20070083266 Lang Apr 2007 A1
20070100338 Deffenbaugh et al. May 2007 A1
20070100462 Lang et al. May 2007 A1
20070114370 Smith et al. May 2007 A1
20070118055 McCombs May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070123856 Deffenbaugh et al. May 2007 A1
20070123857 Deffenbaugh et al. May 2007 A1
20070123912 Carson May 2007 A1
20070162039 Wozencroft Jul 2007 A1
20070167833 Redel et al. Jul 2007 A1
20070173853 MacMillan Jul 2007 A1
20070173858 Engh et al. Jul 2007 A1
20070191741 Tsai et al. Aug 2007 A1
20070213738 Martin et al. Sep 2007 A1
20070226986 Park et al. Oct 2007 A1
20070232959 Couture et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070237372 Chen et al. Oct 2007 A1
20070239167 Pinczewski Oct 2007 A1
20070249967 Buly et al. Oct 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276400 Moore et al. Nov 2007 A1
20080004701 Axelson et al. Jan 2008 A1
20080015599 D'Alessio et al. Jan 2008 A1
20080015600 D'Alessio et al. Jan 2008 A1
20080015602 Axelson et al. Jan 2008 A1
20080015606 D'Alessio et al. Jan 2008 A1
20080015607 D'Alessio et al. Jan 2008 A1
20080021299 Meulink Jan 2008 A1
20080033442 Amiot et al. Feb 2008 A1
20080058613 Lang et al. Mar 2008 A1
20080088761 Lin et al. Apr 2008 A1
20080089591 Zhou et al. Apr 2008 A1
20080114370 Schoenefeld May 2008 A1
20080153067 Berckmans et al. Jun 2008 A1
20080195108 Bhatnagar et al. Aug 2008 A1
20080234685 Gjerde Sep 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20080312659 Metzger et al. Dec 2008 A1
20080319491 Schoenefeld Dec 2008 A1
20090024131 Metzger et al. Jan 2009 A1
20090085567 Kimmlingen et al. Apr 2009 A1
20090087276 Rose Apr 2009 A1
20090088674 Caillouette et al. Apr 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088754 Aker et al. Apr 2009 A1
20090088755 Aker et al. Apr 2009 A1
20090088758 Bennett Apr 2009 A1
20090088759 Aram Apr 2009 A1
20090088760 Aaram et al. Apr 2009 A1
20090088761 Roose et al. Apr 2009 A1
20090088763 Aram et al. Apr 2009 A1
20090089034 Penney et al. Apr 2009 A1
20090093816 Roose et al. Apr 2009 A1
20090112213 Heavener et al. Apr 2009 A1
20090125114 May et al. May 2009 A1
20090131941 Park et al. May 2009 A1
20090131942 Aker et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090151736 Belcher et al. Jun 2009 A1
20090163923 Flett et al. Jun 2009 A1
20090209884 Van Vorhis et al. Aug 2009 A1
20090222014 Bojarski et al. Sep 2009 A1
20090222015 Park et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228113 Lang et al. Sep 2009 A1
20090248044 Amiot et al. Oct 2009 A1
20090254093 White et al. Oct 2009 A1
20090254367 Belcher et al. Oct 2009 A1
20090270868 Park et al. Oct 2009 A1
20090274350 Pavlovskaia et al. Nov 2009 A1
20090276045 Lang Nov 2009 A1
20090285465 Haimerl et al. Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20100016986 Trabish Jan 2010 A1
20100023015 Park Jan 2010 A1
20100042105 Park et al. Feb 2010 A1
20100082035 Keefer Apr 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100099977 Hershberger Apr 2010 A1
20100145344 Jordan et al. Jun 2010 A1
20100152741 Park et al. Jun 2010 A1
20100153076 Bellettre et al. Jun 2010 A1
20100153081 Bellettre et al. Jun 2010 A1
20100160917 Fitz et al. Jun 2010 A1
20100168754 Fitz et al. Jul 2010 A1
20100174376 Lang Jul 2010 A1
20100185202 Lester et al. Jul 2010 A1
20100191242 Massoud Jul 2010 A1
20100191244 White et al. Jul 2010 A1
20100198351 Meulink Aug 2010 A1
20100209868 De Clerck Aug 2010 A1
20100212138 Carroll et al. Aug 2010 A1
20100217109 Belcher Aug 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217336 Crawford et al. Aug 2010 A1
20100217338 Carroll et al. Aug 2010 A1
20100228257 Bonutti Sep 2010 A1
20100256479 Park et al. Oct 2010 A1
20100262150 Lian Oct 2010 A1
20100274253 Ure Oct 2010 A1
20100274534 Steines et al. Oct 2010 A1
20100292963 Schroeder Nov 2010 A1
20100298894 Bojarski et al. Nov 2010 A1
20100303313 Lang et al. Dec 2010 A1
20100303317 Tsougarakis et al. Dec 2010 A1
20100303324 Lang et al. Dec 2010 A1
20100305574 Fitz et al. Dec 2010 A1
20100305708 Lang et al. Dec 2010 A1
20100305907 Fitz et al. Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20100332194 McGuan et al. Dec 2010 A1
20110016690 Narainasamy et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110029116 Jordan et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110054486 Linder-Ganz et al. Mar 2011 A1
20110060341 Angibaud et al. Mar 2011 A1
20110066193 Lang et al. Mar 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071533 Metzger et al. Mar 2011 A1
20110071537 Koga et al. Mar 2011 A1
20110071581 Lang et al. Mar 2011 A1
20110071645 Bojarski et al. Mar 2011 A1
20110071802 Bojarski et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110087465 Mahfouz Apr 2011 A1
20110092804 Schoenefeld et al. Apr 2011 A1
20110092977 Salehi et al. Apr 2011 A1
20110092978 McCombs Apr 2011 A1
20110093108 Ashby et al. Apr 2011 A1
20110106093 Romano et al. May 2011 A1
20110112808 Anderson et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110160736 Meridew et al. Jun 2011 A1
20110166578 Stone et al. Jul 2011 A1
20110166666 Meulink et al. Jul 2011 A1
