The joist has, at least in its one end, an upper chord and a lower chord of woody material like sawn wood, glue lam, LVL, LSL, PSL, OSB, CLT, MDF, plywood etc. The chords are connected by a web structure of consecutive ascending and descending elongated diagonals which hit a chord about in same point, i.e. node point. The diagonals are normally also of woody material but sometimes of metal normally making similar triangular or trapezoid openings across the joist. The web structure may also include a few verticals i.e. elongated bars perpendicular to the chords, normally no verticals but less than four verticals per joist end, or panels like OSB-panels, normally only one panel per joist end. These joists include several deficiencies: weak web structure, shortening and notching the joist, cutting the joist into two or more working joists, supporting the joist at the lower chord elsewhere as on the truss node points, supporting the joist on the upper chord or between the chords. The disclosed invention overcomes all these shortcomings.
Several embodiments are disclosed in the field of the invention like U.S. Pat. No. 5,560,177, US2002148193 and CA2198838. However, these joists can neither be notched nor supported from elsewhere as on the lower chord at a node point or on area with a panel between the chords. These solutions must be carried out in the factory and such joists cannot be cut into two or more functioning joists. The trussed joists are usually supported on the lower chord, but they can be supported above, too when special hangers of metal like WO2017095798 are used. They are expensive and prone to rusting, thermal bridges and condense. These hangers include a play making creak, increase the joist deflection and by no means increase the strength of the joist. The disclosed invention does not have these shortcomings.
The joist has two ends, the first end and the second end. The invention is primarily directed to the customized first end, but the disclosed embodiments are applicable between ends, too.
The invention is comprised of reinforcing elements which are fixed at the side faces of the chords using dowel fasteners like nails, screws and/or adhesive or fixed in the notches routed in the chords. These notches are deep either full or at least 67% of full chord depth.
If mechanical fasteners are used to fix the reinforcing elements the fixing takes place after the joist manufacture normally at a lumber yard or at a building site and if fixed using adhesive, fixed in junction of the joist manufacture at the factory or sometimes at a lumber yard.
The reinforcing elements are usually woody material like sawn wood, OSB, MDF, plywood, LVL, LSL, CLT or glue lam. The OSB4 standard panel is suited especially well for the purpose. The reinforcing element can also be plastic, metal, cast material or their combination, glued, welded or assembled otherwise. The reinforcing elements normally are sheet-like, from their outside measures rectangular, trapezoid, parallelogram, half parallelogram, triangular and/or Z letter-shaped where there is usually a nose which is the protrusion in the reinforcing element or one edge of the reinforcing element forms the nose. This nose reaches over the support. The reinforcing element can be also like a truss or a frame. If the reinforcing element is fixed at the factory to the joist, they are closed. If they are fixed at the site, they can also include holes and therefore are lighter are usually cheaper.
When the reinforcing element is fixed with dowel fasteners like nails or screws, the nose can be replaced, or the permanence can be increased with a metal sheet fixed between the reinforcing element and the chord. Alternatively, the metal sheet is replaced by a high strength woody panel like OSB-, plywood-, LVL or fiberboard-panel glued in the side faces of the chords. Further, the nose can be replaced, or the permanence can be increased by adapting the end of the chord with high-strength glued woody material like a billet made of plies, lamellas, strands or shavings of which the glue lines are mainly fitted vertically. LVL, LSL and OSB suit well for the purpose.
The length of the reinforcing element in the joist direction is at least about one half of the distance between adjacent truss node points up to about 1.5 times the distance between the node points. The reinforcing element overlaps at least one node point with sufficient fastener area at the lower or at the upper chord and in cases on high stresses overlaps at least two node points. This enables the cutting of the joist at any location and the reinforcing elements make the joist workable on any support alternative. If the reinforcing element is fixed besides the chords in a diagonal or a vertical, the number of fasteners is reduced, and the reinforcing element size is minimal. To make this possible, fillers like wood battens may be used between the reinforcing elements and the diagonals and verticals or the reinforcing element profile is fitted to diagonal/vertical contact.
In trussed joists connected with metal plates the reinforcing elements can be fixed directly in the diagonals without special measures.
There is at least one reinforcing element but usually two and sometimes even more elements per joist end. Normally, the reinforcing elements make a casing which is strong and easy to shape to different indentations and support alternatives because a filling like wood batten can be fixed using dowel fasteners into the casing to make joist overhang or support between chords.
When the reinforcing elements are fixed at a site, the joist can be economically manufactured at low season periods into stock as a long and/or standardized billet. Such billet can be cut at any location to shorten the joist or to make several working joists and supported arbitrarily. No earlier trussed joist has such high flexibility. In one embodiment, the billet is cut and customized for each special requirement in the factory or at the lumber yard which allows fastening the strengthening element by adhesive only and preferably by dowels and adhesive. In this alternative, the eventual proof loading is possible for the completed joist.
