In one version, the presently claimed and disclosed invention(s) relate to automated cut-line steering methods for forming an output mosaic image of a geographical area. More particularly, in a preferred embodiment the presently claimed and disclosed invention(s) is an automated cut-line steering method whereby separate, overlapping source images are cut along preferred routes and then combined into at least one single output mosaic image without requiring human intervention. In addition, a method is described and claimed which forms a ground confidence map, useful in cut-line steering, formed by analyzing overlapping portions of geo-referenced source images. The ground confidence map provides an indication of where the overlapping portions of the source images show ground locations. The ground confidence map has a variety of uses such as determining preferred routes where individual source images are to be cut or correcting light detection and ranging data (commonly known in the art as LIDAR). When used to determine preferred routes, the ground confidence map maintains a high level of visual accuracy when the source images are combined to form at least one single output mosaic image. The at least one single output mosaic image is visually pleasing and geographically accurate.
In the remote sensing/aerial imaging industry, imagery is used to capture views of a geographic area and to be able to measure objects and structures within the images as well as to be able to determine geographic locations of points within the image. These are generally referred to as “geo-referenced images” and come in two basic categories:
All imagery starts as captured imagery, but as most software cannot geo-reference captured imagery, that imagery is then reprocessed to create the projected imagery. The most common form of projected imagery is the ortho-rectified image. This process aligns the image to an orthogonal or rectilinear grid (composed of rectangles). The input image used to create an ortho-rectified image is a nadir image—that is, an image captured with the camera pointing straight down.
It is often quite desirable to combine multiple images into a larger composite image such that the image covers a larger geographic area on the ground. The most common form of this composite image is the “ortho-mosaic image” which is an image created from a series of overlapping or adjacent nadir images that are mathematically combined into a single ortho-rectified image.
Each input nadir image, as well as the output ortho-mosaic image, is composed of discrete pixels (individual picture elements) of information or data. As part of the process for creating an ortho-rectified image, and hence an ortho-mosaic image, an attempt is made to reproject (move within a mathematical model) each pixel within the image such that the resulting image appears as if every pixel in the image were a nadir pixel—that is, that the camera is directly above each pixel in the image.
The reason this ortho-rectification process is needed is it is not currently possible to capture an image where every pixel is nadir to (directly below) the camera unless: (1) the camera used is as large as the area of capture, or (2) the camera is placed at an infinite distance above the area of capture such that the angle from the camera to the pixel is so close to straight down that it can be considered nadir. The ortho-rectification process creates an image that approximates the appearance of being captured with a camera where the area on the ground each pixel captures is considered nadir to that pixel, i.e. directly below that pixel. This process is done by creating a mathematical model of the ground, generally in a rectilinear grid (a grid formed of rectangles), and reprojecting from the individual captured camera image into this rectilinear grid. This process moves the pixels from their relative non-nadir location within the individual images to their nadir positions within the rectilinear grid, i.e. the image is warped to line up with the grid.
When creating an ortho-mosaic, this same ortho-rectification process is used, however, instead of using only a single input nadir image, a collection of overlapping or adjacent nadir images are used and they are combined to form a single composite ortho-rectified image known as an ortho-mosaic. In general, the ortho-mosaic process entails the following steps:
Because the rectilinear grids used for the ortho-mosaic are generally the same grids used for creating maps, the ortho-mosaic images bear a striking similarity to maps and as such, are generally very easy to use from a direction and orientation standpoint. However, since they have an appearance dictated by mathematical projections instead of the normal appearance that a single camera captures and because they are captured looking straight down, this creates a view of the world to which we are not accustomed. As a result, many people have difficulty determining what it is they are looking at in the image. For instance, they might see a yellow rectangle in the image and not realize what they are looking at is the top of a school bus. Or they might have difficulty distinguishing between two commercial properties since the only thing they can see of the properties in the ortho-mosaic is their roof tops, where as most of the distinguishing properties are on the sides of the buildings. An entire profession, the photo interpreter, has arisen to address these difficulties as these individuals have years of training and experience specifically in interpreting what they are seeing in nadir or ortho-mosaic imagery.