20110172672 Dubeau et al. Jul 2011 A1
20110184526 White et al. Jul 2011 A1
20110190899 Pierce et al. Aug 2011 A1
20110196377 Hodorek et al. Aug 2011 A1
20110213368 Fitz et al. Sep 2011 A1
20110213373 Fitz et al. Sep 2011 A1
20110213374 Fitz et al. Sep 2011 A1
20110213376 Maxson et al. Sep 2011 A1
20110213377 Lang et al. Sep 2011 A1
20110213427 Fitz et al. Sep 2011 A1
20110213428 Fitz et al. Sep 2011 A1
20110213429 Lang et al. Sep 2011 A1
20110213430 Lang et al. Sep 2011 A1
20110213431 Fitz et al. Sep 2011 A1
20110214279 Park Sep 2011 A1
20110218539 Fitz et al. Sep 2011 A1
20110218542 Lian Sep 2011 A1
20110218545 Catanzarite et al. Sep 2011 A1
20110218584 Fitz et al. Sep 2011 A1
20110230888 Lang et al. Sep 2011 A1
20110238073 Lang et al. Sep 2011 A1
20110245835 Dodds et al. Oct 2011 A1
20110257653 Hughes et al. Oct 2011 A1
20110266265 Lang Nov 2011 A1
20110268248 Simon et al. Nov 2011 A1
20110270072 Feilkas et al. Nov 2011 A9
20110276145 Carignan et al. Nov 2011 A1
20110295329 Fitz et al. Dec 2011 A1
20110295378 Bojarski et al. Dec 2011 A1
20110305379 Mahfouz Dec 2011 A1
20110313423 Lang et al. Dec 2011 A1
20110319897 Lang et al. Dec 2011 A1
20110319900 Lang et al. Dec 2011 A1
20120004725 Shterling et al. Jan 2012 A1
20120010711 Antonyshyn et al. Jan 2012 A1
20120029520 Lang et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120053591 Haines et al. Mar 2012 A1
20120066892 Lang et al. Mar 2012 A1
20120071881 Lang et al. Mar 2012 A1
20120071882 Lang et al. Mar 2012 A1
20120071883 Lang et al. Mar 2012 A1
20120072185 Lang et al. Mar 2012 A1
20120078254 Ashby et al. Mar 2012 A1
20120078258 Lo et al. Mar 2012 A1
20120078259 Meridew Mar 2012 A1
20120093377 Tsougarakis et al. Apr 2012 A1
20120101503 Lang et al. Apr 2012 A1
20120116203 Vancraen et al. May 2012 A1
20120123420 Honiball May 2012 A1
20120130382 Lannotti et al. May 2012 A1
20120130434 Stemniski May 2012 A1
20120143197 Lang et al. Jun 2012 A1
20120143198 Boyer et al. Jun 2012 A1
20120150243 Crawford et al. Jun 2012 A9
20120151730 Fitz et al. Jun 2012 A1
20120158001 Burdulis, Jr. et al. Jun 2012 A1
20120158002 Carignan et al. Jun 2012 A1
20120165820 De Smedt et al. Jun 2012 A1
20120165821 Carignan et al. Jun 2012 A1
20120172882 Sato Jul 2012 A1
20120179147 Geebelen et al. Jul 2012 A1
20120191205 Bojarski et al. Jul 2012 A1
20120191420 Bojarski et al. Jul 2012 A1
20120197260 Fitz et al. Aug 2012 A1
20120197408 Lang et al. Aug 2012 A1
20120203233 Yoshida et al. Aug 2012 A1
20120209276 Schuster Aug 2012 A1
20120209394 Bojarski et al. Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120221008 Carroll et al. Aug 2012 A1
20120230566 Dean et al. Sep 2012 A1
20120230573 Ito et al. Sep 2012 A1
20120232669 Bojarski et al. Sep 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120232671 Bojarski et al. Sep 2012 A1
20120239045 Li Sep 2012 A1
20120265496 Mahfouz Oct 2012 A1
20120265499 Mahfouz et al. Oct 2012 A1
20120310400 Park Dec 2012 A1
20130115474 Park May 2013 A1
20130116697 Park et al. May 2013 A1
20130123789 Park May 2013 A1
20130190767 Park et al. Jul 2013 A1
20130197526 Park et al. Aug 2013 A1
20130197687 Pavlovskaia et al. Aug 2013 A1
20140005997 Park Jan 2014 A1
20140078139 Park et al. Mar 2014 A1
20140081277 Park et al. Mar 2014 A1
20140128875 Park et al. May 2014 A1
20140276872 Song Sep 2014 A1
20140324205 Park et al. Oct 2014 A1
20140330278 Park et al. Nov 2014 A1
20140330279 Park et al. Nov 2014 A1
20140378978 Park Dec 2014 A1
Foreign Referenced Citations (49)
Number Date Country
3305237 Aug 1983 DE
102005023028 Nov 2006 DE
0097001 Dec 1983 EP
0574098 Dec 1993 EP
0622052 Nov 1994 EP
0709061 May 1996 EP
0908836 Apr 1999 EP
0908836 Dec 1999 EP
1059153 Dec 2000 EP
1486900 Dec 2004 EP
1532939 May 2005 EP
1669033 Jun 2006 EP
2478462 Sep 1981 FR
2215610 Sep 1989 GB
2420717 Jun 2006 GB
2447702 Sep 2008 GB
10-94538 Apr 1998 JP
2001-092950 Apr 2001 JP
P 2005-287813 Oct 2005 JP
WO 9325157 Dec 1993 WO
WO 9507509 Mar 1995 WO
WO 9527450 Oct 1995 WO
WO 9723172 Jul 1997 WO
WO 9812995 Apr 1998 WO
WO 9832384 Jul 1998 WO
WO 0035346 Jun 2000 WO
WO 0100096 Jan 2001 WO
WO 0170142 Sep 2001 WO
WO 0185040 Nov 2001 WO
WO 0296268 Dec 2002 WO
WO 2004032806 Apr 2004 WO
WO 2004049981 Jun 2004 WO
WO 2005051240 Jun 2005 WO
WO 2005087125 Sep 2005 WO
WO 2006058057 Jun 2006 WO
WO 2006060795 Jun 2006 WO
WO 2006092600 Sep 2006 WO
WO 2006127486 Nov 2006 WO
WO 2006134345 Dec 2006 WO
WO 2007014164 Feb 2007 WO
WO 2007058632 May 2007 WO
WO 2007092841 Aug 2007 WO
WO 2007097853 Aug 2007 WO
WO 2007097854 Aug 2007 WO
WO 2007137327 Dec 2007 WO
WO 2008014618 Feb 2008 WO
WO 2008091358 Jul 2008 WO
WO 2011106409 Sep 2011 WO
WO 2012051542 Apr 2012 WO
Non-Patent Literature Citations (371)
Entry
U.S. Appl. No. 14/272,147, filed May 7, 2014, Park et al.
U.S. Appl. No. 14/335,431, filed Jul. 18, 2014, Park et al.
U.S. Appl. No. 14/335,460, filed Jul. 18, 2014, Park et al.
U.S. Appl. No. 13/923,093, filed Jun. 20, 2013, Park.
U.S. Appl. No. 13/960,498, filed Aug. 6, 2013, Song.
U.S. Appl. No. 14/011,998, filed Aug. 28, 2013, Park et al.
U.S. Appl. No. 14/084,255, filed Nov. 19, 2013, Park et al.
