The present invention relates to yarn for machine knitting and to safety garments made with the yarn.
Gloves and other protective apparel are typically worn by individuals handling and processing food, such as individuals working in the meat packing industry. Preferably, the gloves should be cut-resistant to maximize the useful life of the glove and to provide a degree of protection to the wearer against injury. In addition, the glove should not overly limit the wearer's needed dexterity and tactile sensitivity.
The disclosure of U.S. Pat. No. 4,651,514 issued to Collett provides an example of a cut-resistant yarn. The disclosed cut-resistant yarn has a core of nylon with a first wrap of an aramid fiber and a second wrap of a textured nylon.
An example of a cut-resistant glove is provided by the disclosure of U.S. Pat. No. 5,568,657 issued to Cordova et al. “Comparative Example 10” of the Cordova patent discloses a yarn having a core of ECG 75 fiberglass filaments and 650 denier SPECTRA. overwrapped with counter opposing helixes of 650 denier SPECTRA. SPECTRA. is the name of a high-density polyethylene fiber manufactured by Honeywell. “Comparative Example 12” of the Cordova patent discloses a yarn having a core of ECG 75 fiberglass filaments and a 500 denier polyester fiber overwrapped with counter opposing helixes of the same 500 denier polyester fiber. Although the above referenced cut-resistant yarns, gloves and apparel are satisfactory for their intended purposes, there is a need for a yarn which provides both cut-resistant and abrasion-resistant properties. Protective gloves are quickly worn by sharp instruments, not just by direct contact of the instrument with the glove but also by “scratching” by the instrument over the glove. This “scratching” causes instruments to abrade the glove, thus, decreasing the useful life of the glove or garment.
The present invention provides a cut and abrasion resistant, knittable composite yarn that utilizes a strand or fiber that has incorporated therein a material that causes the outer surface of the fiber or strand to have lower coefficient of friction than fibers or strands of comparable denier and weight. A preferred suitable yarn is of a diameter suitably for machine knitting and is flexible enough to be used for making protective gloves. Preferably, the yarn is of composite construction utilizing synthetic fibers and a cut-resistant material as part of the core.
In the preferred embodiment, the yarn comprises a core having at least one fiber of a cut-resistant material within the core. The material of the core can be any cut resistant material such as but not limited to polyethylene, fiberglass and metal wire and can be any combination of cut-resistant materials as know to those of skill in the art. In one embodiment, the core includes a strand of polyethylene, a stand of fiberglass material and stainless steel wire. The polyethylene that is typically employed has a denier in the range from about 215 to about 1200. The fiberglass that is typically employed has a size in the range from about 150 to about 450. Further, the stainless steel wire is that typically used has a diameter of about 0.002 inches.
The preferred embodiment includes a wrap about the core that comprises at least one strand or fiber having a low coefficient of friction material. One suitable low coefficient of friction fiber is commercially know as Friction Free and is available from Friction Free Technologies, Inc. having a principal place of business at 30 East 39th Street, New York, N.Y. The low coefficient of friction material incorporates polytetrafluoroethylene which provides a lower coefficient of friction throughout the fiber. The low coefficient of friction fiber that is typically used has a denier of about 70. In another embodiment, the low coefficient of friction material may be combined with other materials, such as but not limited to polyester, to make up a wrap about the core. In yet another embodiment, several fibers of low coefficient of friction material each having a denier of about 70, are combined with one or more polyester fibers to produce a wrap about the core. The polyester fiber combined with the low coefficient of friction material preferably has a denier ranging from about 70 to about 300.
In yet another embodiment, the yarn of the present invention includes a first wrap about the core and a second wrap about the first wrap where the second wrap includes the low coefficient of friction material. Preferably, the first wrap comprises at least one or more polyester fibers having a denier ranging from about 70 to about 420. This first wrap is wrapped about the core at a rate ranging from about 8 to about 10 turns per inch. A second wrap is wrapped in an opposite direction about the first wrap and the second wrap includes at least one strand or fiber of a low coefficient of friction material. It is recognized that the second wrap can include at least one additional fiber of different material, such as polyester. The second wrap is wrapped about the first wrap at a rate of about 8 to about 10 turns per inch.