Since an oblique image, by definition, is captured at an angle, it presents a more natural appearance because it shows the sides of objects and structures—what we are most accustomed to seeing. In addition, because oblique images are not generally ortho-rectified, they are still in the natural appearance that the camera captures as opposed to the mathematical construction of the ortho-mosaic image. This combination makes it very easy for people to look at something in an oblique image and realize what that object is. Photo interpretation skills are not required when working with oblique images.
Oblique images, however, present another issue. Because people have learned navigation skills on maps, the fact that oblique images are not aligned to a map grid, like ortho-mosaic images, makes them much less intuitive when attempting to navigate or determine direction on an image. When an ortho-mosaic is created, because it is created to a rectilinear grid that is generally a map grid, the top of the ortho-mosaic image is north, the right side is east, the bottom is south, and the left side is west. This is how people are generally accustomed to orienting and navigating on a map. But an oblique image can be captured from any direction and the top of the image is generally “up and back,” meaning that vertical structures point towards the top of the image, but that the top of the image is also closer to the horizon. However, because the image can be captured from any direction, the horizon can be in any direction, north, south, east, west, or any point in between. If the image is captured such that the camera is pointing north, then the right side of the image is east and the left side of the image is west. However, if the image is captured such that the camera is pointing south, then the right side of the image is west and the left side of the image is east. This can cause confusion for someone trying to navigate within the image.
Additionally, because the ortho-mosaic grid is generally a rectilinear grid, by mathematical definition, the four cardinal compass directions meet at right angles (90-degrees). But with an oblique image, because it is still in the original form the camera captured and has not been re-projected into a mathematical model, it is not necessarily true that the compass directions meet at right angles within the image. Because in the oblique perspective, you are moving towards the horizon as you move up in the image, the image covers a wider area on the ground near the top of the image as compared to the area on the ground covered near the bottom of the image. If you were to paint a rectangular grid on the ground and capture it with an oblique image, the lines along the direction the camera is pointing would appear to converge in the distance and the lines across the direction of the camera is pointing would appear to be more widely spaced in the front of the image than they do in the back of the image. This is the perspective view we are all used to seeing—things are smaller in the distance than close up and parallel lines, such as railroad tracks, appear to converge in the distance. By contrast, if an ortho-mosaic image was created over this same painted rectangular grid, it would appear as a rectangular grid in the ortho-mosaic image since all perspective is removed as an incidental part of the ortho-mosaic process.
Because of these fundamental differences in perspective and appearance, the creation of an ortho-mosaic image by the process described above does not work well for oblique images. Because the camera's optical axis (an imaginary line through the center of the lens or optics that follows the aim of the camera) is typically pointed at an angle of 45-degrees or more from nadir (pointed 45-degrees or more up from straight down), the effects of building lean, elevation differences, and non-square pixels are all exaggerated—effects that are considered negative qualities in an ortho-mosaic image. In the ortho-mosaic industry, requirements are generally placed on the image capture process such that they limit the amount of obliqueness to as little as 5-degrees from nadir so as to minimize each of these negative effects.
In addition, if the admirable properties of an oblique image are to be maintained, namely seeing the sides of structures and the natural appearance of the images, then clearly a process that attempts to remove vertical displacements, and hence the sides of the buildings, and one that warps the image to fit a rectilinear grid is not a viable choice. In order to maintain the admirable qualities of the oblique image, it may be necessary that the process:
Because of these issues, the common practice in the industry is to provide oblique imagery as a series of individual images. However, some of the same benefits of the ortho-mosaic also apply to an oblique-mosaic (an image created from a collection of overlapping or adjacent oblique images), namely the fact that the mosaic covers a larger geographic area than each or any of the individual images that were used to create it.
This invention allows for the creation of an output mosaic image that has both a natural appearance and is preferably geo-referenced to maintain the ability to measure and determine geographic coordinates. While the preferred embodiment applies this invention to aerial oblique imagery, the invention will also work with non-aerial oblique imagery captured in a variety of ways, including but not limited to cameras mounted obliquely on a vertical pole, hand-held cameras aimed obliquely, and cameras mounted at oblique angles on an underwater probe. While the preferred embodiment is used for cut-line steering when creating oblique mosaics, this invention will also work for cut-line steering for ortho-mosaics as well using input nadir images. This method, especially when utilizing the ground confidence map, can also be applied to “street side” imagery (images captured horizontally—typically from a moving vehicle or by pedestrians), with the slight modification of using the building fronts in a similar fashion as the ground is used when this invention is used in conjunction with aerial imagery.