U.S. Appl. No. 14/086,849, filed Nov. 21, 2013, Park et al.
U.S. Appl. No. 14/086,878, filed Nov. 21, 2013, Park et al.
Advisory Action, U.S. Appl. No. 11/642,385, dated Aug. 1, 2014.
Amendment and Response After Final Office Action, U.S. Appl. No. 11/656,323, dated Aug. 25, 2014.
Appeal Brief, U.S. Appl. No. 11/642,385, dated Oct. 7, 2014.
Canadian Office Action, Appl. No. 2708393, dated Jul. 29, 2014.
European Search Report, EP09823986.6, dated Sep. 23, 2014.
Final Office Action, U.S. Appl. No. 11/946,002, dated Sep. 17, 2014.
International Search Report and Written Opinion, PCT/US2014/030496, dated Aug. 6, 2014.
Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Sep. 18, 2014.
Banks et al. “Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy.” IEEE Transactions on Biomedical Engineering, vol. 43, No. 6, Jun. 1996.
Delp et al. “An Interactive Graphics-Based Model of the lower Extremity to Study Orthopaedic Surgical Procedures.” IEEE Transactions on Biomedical Engineering, vol. 37, No. 8, Aug. 1990.
Garg, A. et al . . . “Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphics Model.” J. Biomechanics, vol. 23, No. 1, pp. 45-58, 1990.
Richolt et al. “Planning and Evaluation of Reorienting Osteotomies of the Proximal Femur in Cases of SCFE Using Virtual Three-Dimensional Models.” Lecture Notes in Computer Science, vol. 1496, 1998, pp. 1-8.
Walker, P. S. et al. “Range of Motion in Total Knee Arthroplasty: A Computer Analysis.” Clinical Orthopaedics and Related Research, No. 262, Jan. 1991.
European Search Report, EP 09835583.7, dated May 9, 2014.
European search Report, European Appl. No. 08863202.1, dated May 16, 2014.
Extended European search Report, European Appl. No. 13188389.4, dated Jan. 8, 2014.
Final Office Action, U.S. Appl. No. 11/642,385, dated Apr. 25, 2014.
Final Office Action, U.S. Appl. No. 11/656,323, dated Apr. 3, 2014.
Final Office Action, U.S. Appl. No. 12/505,056, dated Dec. 30, 2013, 48 pages.
Final Office Action, U.S. Appl. No. 13/723,904, dated Dec. 24, 2013, 10 pages.
Final Office Action, U.S. Appl. No. 13/730,585, dated Dec. 27, 2013, 8 pages.
Japanese Office Action, JP Application No. 2011-507530, dated Dec. 17, 2013, 8 pages.
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Feb. 6, 2014, 46 pages.
Non-Final Office Action, U.S. Appl. No. 13/488,505, dated Jul. 17, 2014.
Non-Final Office Action, U.S. Appl. No. 13/730,467, dated Jan. 15, 2014, 8 pages.
Notice of Allowance, U.S. Appl. No. 11/641,569, dated Feb. 5, 2014, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/390,667, dated Jan. 17, 2014, 9 pages.
Notice of Allowance, U.S. Appl. No. 12/505,056, dated Mar. 6, 2014, 10 pages.
Notice of Allowance, U.S. Appl. No. 12/546,545, dated Dec. 26, 2013, 9 pages.
Notice of Allowance, U.S. Appl. No. 12/760,388, dated Jan. 22, 2014, 13 pages.
Notice of Allowance, U.S. Appl. No. 13/723,904, dated Mar. 7, 2014, 8 pages.
Notice of Allowance, U.S. Appl. No. 13/730,467, dated May 5, 2014.
Notice of Allowance, U.S. Appl. No. 13/730,585, dated Mar. 18, 2014, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/730,608, dated Apr. 18, 2014.
Notice of Allowance, U.S. Appl. No. 13/731,850, dated Jun. 6, 2014.
Preliminary Amendment, U.S. Appl. No. 13/731,850, filed Apr. 11, 2014, 8 pages.
Response to Final Office Action, U.S. Appl. No. 11/641,569, dated Jan. 29, 2014, 10 pages.
Response to Final Office Action, U.S. Appl. No. 11/642,385, dated Jul. 22, 2014.
Response to Final Office Action, U.S. Appl. No. 12/390,667, dated Dec. 23, 2013, 5 pages.
Response to Final Office Action, U.S. Appl. No. 12/505,056, dated Feb. 26, 2014, 19 pages.
Response to Final Office Action, U.S. Appl. No. 13/723,904, dated Feb. 19, 2014, 7 pages.
Response to Final Office Action, U.S. Appl. No. 13/730,585, dated Feb. 26, 2014, 9 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/730,608, dated Jan. 7, 2014, 16 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Jan. 17, 2014, 10 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/642,385, dated Feb. 24, 2014, 16 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/730,467, dated Apr. 11, 2014, 8 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Jul. 7, 2014.
Response to Restriction, U.S. Appl. No. 13/488,505, dated May 5, 2014, 7 pages.
Restriction Requirement, U.S. Appl. No. 13/488,505, dated Mar. 4, 2014, 5 pages.
Siemens Magnetom Sonata 1.5T Technical Specifications, pp. 1-4, accessed online Jan. 28, 2014.
Supplementary European Search Report and Opinion, EP 09739474.6, dated Feb. 27, 2014, 7 pages.
U.S. Appl. No. 14/476,500, filed Sep. 3, 2014, Park.
Advisory Action and Interview Summary, U.S. Appl. No. 12/390,667, mailed Apr. 27, 2012, 23 pages.
Advisory Action, U.S. Appl. No. 11/642,385, dated Oct. 29, 2010, 3 pages.
Amendment and Response to Ex Parte Quayle Action, U.S. Appl. No. 29/296,687 dated Mar. 24, 2011, 17 pages.
Amendment and Response to Final Office Action, U.S. Appl. No. 11/642,385, filed Oct. 4, 2010, 16 pages.
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, dated Apr. 20, 2010, 23 pages.
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/959,344, dated Jul. 15, 2011, 13 pages.
Amendment and Response to Office Action and Petition to Revive, U.S. Appl. No. 10/146,862, filed Jan. 18, 2006, 29 pages.
Amendment and Response to Office Action, U.S. Appl. No. 11/656,323, filed Jun. 25, 2010, 7 pages.
Amendment and Response to Office Action, U.S. Appl. No. 11/641,569, dated Feb. 5, 2010, 20 pages.
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,569, dated May 27, 2009, 12 pages.
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,382, dated Oct. 5, 2009, 10 pages.
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/642,385, filed Nov. 24, 2009, 10 pages.
Amendment and Response to Restriction/Election Requirement, U.S. Appl. No. 11/656,323, filed Dec. 8, 2009, 6 pages.