In the several embodiments of the present invention, the low coefficient of friction material, preferably, is in the outermost wrap. This allows for the greatest abrasion resistance since this material will be the first to contact any abrasive surface. However, the low coefficient of fiction material can be employed in any internal wraps or in the core to aid or increase the cut and/or abrasion resistance of the garment. For instance, if a low coefficient of friction material is placed in the core it is also preferable to have the low coefficient of friction material in the outer wrap although it is not necessary.
The fibers used in conjunction with the low coefficient of friction fibers are preferably polyester due to its comfort and lower cost. However, other fibers and cut-resistant fibers such as spun Kevlar, normal spun fibers, acrylic, liquid crystal polymer, polyolefin and the like may be employed along with the low coefficient of friction fibers. As is apparent to those of ordinary skill in the art in view of this disclosure, any combination of known cut-resistant fibers and any configuration may be employed with the low coefficient of friction fibers.
The present invention is also directed to a method of making a cut and abrasion resistant garment, such as a glove, including a low coefficient of friction material. The method preferably includes the steps of providing a knittable, cut and abrasion resistant yarn comprising a cut-resistant core having at least one cut-resistant fiber, a first wrap about the core wherein said first wrap includes at least one fiber of a polyester material; and a second wrap about said first wrap wherein said second wrap includes at least one fiber including a low coefficient of friction material. The yarn is then knitted on a knitting machine in the form of a cut resistant garment such as a glove.
The glove 10 depicted in
The first wrapping 24 is a single strand of 420 denier polyester wrapped at a rate of 8-10 turns per inch about the core 22. The second wrapping 26 or outer wrap is wrapped about the first wrap 24 in an opposite direction as the first wrap 24 at a rate of 8-10 turns per inch. The second wrap 26 includes a first fiber 34 of 220 denier polyester and four additional fibers 36 each having a low coefficient of friction material and each fiber having a denier of 70. The fibers 34 and 36 of the second wrap can be intertwined or separate, depending on what effects are desired. The low coefficient of friction fibers 36 are typically extruded, impregnated, laminated or coated with a low coefficient of friction material added during the process of making the fiber. Typically the low coefficient of friction material is polytetrafluoroethylene or commonly known and sold under the tradename Teflon®. The construction of the low coefficient of friction fibers is further detailed in U.S. Pat. No. 6,596,207 to Gunn and U.S. Pat. No. 6,143,368 to Gunn, both of which are hereby incorporated by reference in their entirety. The yarn illustrated in
While specific deniers and other features of the preferred embodiments have been set forth, different values can be selected within acceptable ranges to provide useful cut-resistant yarns. The specific values selected will of course cause a variation in cut-resistance, flexibility, weight and thickness of the yarn and the fabric knitted therefrom, and cost. The preceding embodiments employ fibers having specific deniers, however, other known fibers may be used in their place. The cut-resistance of a yarn employing a metal wire is in part a function of the diameter of the metal wire. Multiple strands are advantageous for flexibility over one larger strand or the one strand of wire is combined with other strands of polymeric fibers. Other kinds of metal other than stainless steel may be employed, such as aluminum, copper, bronze and steel. Stainless steel wire as used in the present invention has a diameter of about 0.002. Thicker diameters may be used where increased cut resistance is desired and smaller diameters may be employed where flexibility is more desired over cut-resistance. The various wrappings about the core can have from 2-20 turns per inch. Metal strands can also be employed in the wrappings and can have from 2 to 12 turns per inch. The core bundling wrappings, if present, can have from 2 to 20 turns per inch. The first wrapping about the core and additional wrappings will have from 8 to 12 turns per inch. Further, in the preceding embodiments, a wrap that include several fibers of one or more materials each having the same or different deniers, the sum of the deniers of each fiber equals the total denier of the wrap. For instance, with regard to the third embodiment, the outer wrap 26B has a total of six strands of fibers each having a denier of 70 for a total denier of the outer wrap 26B of about 420.
The depicted glove 10 in
As can be seen from the test results above, the glove made with the low friction yarn exhibited a significant improvement in abrasion resistance while still maintaining acceptable cut resistance.
While the yarn of the invention has been described and shown incorporated into a knit glove, it is to be understood that the yarn of the present invention can be used to make other fabrics and articles of apparel, safety or otherwise, such as wrist guards, protective sleeves, gaiters, safety aprons, etc. for use in industries where cut and abrasion resistant safety apparel is needed.