In one embodiment, the present invention is a method for automatically steering mosaic cut lines along preferred routes to form an output mosaic image. An area to be represented by the output mosaic image is selected, and then an assignment map having a plurality of pixel assignments corresponding to the output mosaic image is created. The pixel assignments have an initial designation of unassigned. Then, each pixel assignment of the assignment map that intersects the preferred routes is designated as a Preferred Cut Line pixel, which has the effect of dividing the Assignment Map into one or more regions that are bounded by Preferred Cut Line pixels or the edge of the Assignment Map. For each region, one or more source images that completely cover the region are selected, and for each selected source image, a Selection Heuristic is used to determine the quality of coverage, and then each pixel assignment in that region is designated as being assigned to the image with the best heuristic.
For any remaining unassigned regions, two or more source images are selected whose combined area completely covers the region, and for each set of two or more combined images, a Pairing Heuristic is used to determine the quality of coverage. Then each pixel in the region is designated as being assigned to the two or more combined images with the best heuristic.
The Preferred Cut Line pixels are re-designated to match the image assignments of their bounded regions, and then pixel values from the source images corresponding to the pixel assignments are utilized to create the output mosaic image. In one embodiment, this can be accomplished by stepping through each pixel in the Assignment Map and using the stored image assignment to determine which image or images to use for the actual image content of the output mosaic image.
In another aspect, the presently disclosed and claimed invention is directed to a method of cut-line steering by creating a ground confidence map (shown in
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction, experiments, exemplary data, and/or the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for purpose of description and should not be regarded as limiting.
The presently claimed and disclosed invention(s) relate to mosaic images and methods for making and using the same. More particularly, the presently claimed and disclosed invention(s) use a methodology for automatically steering mosaic cut lines along preferred routes to form an output mosaic image whereby separately captured images (referred to hereinafter as “source images”) are automatically combined into at least one single mosaic image. The at least one single mosaic image is visually pleasing and geographically accurate. The source images are preferably aerial images and can be either nadir images, orthogonal images, or oblique images.
Referring now to the Figures and in particular to
Shown on the output mosaic image 10 are “preferred routes” 24 for “cutting” the source images 16 to form the output mosaic image 10. The preferred routes 24 are selected so as to minimize any adverse effects when transitioning between adjacent source images 16. Preferably, the preferred routes 24 are selected in areas where there are no structures above or below the ground elevation model. This can be accomplished by placing the preferred route 24 down the middle of a street, or by using a ground confidence map as described below. In the exemplary
The preferred routes 24 and transition lines 28 are shown on the output mosaic image 10 of
As shown in the logic flow chart 30 of
The output mosaic image 10 is initially formed by creating an assignment map 41 corresponding to the output mosaic image 10, as indicated by block 40 of
Initially, every pixel of the assignment map 41 preferably has an initial designation of unassigned. Then, as shown in block 44 of the logic flow chart 30, pixels, such as each pixel, of the assignment map 41 that intersect a preferred route 24 is marked as being a “preferred cut line pixel”, which has the effect of dividing the assignment map 41 into one or more regions 45 that are bounded by preferred cut line pixels 46 or the output edges 42 of the assignment map 41. By way of example, six regions 45 are depicted in
A region 45 is a contiguous set of pixels bounded by preferred cut line pixels 46 or the output edges 42. In the exemplary assignment map 41 depicted in
It is generally desirable to create a continuous output mosaic image 10. In order to do so, there must be source images 16 for the entire assignment area 43 being depicted in the output mosaic image 10. More specifically, in order to create a preferred embodiment of the mosaic output image 10, all of the regions 45 preferably are assigned at least one source image as indicated in block 52. This means that if multiple source images 16 are being combined to create the output mosaic image 10, the source images 16 must be adjacent or more commonly, overlapping.