Amendment and Response, U.S. Appl. No. 11/642,385, filed May 28, 2010, 11 pages.
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 12/386,105, filed Oct. 1, 2012, 6 pages.
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 13/374,960, filed May 7, 2013, 6 pages.
Appeal Brief, U.S. Appl. No. 12/390,667, filed Jul. 12, 2012, 32 pages.
Appeal Brief, U.S. Appl. No. 12/391,008, filed Oct. 16, 2012, 24 pages.
European Search Report, 10192631.9-2310, dated Mar. 17, 2011, 5 pages.
European Search Report, EP09739422.5, dated Mar. 28, 2013, 9 pages.
Ex Parte Quayle Action, U.S. Appl. No. 29/296,687, mailed Jan. 24, 2011, 11 pages.
Examiner's Answer in appeal, U.S. Appl. No. 12/391,008, mailed Dec. 13, 2012, 27 pages.
Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Aug. 5, 2010, 13 pages.
Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Sep. 3, 2010, 11 pages.
Final Office Action, U.S. Appl. No. 11/641,569, mailed May 10, 2010, 9 pages.
Final Office Action, U.S. Appl. No. 11/959,344, mailed Oct. 27, 2011, 12 pages.
Final Office Action, U.S. Appl. No. 12/390,667, mailed Jan. 13, 2012, 27 pages.
Final Office Action, U.S. Appl. No. 12/546,545, dated Dec. 20, 2012, 16 pages.
Final Office Action, U.S. Appl. No. 12/636,939, mailed Jan. 25, 2013, 9 pages.
Final Office Action, U.S. Appl. No. 11/641,382, mailed Jul. 25, 2012, 12 pages.
Final Office Action, U.S. Appl. No. 11/641,569, dated Nov. 29, 2013, 20 pages.
Final Office Action, U.S. Appl. No. 11/641,569, mailed Mar. 1, 2012, 12 pages.
Final Office Action, U.S. Appl. No. 11/924,425, mailed Jul. 6, 2012, 14 pages.
Final Office Action, U.S. Appl. No. 11/946,002, mailed May 9, 2012, 24 pages.
Final Office Action, U.S. Appl. No. 12/390,667, dated Oct. 25, 2013, 17 pages.
Final Office Action, U.S. Appl. No. 12/391,008, mailed May 17, 2012, 28 pages.
Final Office Action, U.S. Appl. No. 12/546,545, dated Oct. 7, 2013, 24 pages.
Final Office Action, U.S. Appl. No. 12/563,809, mailed Mar. 7, 2013, 14 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/034983, mailed May 22, 2009, 15 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/034967, mailed Jun. 16, 2009, 15 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/041519, mailed Jun. 17, 2009, 10 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/040629, mailed Aug. 6, 2009, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/051109, mailed Nov. 6, 2009, 13 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/058946, mailed Jan. 28, 2010, 14 pages.
International Search Report and Written Opinion, International Application No. PCT/US2009/068055, mailed Mar. 11, 2010, 10 pages.
International Search Report and Written Opinion, PCT/US2007/001624, dated Dec. 12, 2007, 14 pages.
International Search Report and Written Opinion, PCT/US2007/001622, dated Jun. 11, 2007, 14 pages.
International Search Report and Written Opinion, PCT/US2008/083125, dated Mar. 9, 2009, 13 pages.
International Search Report and Written Opinion, PCT/US2011/032342, dated Jul. 1, 2011, 8 pages.
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Jan. 20, 2010, 12 pages.
NonFinal Office Action and PTO-892, U.S. Appl. No. 11/642,385, mailed Mar. 2, 2010, 11 pages.
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Mar. 30, 2010, 10 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Aug. 3, 2011, 14 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Jan. 3, 2013, 12 pages.
Non-Final Office Action, U.S. Appl. No. 11/924,425, mailed Jan. 25, 2012, 35 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, dated Aug. 24, 2011, 49 pages.
Non-Final Office Action, U.S. Appl. No. 13/086,275, mailed Feb. 7, 2013, 36 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,382, mailed Mar. 29, 2012, 24 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,569, mailed Jul. 12, 2013, 21 pages.
NonFinal Office Action, U.S. Appl. No. 11/641,569, mailed Nov. 12, 2009, 9 pages.
Non-Final Office Action, U.S. Appl. No. 11/642,385, dated Oct. 22, 2013, 37 pages.
Non-Final Office Action, U.S. Appl. No. 11/656,323, dated Oct. 22, 2013, 36 pages.
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 25, 2011, 44 pages.
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Oct. 2, 2013, 39 pages.
Nonfinal Office Action, U.S. Appl. No. 11/959,344, dated Feb. 15, 2011, 29 pages.
Non-Final Office Action, U.S. Appl. No. 12/111,924, mailed Jun. 29, 2012, 35 pages.
Non-Final Office Action, U.S. Appl. No. 12/386,105, dated Feb. 9, 2012, 30 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed Sep. 26, 2012, 21 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed May 8, 2013, 20 pages.
Non-Final Office Action, U.S. Appl. No. 12/391,008, mailed Oct. 31, 2011, 44 pages.
Non-Final Office Action, U.S. Appl. No. 12/505,056, mailed Jun. 28, 2013, 7 pages.
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Jul. 19, 2012, 28 pages.
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Mar. 13, 2013, 10 pages.
Non-Final Office Action, U.S. Appl. No. 12/563,809, mailed Sep. 21, 2012, 32 pages.
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Jul. 20, 2012, 25 pages.
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Apr. 25, 2013, 16 pages.
Non-Final Office Action, U.S. Appl. No. 12/760,388, mailed Jun. 20, 2013, 54 pages.
Non-Final Office Action, U.S. Appl. No. 13/374,960, mailed Aug. 1, 2012, 6 pages.
Non-Final Office Action, U.S. Appl. No. 13/723,904, mailed Aug. 9, 2013, 6 pages.
Non-Final Office Action, U.S. Appl. No. 13/730,585, mailed Jun. 11, 2013, 10 pages.
Non-Final Office Action, U.S. Appl. No. 13/730,608, dated Oct. 7, 2013, 10 pages.
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Feb. 6, 2013, 14 pages.
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Feb. 5, 2013, 16 pages.
Notice of Allowance, U.S. Appl. No. 12/111,924, dated Dec. 24, 2012, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/066,568, mailed Oct. 26, 2011, 28 pages.
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed Feb. 4, 2013, 32 pages.
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed May 24, 2013, 16 pages.
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Oct. 9, 2012, 9 pages.
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Sep. 25, 2012, 18 pages.
Notice of Allowance, U.S. Appl. No. 11/959,344, mailed Mar. 5, 2012, 13 pages.
Notice of Allowance, U.S. Appl. No. 12/111,924, mailed Mar. 11, 2013, 14 pages.