The reinforcing elements are usually cut from a wood panel. In each joist depth they are usually of uniform size or they are cut from a long panel of the beam depth. Their size depends on the location of the support about the node points. It is advantageous that cutting lines are drawn or partial cuttings like perforations are made about 300 mm apart to facilitate making the reinforcing elements even without special tools by folding along perforations.
In one embodiment, standardized trussed joists are made unfinished at least in one end comprising only the upper and lower chord to make chord tails. The web structure is mounted using the reinforcing elements explained here, case by case. This kind of a solution is economical because at the end of the joist there is no prefabricated web structure. To save the material it is advantageous that the chords tails are fitted to end in a separate section because usually only one chord must reach the support and the other chord may be shorter.
The first and/or second diagonal at the end of the trussed joist is critical for the strength. One application of the invention is that the reinforcing elements are used to strengthen the firmness of the diagonals at the end of the joist and sometimes between the ends or the reinforcing elements replace one diagonal or more.
If the joist is supported on the upper chord, it is essential that the reinforcing elements strengthen the support area of the chord so that, a considerable part of the support force, about at least a quarter, sometimes the whole support force moves through the reinforcing elements to the joist. In the chord support the shear and bending resistance of the chord are critical. When a part of the support force moves to the reinforcing element, it will lower the chord force and the shear and bending permanence is improved.
If the reinforcing elements have been glued to the chord notches, there are at least two reinforcing elements which may have several fingers of variable length per element. The elements form the compound structure and the critical shear resistance of the chord is increased when the shear resistance of the reinforcing material is higher than that of the chord material at least in the joist direction. The shear resistance is critical in the mid third of the chord cross section. Therefore, it is important the reinforcing elements fasten the upper and the lower third of the cross section. Thus, the reinforcing elements must be notched into the chords at least about 67% of the chord depth. This embodiment may have the upper chord support when the joist end is appropriately cut, and the reinforcing elements make noses reaching above the support and extending to the end of the chord. The total thickness of noses at the support edge is about 17-19 mm, the area at least about 500 mm2.
If the reinforcing elements are glued to the side faces of chords, there may be only one but usually two and that they are glued to both side face covering the full faces or almost full faces, more than about 90%. The compound thickness of the reinforcing elements at the edge of the support is at least about 17-19 mm, the area at least about 500 mm2.
If the reinforcing element has been mechanically fixed, the nose is usually made especially strong e.g. by making it thicker than the main reinforcing element and the nose usually reaches over the support from its lower surface only little i.e. the chord extends further. Normally, it is sufficient that the reinforcing element touches only the corner of the support but usually touches support no more than about 20-40 mm.
In an overhang chord support, it is important that the support force does not act at the end of the overhang as such support weakens the chord considerably due to long liver arm and high bending stress. The support force must locate as close to the first diagonal as possible to make a short liver arm. Therefore, it is advantageous to remove 1-3 mm from the lower surface of the chord either by horizontal or preferably inclined cut or to fix a filler above the support to make the overall support force closer to the first diagonal than half overhang length. Alternatively, the upper surface of the support is levelled accordingly. Normally, the chord—support contact surface is about 20 . . . 40 mm*chord width.
In the reinforcing element, there is usually a nose reaching over the support so that sufficient resistance is obtained. The nose can be replaced, or the firmness can be still increased when, at least one about 0.5-1.5 mm thick metal sheet is placed between the reinforcing element and the chord. The doweled fasteners of the reinforcing elements penetrate the metal sheet, too. This metal sheet is advantageously turned at least from its top over the chord about 10-30 mm but usually turned at least partly under the chord, too. This kind of a metal sheet can reach down to the lower chord in which case it as such is the reinforcing element meant by this invention. High strength is obtained when the reinforcing elements at opposite sides of the truss are connected to make full or half ring, e.g., by overlapping the elements above or under the chords and by nailing the elements together.
The invention is suited especially well for a metal web trussed joist in accordance with WO99/18304 and a trussed joist with punched metal connectors in accordance with U.S. Pat. No. 55,601,770. These joists can be supported on the lower surface of lower chord only. These joists can be supported on the upper chord and between the chords when two reinforcing elements are deeply notched in the chords at least 67% or glued at the faces of the chords and glued at a factory. Alternatively, the reinforcing elements are fastened mechanically and fastened at the site at the chord tails.
If the reinforcing elements are fixed at factory, glue is normally used. Alternatively, soft nails or screws made e.g. of aluminum, plastics or wood can be used to facilitate use of normal timber cutting tools.
The reinforcing elements can be used also for the lengthening of the joist when the support forces are small. One embodiment is that the secondary joist is supported on the side of one or more primary joists on the lower chords of the primary joists. This kind of a solution will be especially advantageous when the primary joist consists of several parallel joist side by side because the reinforcing elements can be extended over all the lower chords in which case the torsional stresses of the primary joists are avoided.
If the joist is subjected to fire resistance, the reinforcing elements are covered with appropriate paint, varnish, gypsum to improve the fire performance or the fire performance is obtained using other means.