As a result of this overlap, it is common for there to be multiple source images 16 covering the same area on the ground. If multiple captured source images 16 are available for selection, a preferred captured source image 16 is chosen according to the selection criteria described below. In general, the method attempts to minimize the number of source images 16 assigned to a given region 45 in order to minimize the number of cut-lines within the particular region 45. Thus, for each region 45 (as noted above with reference to block 48 of the logic flow), one or more source images 16 are preferably located in an orientation that allows the source images 16 to completely cover the region 45, as indicated by branching decision block 56. When the source images 16 are aerial images, the ground location for the boundaries of the region 45 is determined, which can then be used to ascertain and select which source images 16 contain image data for that particular identified ground location. This is generally done by checking to see if the ground location lies within the image boundaries of a previously captured source image 16. In the example shown in
As indicated by branching decision block 64 and block 68, if more than one source image 16 is located for a particular region 45, then a Selection Heuristic for quality of coverage can optionally be utilized to determine which source image 16 to select for contributing pixels to the region 45. A variety of Selection Heuristics can be utilized and the following are discussed below by way of example. The Selection Heuristics can be selected from the group comprising (1) which source image 16 is closest to nadir in the area covering the region 45, (2) the first source image 16 located within a region 45, (3) a source image 16 that covers the largest number of surrounding preferred cut line pixels 46, and (4) a source image 16 that covers the largest number of other regions 45. As shown in box 72, once a Selection Heuristic selects a particular source image 16 for the region 45, pixels in the region 45 are designated as being assigned to particular pixels or groups of pixels of the selected source image 16.
As shown in block 70, if it is determined that a source image 16 completely covers a region 45 (branched decision block 56), then the single source image 16 is selected and the pixels in the region 45 are designated as being assigned to particular pixels or groups of pixels of the selected source image 16
As discussed above and shown in branching decision block 60, if a source image 16 is not located that completely covers the region 45 such as region 45d shown in
1. Find the source image 16 that covers the largest number of pixels in the region 45; then, find the source image 16 that covers the largest number of remaining uncovered pixels in region 45; Continue until all pixels are covered.
2. Find source image 16 that is closest to nadir at center point of region 45. Mark all pixels in region 45 covered by this source image 16 as “covered.” For each uncovered sub-region, find the source image 16 that is closest to nadir and mark the region 45 pixels covered by that source image 16 as “covered.” Preferably, this method is repeated until all pixels have been designated as “covered.”
3. Review list of possible source images 16 in order found, marking coverage until all pixels are covered.
4. Expand preferred cut lines until sub-regions are created that are small enough to be covered by a single source image 16. Use a single source image 16 assignment method to select the source image 16 for each of the new regions 45.
5. When selecting source images 16, the relative orientation of the camera that captured the source images 16 can be taken into account, e.g., in order to achieve a more desirable output mosaic image 10, source images 16 that were captured in the same, or nearly the same, relative orientation of the virtual camera, in terms of oblique downward angle and compass direction of the optical axis will be more compatible.
6. The type of camera can also be taken into account when selecting source images 16. That is, if the type of camera utilized the capture the source images 16 is radically different (for instance, a line scanner versus a full frame capture device), it may result in an undesirable resulting output mosaic image 10.
Once the Pairing Heuristic determines the coverage of the region utilizing multiple source images 10, the automated cut-line steering algorithm then designates particular parts of the source images 16 to the pixels in the assignment map 41, as indicated in block 80. This can be accomplished in a variety of manners and the following are examples of how this can be implemented.
1. As the source images 16 are selected, assign all unassigned pixels in the region 45 that are covered by the current source image 16 to that source image 16.
2. Assign pixels from the source images 16 based on each pixel's nearness to nadir.
3. Assign pixels from the source images 16 based on the number of surrounding preferred cut line pixels 46 covered by the source image 16.
As shown in block 82, if two or more source images 16 do not combine to completely cover a region 45 of the assignment map 41, then additional sources images may be obtained for each region that is designated as unassigned or the boundaries of the assignment map 41 can be adjusted.
As shown in block 84, once the pixels of the regions 45 have been designated or assigned to particular pixels or groups of pixels of the source images 16, the preferred cut line pixels 46 are then re-designated to match the source image 16 assignments of their bounded regions 45. As will be discussed below, this can be accomplished in a variety of manners and the method utilized for such re-designation may be dependent on whether or not a single source image 16 covers adjacent regions 45 separated by the preferred cut line pixels 46. The following are examples of how this can be accomplished.