Notice of Allowance, U.S. Appl. No. 12/386,105, mailed Jul. 5, 2012, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/563,809, mailed May 28, 2013, 11 pages.
Notice of Allowance, U.S. Appl. No. 12/636,939, dated Oct. 7, 2013, 28 pages.
Notice of Allowance, U.S. Appl. No. 13/086,275, mailed Aug. 27, 2013, 31 pages.
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed Nov. 2, 2012, 24 pages.
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed May 6, 2013, 20 pages.
Notice of Allowance, U.S. Appl. No. 13/573,662, mailed Mar. 19, 2013, 34 pages.
Notice of Allowance, U.S. Appl. No. 29,296,687, mailed Mar. 31, 2011, 18 pages.
Notice of Non-Compliant Amendment, U.S. Appl. No. 11/641,569, mailed Aug. 7, 2009, 3 pages.
Office Action (Restriction Requirement), U.S. Appl. No. 12/563,809, dated Feb. 2, 2012, 7 pages.
Office Action, U.S. Appl. No. 10/146,862, mailed Jan. 13, 2005, 10 pages.
Preliminary Amendment, U.S. Appl. No. 11/641,569, dated Aug. 14, 2008, 13 pages.
Preliminary Amendment, U.S. Appl. No. 11/642,385, filed Aug. 22, 2008, 42 pages.
Preliminary Amendment, U.S. Appl. No. 13/731,697, filed May 10, 2013, 6 pages.
RCE/Amendment, U.S. Appl. No. 11/641,569, filed Aug. 9, 2010, 18 pages.
RCE/Amendment, U.S. Appl. No. 11/642,382, filed Oct. 26, 2010, 14 pages.
RCE/Amendment, U.S. Appl. No. 11/642,385, filed Dec. 6, 2010, 13 pages.
RCE/Amendment, U.S. Appl. No. 11/656,323, filed Nov. 19, 2010, 12 pages.
RCE/Amendment, U.S. Appl. No. 11/946,002, filed Sep. 6, 2012, 38 pages.
Response to Final Office Action, U.S. Appl. No. 12/546,545, filed Feb. 20, 2013, 13 pages.
Response to Final Office Action, U.S. Appl. No. 11/641,569, filed Jun. 28, 2012, 10 pages.
Response to Final Office Action, U.S. Appl. No. 11/641,382, filed Sep. 24, 2012, 11 pages.
Response to Final Office Action, U.S. Appl. No. 11/959,344, filed Dec. 27, 2011, 16 pages.
Response to Final Office Action, U.S. Appl. No. 11/924,425, filed Sep. 5, 2012, 9 pages.
Response to Final Office Action, U.S. Appl. No. 12/390,667, filed Mar. 12, 2012, 19 pages.
Response to Final Office Action, U.S. Appl. No. 12/563,809, filed May 6, 2013, 15 pages.
Response to Final Office Action, U.S. Appl. No. 12/546,545, dated Dec. 9, 2013, 8 pages.
Response to Final Office Action, U.S. Appl. No. 12/636,939, filed Apr. 8, 2013, 10 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Feb. 26, 2013, 36 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/563,809, filed Dec. 13, 2012, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Nov. 18, 2011, 16 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Dec. 2, 2011, 7 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/391,008, filed Feb. 24, 2012, 18 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Mar. 8, 2012, 16 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/924,425, filed Apr. 25, 2012, 8 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/386,105, filed Jun. 8, 2012, 13 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, filed Jun. 27, 2012, 12 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/111,924, filed Sep. 28, 2012, 10 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Oct. 10, 2012, 8 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Oct. 19, 2012, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Apr. 3, 2013, 9 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/086,275, filed May 7, 2013, 11 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Jul. 15, 2013, 14 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Jul. 16, 2013, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Aug. 7, 2013, 22 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/760,388, filed Sep. 12, 2013, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/505,056, filed Oct. 9, 2013, 17 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/730,585, filed Oct. 9, 2013, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Oct. 11, 2013, 12 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/723,904, filed Nov. 6, 2013, 8 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Dec. 6, 2013, 18 pages.
Response to Notice of Non-Complaint Amendment, U.S. Appl. No. 11/641,569, dated Aug. 19, 2009, 11 pages.
Response to Restriction Requirement U.S. Appl. No. 29/296,687, filed Oct. 7, 2010, 3 pages.
Response to Restriction Requirement, U.S. Appl. No. 11/959,344, filed Nov. 24, 2010, 13 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 27, 2011, 8 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/391,008, filed Aug. 29, 2011, 9 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/386,105, filed Dec. 21, 2011, 9 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/563,809, filed Feb. 24, 2012, 10 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/111,924, filed Apr. 16, 2012, 8 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/636,939, filed Apr. 19, 2012, 6 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/760,388, filed Apr. 5, 2013, 7 pages.
Response to Restriction, U.S. Appl. No. 12/563,809, filed Aug. 6, 2012, 10 pages.
Response to Restriction, U.S. Appl. No. 11/924,425, filed Nov. 8, 2011, 5 pages.
Response to Restriction, U.S. Appl. No. 11/946,002, filed Sep. 23, 2011, 7 pages.
Response to Restriction, U.S. Appl. No. 12/505,056, filed Apr. 11, 2012, 9 pages.
Response to Restriction, U.S. Appl. No. 12/546,545, filed Jun. 4, 2012, 7 pages.
Response to Restriction, U.S. Appl. No. 13/573,662, filed Feb. 8, 2013, 8 pages.
Restriction Requirement, U.S. Appl. No. 13/573,662, mailed Jan. 17, 2013, 6 pages.
Restriction Requirement, U.S. Appl. No. 11/641,382, mailed Sep. 3, 2009, 6 pages.
Restriction Requirement, U.S. Appl. No. 11/641,569, mailed Apr. 27, 2009, 7 pages.
Restriction Requirement, U.S. Appl. No. 11/642,385, mailed Oct. 27, 2009, 7 pages.
Restriction Requirement, U.S. Appl. No. 11/656,323, mailed Nov. 13, 2009, 10 pages.
Restriction Requirement, U.S. Appl. No. 11/924,425, dated Oct. 13, 2011, 6 pages.
Restriction Requirement, U.S. Appl. No. 11/946,002, dated Sep. 1, 2011, 8 pages.
Restriction Requirement, U.S. Appl. No. 11/959,344, dated Oct. 29, 2010, 6 pages.
Restriction Requirement, U.S. Appl. No. 12/111,924, mailed Mar. 19, 2012, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/386,105, dated Oct. 24, 2011, 7 pages.
Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 14, 2011, 9 pages.
Restriction Requirement, U.S. Appl. No. 12/391,008, dated Aug. 18, 2011, 6 pages.
Restriction Requirement, U.S. Appl. No. 12/505,056, mailed Mar. 14, 2012, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/546,545, mailed May 3, 2012, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/563,809, mailed Jul. 6, 2012, 6 pages.
Restriction Requirement, U.S. Appl. No. 12/636,939, mailed Apr. 13, 2012, 6 pages.
Restriction Requirement, U.S. Appl. No. 12/760,388, mailed Mar. 6, 2013, 7 pages.
Restriction Requirement, U.S. Appl. No. 29/296,687, mailed Sep. 21, 2010, 7 pages.
Akca, “Matching of 3D Surfaces and Their Intensities,” ISPRS Journal of Photogrammetry & Remote Sensing, 62(2007), 112-121.
Akenine-Möller et al., Real-Time Rendering, Second Edition, AK Peters, Natick, MA, 6 pages (Table of Contents), 2002.
Arima et al., “Femoral Rotational Alignment, Based on the Anteroposterior Axis, in Total Knee Arthroplasty in a Valgus Knee. A Technical Note,” Journal Bone Joint Surg Am. 1995;77(9):1331-4.
Audette et al. “An algorithmic overview of surface registration techniques for medical imaging.” Medical Image Analysis, vol. 4, No. 3, Sep. 1, 2000, pp. 201-217.
Author Unknown, “MRI Protocol Reference Guide for GE Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Author Unknown, “MRI Protocol Reference Guide for Phillips Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 19 pages.
Author Unknown, “MRI Protocol Reference Guide for Siemens Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Author Unknown, “MRI Protocol Reference,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Barequet et al., “Filling Gaps in the Boundary of a Polyhedron,” Computer Aided Geometric Design, vol. 12, pp. 207-229, 1995.
Barequet et al., “Repairing CAD Models,” Proceedings of the 8th IEEE Visualization '97 Conference, pp. 363-370, Oct. 1997.
Bargar et al., “Robotic Systems in Surgery,” Orthopedic and Spine Surgery, Surgical Technology International II, 1993, 419-423.
Berry et al., “Personalised image-based templates for intra-operative guidance,” Proc. Inst. Mech. Eng. Part H: J. Engineering in Medicine, vol. 219, pp. 111-118, Oct. 7, 2004.
Besl et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239-256, Feb. 1992.
Bi{hacek over (s)}{hacek over (c)}ević et al., “Variations of Femoral Condyle Shape,” Coll. Antropol., vol. 29 No. 2, pp. 409-414, 2005.
Blaha et al., “Using the Transepicondylar Axis to Define the Sagittal Morphology of the Distal Part of the Femur,” J Bone Joint Surg Am. 2002;84-A Suppl 2:48-55.
Blinn, Jim Blinn's Corner—A Trip Down the Graphics Pipeline, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 5 pages (Table of Contents), 1996.
Bøhn et al., “A Topology-Based Approach for Shell-Closure,” Geometric Modeling for Product Realization (P.R. Wilson et al. editors), pp. 297-319, Elsevier Science Publishers B.V., North-Holland, 1993.
Bullough et al., “The Geometry of Diarthrodial Joints, Its Physiologic Maintenance and the Possible significance of Age-Related Changes in Geometry-to-Load distribution and the Development of Osteoarthritis,” Clin Orthop Rel Res 1981, 156:61-6.
Burgkart et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value,” Arthritis Rheum 2001, 44:2072-7.
Canny, “A computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 8(6), pp. 679-698 (1986).
Chauhan et al., “Computer-assisted knee arthroplasty versus a conventional jig-based technique—a randomised, prospective trial,” The Journal of Bone and Joint Surgery, vol. 86-B, No. 3, pp. 372-377, Apr. 2004.
Churchill et al., “The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee,” Clin Orthop Relat Res. 1998(356):111-8.
Cicuttini et al., “Gender Differences in Knee Cartilage Volume as Measured by Magnetic Resonance Imaging,” Osteoarthritis Cartilage 1999, 7:265-71.
Cicuttini et al., “Longitudinal Study of the Relationship Between Knee angle and Tibiofemoral cartilage Volume in Subjects with Knee Osteoarthritis,” Rheumatology (Oxford) 2004, 43:321-4.
Cohen et al., Radiosity and Realistic Image Synthesis, Academic Press Professional, Cambridge, MA, 8 pages (Table of Contents), 1993.
Couglin et al., “Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting,” The Journal of Arthroplasty, vol. 18, No. 8, Elsevier, 2003.
Delp et al., “Computer Assisted Knee Replacement,” Clinical Orthopaedics and Related Research, No. 354, pp. 49-56, Sep. 1998.
Dutré et al., Advanced Global Illumination, AK Peters, Natick, MA, 5 pages (Table of Contents), 2003.
Eckhoff et al., “Difference Between the Epicondylar and Cylindrical Axis of the Knee,” Clin Orthop Relat Res. 2007;461:238-44.
Eckhoff et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Realty,” The Journal of Bone and Joint Surgery, vol. 87-A, Supplement 2, pp. 71-80, 2005.
Eisenhart-Rothe et al., “Femorotibial and Patellar Cartilage Loss in Patients Prior to Total Knee arthroplasty, Heterogeneity, and Correlation with alignment of the Knee,” Ann Rheum Dis., Jun. 2005 (BMJ Publishing Group Ltd & European League Against Rheumatism).
Eisenhart-Rothe et al., “The Role of Knee alignment in Disease Progression and Functional Decline in Knee Osteoarthritis,” JAMA 2001, 286:188-95.
Elias et al., “A Correlative Study of the Geometry and anatomy of the Distal Femur,” Clin orthop Relat Res. 1990(260):98-103.
Erikson, “Error Correction of a Large Architectural Model: The Henderson County Courthouse,” Technical Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, pp. 1-11, 1995.
Ervin et al., Landscape Modeling, McGraw-Hill, New York, NY, 8 pages (Table of Contents), 2001.
Farin, NURB Curves and Surfaces: From Projective Geometry to Practical Use, AK Peters, Wellesley, MA, 7 pages (Table of Contents), 1995.
Favorito et al., “total Knee Arthroplasty in the Valgus Knee,” Journal Am Acad Orthop surg. 2002;10(1):16-24.
Fleischer et al., “Accurate Polygon Scan Conversion Using Half-Open Intervals,” Graphics Gems III, pp. 362-365, code: pp. 599-605, 1992.
Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley Publishing Company, Reading, MA, 9 pages (Table of Contents), 1990.
Freeman et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging,” Clinical orthop Relat Res. 2003 (410):35-43.
Freeman et al., “The Movement of the Normal Tibio-Femoral Joint,” Journal Biomech. 2005;38(2):197-208.
Glassner (editor), An Introduction to Ray Tracing, Academic Press Limited, San Diego, CA, 4 pages (Table of Contents), 1989.