1. If cut line area is only one pixel thick (as shown by way of example in
2. Reduce cut line area to one pixel thick, and then combine with assignment of adjacent region 45.
3. Work outward from assigned regions 45 into preferred cut line area, assigning region's 45 source image 16 to preferred cut line pixel if it is covered by the source image 16.
4. For each preferred cut line pixel 46, assign pixels from source image 16 that is nearest to nadir, choosing from source images 16 that are assigned to one of the adjacent regions 45 if possible.
As indicated by block 96, once all of the pixels in the assignment map 41 are designated or assigned particular pixels or groups of pixels from the source images 16, the output mosaic image 10 is created by contributing the designated or assigned pixel values to the output mosaic image 10, as indicated by block 88. This can be accomplished in a variety of manners and the following are merely examples of how this can be accomplished.
1. This could be done either with or without feathering (shown in block 92). Feathering makes the sharp changes occurring at the cut line appear more gradual by altering pixel values at the cut line with a blend of the pixel values from each of the source images. For example, if a feathering region along a cut-line between source image 16l, for example, and source image 16m is 4-pixels wide, then the first pixel in the feathering region might by comprised of 20% of the value from the corresponding pixel in source image 16l and 80% of the value from the corresponding pixel in source image 16m, the second pixel in the feathering region might by comprised of 40% of the value from the corresponding pixel in source image 16l and 60% of the value from the corresponding pixel in source image 16m, the third pixel in the feathering region might by comprised of 60% of the value from the corresponding pixel in source image 16l and 40% of the value from the corresponding pixel in source image 16m, and the fourth pixel in the feathering region might by comprised of 80% of the value from the corresponding pixel in source image 16l and 20% of the value from the corresponding pixel in source image 16m.
2. The contribution of a source image 16 to a given mosaic pixel could be determined using a nearest neighbor method, or based on averaging or interpolating source image 16 pixel values.
A surface location is preferably assigned to each pixel included in the assignment map 41 so that the output mosaic image 10 will be geo-referenced.
In practice, the methodology disclosed and claimed herein, consists of multiple steps and data transformations that can be accomplished by one of ordinary skill in the art given the present specification. In addition, follow-on work could create new algorithms specifically designed to deal with the complexities of source images 16, including, but not limited to, orthogonal, oblique, and/or nadir source images 16.
The current invention also contemplates a method of cut-line steering by creating a ground confidence map 100 (shown in
Referring now to
When trying to combine source images 16, a problem arises when the overlapping portions of source images 16 captured from different vantage points 106a, 106b, 107a, and 107b represent structures that are not on the actual ground. This problem is illustrated by the camera 105a in which the vantage points of the camera 105a for a plurality of pixels is blocked or shaded by a building 112. The effect of this shading is the capturing of a source image 16 in which the building is shown, but upon geo-referencing the source images 16, the pixels representing the ground location actually show the roof of the building 112 as shown in
In one aspect, the present invention is directed to solving this problem by creating the ground confidence map 100 in which the ground confidence is shown in
Ps=|Pa−Pb|/(Pa+Pb) (1)
where Ps is the pixel score associated with a pixel located within the kernel 104, Pa is the pixel value of a pixel located within the kernel 104 captured by camera 105a (Camera A) and indicative of a particular color, and Pb is the pixel value of the same pixel located within the same kernel 104 captured by camera 105b (Camera B) and indicative of a particular color. So, for instance, if a 3×3 kernel is being utilized, the formula would be:
Where Σ denotes summation,
r=row number, c=column number,
Ps[r,c] indicates the pixel score at that particular row and column
Pa[r′,c′] indicates the input image A pixel that corresponds to the location of Ps[r,c],
Pb[r″,c″] indicates the input image B pixel that corresponds to the location of Ps[r,c],
Note that r!=r′!=r″ and c!=c′!=c″ (!=means not equals) but that all three locations [r,c], [r′,c′] and [r″,c″] map to the same location in the assignment map.
Pa[r′+i,c′+j] indicates the input image A pixel that is offset from the corresponding pixel Pa[r′,c′]
Pb[r″+i,c″+j] indicates the input image A pixel that is offset from the corresponding pixel Pa[r″,c″].