Glassner, Principles of Digital Image Synthesis, vols. One and Two, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 32 pages (Table of Contents), 1995.
Gooch et al., Non-Photorealistic Rendering, AK Peters, Natick, MA, 4 pages (Table of Contents), 2001.
Graichen et al., “Quantitative Assessment of Cartilage Status in Osteoarthritis by Quantitative Magnetic Resonance Imaging: Technical Validation for Use in analysis of Cartilage Volume and Further Morphologic Parameters,” Arthritis Rheum 2004, 50:811-16.
Gruen et al., “Least Squares 3D Surface and Curve Matching,” ISPRS Journal of Photogrammetry & Remote Sensing, 59(2005), 151-174.
Grüne et al., “On numerical algorithm and interactive visualization for optimal control problems,” Journal of Computation and Visualization in Science, vol. 1, No. 4, pp. 221-229, Jul. 1999.
Guéziec et al., “Converting Sets of Polygons to Manifold Surfaces by Cutting and Stitching,” Proc. IEEE Visualization 1998, pp. 383-390, Oct. 1998.
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?”, Computer Aided Surgery, vol. 9, No. 3, pp. 93-94, 2004.
Hafez et al., “Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templating,” Clinical Orthopaedics and Related Research, No. 0, pp. 1-9, 2006.
Hafez et al., “Patient Specific Instrumentation for TKA: Testing the Reliability Using a Navigational System,” MIS Meets CAOS Symposium & Instructional Academy, Less and Minimally Invasive Surgery for Joint Arthroplasty: FACT and FICTION Syllabus, San Diego, CA, 8 pages, Oct. 20-22, 2005.
Hollister et al., “The Axes of Rotation of the Knee,” Clin Orthop Relat Res. 1993(290):259-68.
Howell et al., “In Vivo Adduction and Reverse Axial Rotation (External) of the Tibial Component can be Minimized During Standing and Kneeling,” Orthopedics|ORTHOSupersite.com vol. 32 No. 5, 319-326 (May 2009).
Howell et al., “Longitudinal Shapes of the Tibia and Femur are Unrelated and Variable,” Clinical Orthopaedics and Related Research (2010) 468: 1142-1148.
Howell et al., “Results of an Initial Experience with Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients,” Orthopedics, 2008;31(9):857-63.
Ibáñez et al., The ITK Software Guide, Second Edition, Updated for ITK version 2.4, Nov. 21, 2005, pp. 114, 396-411, and 426.
Iwaki et al., “Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee,” Journal Bone Joint Surg Br. 2000;82(8):1189-95.
Jacobs et al., “Hip Resurfacing Through an Anterolateral Approach,” J. Bone Joint Surg Am. 2008:90 Suppl 3:38-44.
Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters, Natick, MA, 7 pages (Table of Contents), 2001.
Johnson, “Joint Remodeling as the Basis for Osteoarthritis,” Journal Am Vet Med Assoc. 1962, 141:1233-41.
Jones et al., “A new approach to the construction of surfaces from contour data,” Computer Graphics Forum, vol. 13, No. 3, pp. 75-84, 1994 [ISSN 0167-7055].
Kass et al., “Active Contour Models,” International Journal of Computer Vision, pp. 321-331 (1988).
Kellgren et al., “Radiological Assessment of Osteoarthrosis,” Ann Rheum Dis 1957, 10:494-501.
Kessler et al, “Sagittal Curvature of Total Knee Replacements Predicts in vivo Kinematics,” Clin Biomech (Bristol, Avon) 2007; 22(1):52-8.
Khorramabadi, “A Walk Through the Planned CS Building,” Technical Report UCB/CSD 91/652, Computer Science Department, University of California at Berkeley, 74 pages, 1991.
Kidder et al., “3-D Model Acquisition, Design, Planning and Manufacturing of Orthopaedic Devices: A Framework,” Advanced Sensor and Control-System Interface (B.O. Nnaji editor), Proceedings SPIE—The International Society for Optical Engineering, Bellingham, WA, vol. 2911, pp. 9-22, Nov. 21-22, 1996.
Kienzel III et al., “An Integrated CAD-Robotics System for Total Knee Replacement Surgery”, IEEE International Conference, pp. 889-894, vol. 1, May 1993.
Kienzel III et al., “Total Knee Replacement,” IEEE May/Jun. 1995.
Krackow et al., “Flexion-Extension Joint Gap Changes After Lateral Structure Release for Valgus Deformity Correction in Total Knee Arthroplasty: A Cadaveric Study,” Journal Arthroplasty, 1999;14(8):994-1004.
Krackow et al., “Primary Total Knee Arthroplasty in Patients with Fixed Valgus Deformity,” Clin Orthop Relat Res. 1991(273):9-18.
Krackow, “Approaches to Planning lower Extremity alignment for Total Knee arthroplasty and Osteotomy About the Knee,” adv Orthop surg 7:69, 1983.
Kumar, Robust Incremental Polygon Triangulation for Surface Rendering, Center for Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore, MD, WSCG, The International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 381-388, 2000.
Kunz et al., “Computer Assisted Hip Resurfacing Using Individualized Drill Templates,” The Journal of Arthroplasty, vol. 00, No. 0, pp. 1-7, 2009.
Kusumoto et al., “Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery”, Graduate School of Dentistry Course for Integrated Oral Science and Stomatology, Jun. 16, 2005.
Lea et al., “Registration and immobilization in robot-assisted surgery”, Journal of Image Guided Surgery, pp. 1-10, 1995.
Lorensen et al., “Marching Cubes: A High Resolution 3d Surface Construction Algorithm,” Computer Graphics, vol. 21, No. 4, pp. 163-169, 1987.
Manner et al., “Knee Deformity in Congenital Longitudinal Deficiencies of the Lower Extremity,” Clin Orthop Relat Res. 2006;448:185-92.
Matsuda et al., “Anatomical Analysis of the Femoral Condyle in Normal and Osteoarthritic Knees,” Journal Orthopaedic Res. 2004;22(1):104-9.
Matsuda et al., “Femoral Condyle Geometry in the Normal and Varus Knee,” Clinical Orthop Relat Res. 1998(349):183-8.
Messmer et al., “Volumetric Determination of the Tibia Based on 2d Radiographs Using A 2d/3d Database”, Dept. of Surgery, Trauma Unit, University Hospital, Bassel, Switzerland, Computer Aided Surgery 6:183-194 (2001).
Mihalko et al., “The Variability of Intramedullary Alignment of the Femoral Component During Total Knee Arthroplasty,” Journal Arthroplasty. 2005;20(1):25-8.
Mole et al., “A New Three-Dimensional Treatment Algorithm for Complex Surfaces: Applications in Surgery”, Feb. 1995.
Morvan et al., IVECS, Interactively Correcting .STL Files in a Virtual Environment, Clemson University, Clemson, SC, Proc. Conf. Virtual Design, Aug. 1996.
Nooruddin et al., Simplification and Repair of Polygonal Models Using Volumetric Techniques, IEEE Transactions on Visualization and Computer Graphics, vol. 9, No. 2, pp. 191-205, Apr.-Jun. 2003.
Panjabi et al., “Errors in Kinematic Parameters of a Planar Joint: Guidelines for Optimal Experimental Design,” Journal Biomech. 1982;15(7):537-44.
Perillo-Marcone et al., “Effect of Varus/Valgus Malalignment on Bone Strains in the Proximal Tibia After TKR: An Explicit Finite element Study,” Journal Biomechanical Engineering 2007, vol. 129, 1:1-11.
Peterfy et al., “Quantification of articular Cartilage in the Knee with Pulsed Saturation Transfer Subtraction and Fact-Suppressed MR Imaging: Optimization and Validation,” Radiology 1994, 192:485-91.
Pinskerova et al., “The Shapes and Relative Movements of the Femur and Tibia at the Knee,” Orthopaedics 2000;29 Suppl 1:S3-5.
Platt et al., “Mould Arthroplasty of the Knee, A Ten-Year Follow-up Study,” The Journal of Bone and Joint Surgery (British Volume), vol. 51-B, No. 1, pp. 76-87, Feb. 1969.
Potter, “Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and MacIntosh Design,” The Surgical Clinics of North America, vol. 49, No. 4, pp. 903-915, Aug. 1969.
Radermacher et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, vol. 354, pp. 28-38, Sep. 1998.
Rohlfing et al., “Chapter 11 Quo Vadis, Atlas-Based Segmentation?”, in Handbook of Biomedical Image Analysis vol. III: Registration Models 435, 435-486 (Jasjit S. Suri et al. eds., Kluwer Academic/Plenum Publishers, NY 2005).
Rosset et al., “General Consumer Communication Tools for Improved Image Management and Communication in Medicine,” Journal Digital Imaging, 2005;18(4):270-9.
Shakespeare D., “Conventional Instruments in Total Knee Replacement: What Should We Do With Them?” Knee. 2006;13(1):1-6.
Shepstone et al., “The shape of the Distal Femur: A Palaeopathological Comparison of Eburnated and Non-Eburnated Femora,” Ann. Rheum Dis. 1999, 58:72-8.
Shirley et al., Realistic Ray Tracing, Second Edition, AK Peters, Natick, MA, 7 pages (Table of Contents), 2003.
Siston et al., “Averaging Different Alignment Axes Improves Femoral Rotational Alignment in Computer-Navigated Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2008;90(10):2098-104.
Siston et al., “The Variability of Femoral Rotational Alignment in Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2005;87(10):2276-80.
Soudan et al., “Methods, Difficulties and Inaccuracies in the Study of Human Joint Kinematics and Pathokinematics by the Instant axis Concept. Example: The Knee Joint,” Journal Biomech. 1979;12(1):27-33.
Spencer et al., “Initial Experience with Custom-Fit Total Knee Replacement: Intra-operative Events and Long-Leg Coronal alignment,” International Orthopaedics (SICOT), 2009:In Press.
Strothotte et al., Non-Photorealistic Computer Graphics—Modeling, Rendering, and Animation, Morgan Kaufmann Publishers, San Francisco, CA, 9 pages (Table of Contents), 2002.
Stulberg et al., “Computer- and Robot-Assisted Orthopaedic Surgery”, Computer-Integrated Surgery Technology and Clinical Applications, edited by Taylor et al., Massachusetts Institute of Technology, Chapter 27, pp. 373-378, 1996.
Teeny et al., “Primary Total Knee Arthroplasty in Patients with Severe Varus Deformity. A Comparative Study,” Clin Orthop Relat Res. 1991(273):19-31.
Vande Berg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging,” Radiology, vol. 222, No. 2, pp. 430-436, Feb. 2002.
Wikipedia, the Free Encyclopedia, “CNC,” (date unknown) located at http://en.wikipedia.org/wiki/CNC>, 6 pages, last visited on Apr. 12, 2007.
Wright Medical Technology, Inc., “Prophecy Pre-Operative Navigation Guides Surgical Technique,” 2009.
Xie et al. “Segmentation by surface-to-image registration.” proceedings of SPIE, vol. 6144, Mar. 2, 2006, pp. 614405-1-614405-7.
Australian Patent Examination Report No. 1, AU 2013200861, dated Mar. 3, 2015.
Non-Final Office Action, U.S. Appl. No. 13/731,697, dated Jan. 29, 2015.
Notice of Allowance, U.S. Appl. No. 11/656,323, dated Feb. 3, 2015.
Reply Brief, U.S. Appl. No. 11/642,385, dated Jan. 23, 2015.
Response to Restriction, U.S. Appl. No. 14/476,500, dated Mar. 17, 2015.
Restriction Requirement, U.S. Appl. No. 14/476,500, dated Feb. 25, 2015.
Canadian Office Action, CA2721762, dated Nov. 10, 2015.
Decision on Appeal, U.S. Appl. No. 12/391,008, dated Dec. 11, 2015.
Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 30, 2015.
Non-Final Office Action, U.S. Appl. No. 13/923,093, dated Dec. 2, 2015.
Calvo et al., “High Resolution MRI Detects Cartilage Swelling at the Early Stages of Experimental Osteoarthritis,” OARSI, 2001, pp. 463-472.
Canadian Office Action, Appl. No. 2642616, dated Apr. 22, 2015.
Canadian Office Action, CA2708393, dated May 7, 2015.
Canadian Office Action, CA2721735, dated Jul. 7, 2015.
European Examination Report, EP10192631.9, dated Feb. 11, 2015.
European Patent Office, Summons to Attend Oral Proceedings, EP07749030.8, dated Sep. 10, 2015.
European Search Report, EP09718014.5, dated May 13, 2015.
European Search Report, EP09718041.8, dated May 12, 2015.
Japanese Office Action, JP2014-147908, dated Jun. 9, 2015.
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Jun. 29, 2015.
Non-Final Office Action, U.S. Appl. No. 14/476,500, dated Jun. 18, 2015.
Notice of Allowance, U.S. Appl. No. 13/731,697, dated Jul. 29, 2015.
Notice of Allowance, U.S. Appl. No. 14/824,731, dated Oct. 20, 2015.
Response to Non-Final Office Action, U.S. Appl. No. 13/731,697, dated May 26, 2015.
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Sep. 29, 2015.
Response to Non-Final Office Action, U.S. Appl. No. 14/476,500, dated Oct. 16, 2015.
Restriction Requirement, U.S. Appl. No. 13/960,498, dated Sep. 23, 2015.
Related Publications (1)
Number Date Country
20140107655 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61712577 Oct 2012 US