The size of the kernel 104 (3×3, 3×4, 4×4, 5×5, 4×7, 12×14 or the like) determines how much of a pattern is looked at when determining how well the overlapping source images 16 for a particular pixel match. The larger the kernel, the more precise the pattern match will be. However, the larger the kernel, the longer the algorithm will take to run.
As will be understood by one skilled in the art, the pixels of the geo-referenced overlapping source images 16 may not be perfectly aligned, but are usually within one or two pixels of alignment. To account for this, the above kernel algorithm (Equation 2) is run on the direct corresponding pixel and also on nearby surrounding pixels, for example, within 1-3 pixels of the direct corresponding pixel. Pixels that represent ground locations will usually only be offset by one or two pixels. However, pixels that represent structures that are above the ground will be offset by a significant number of pixels, or will be occluded, and either way, will not get a good match, and therefore a bad ground confidence score, since they will either be two different features (when occluded) or will be two different parts of features (when they are too far away to test the same point in each).
Thus, the kernel algorithm of Equation 2 is run on the direct corresponding pixel and also on nearby surrounding pixels and the pixel score for each run of the kernel algorithm is initially stored, and then the initially stored pixel scores are compared to determine the best score. In the embodiment of Equation 2, the best score will be the lowest score. However, Equation 2 can be modified to make the best score the highest score.
The direct corresponding pixel is found by calculating the geographic location of the pixel in the ground confidence map 100 that a ground confidence score (using the origin and pixel size formulas from early on) is being generated for and then determining which pixel(s) that location corresponds to in the overlapping source images 16, using the projective equations of the source images 16. Again, because of the lack of perfectly precise data, the resulting row and column calculated may not correspond to the actual location, which is why the surrounding pixels are checked as well. This is typically done in a 1-pixel or 2-pixel radius from the corresponding pixel location. This radius needs to be large enough to account for the most common pixel location error. However, the larger the radius, the more computer time is necessary. In addition, if too large of a radius is used, then it will start to match for some things off the ground by a small amount, such as automobiles or one-story buildings.
An important aspect of the invention is the setting of a threshold value which is an acceptable margin of error associated with the composite pixel scores of pixels within a particular kernel 104. While the capturing of source images 16 is extremely precise, the capturing is not exact. It is preferable to create a threshold value for comparing the composite pixel scores, in which the composite pixel scores will be considered similar assuming the pixel does not deviate either above or below the pre-determined threshold value.
After the composite pixel score is determined for each pixel within the ground confidence map 100, each pixel is marked in the ground confidence map 100 by storing a pixel value indicative of the ground confidence score calculated for the particular pixel. Once the ground confidence map 100 has been constructed, the method of cut line steering can be accomplished in the same manner as previously described, except the preferred routes 24 are determined by contiguous pixels indicative of being on the ground as determined by the method described above.
While this invention discusses using captured images as source images 16 for input to the output mosaic image 10, it is not actually required. It is possible to use a projected image as input to this process or even to use another output mosaic image 10 as input to this process.
The one or more assignment maps 41, ground confidence maps 100, and output mosaic image(s) 10 and its corresponding data are then stored on one or more computer readable medium. The one or more assignment maps 41, ground confidence maps 100, and output mosaic image 10 can be stored in any format, including one of many industry standard image formats such as TIFF, JFIF, TARGA, Windows Bitmap File, PNG or any other industry standard format. The georeferencing information about the output mosaic image 10 might also be stored, either in a separate georeferencing file, such as an ESRI World File, or in the same file. For example, the georeferencing information can be stored in the same file through use of metadata tags within the file format, such as the industry standard GeoTIFF tags used in the standard TIFF format.
It should be understood that the processes described above can be performed with the aid of a computer system running image processing software adapted to perform the functions described above, and hardware or software embodying the logic of the processes described herein, as well as the resulting images and data are stored on one or more computer readable mediums. Examples of a computer readable medium include an optical storage device, a magnetic storage device, an electronic storage device or the like. The term “Computer System” as used herein means a system or systems that are able to embody and/or execute the logic of the processes described herein. The logic embodied in the form of software instructions or firmware for steering the cut-lines or creating the ground confidence map 100 may be executed on any appropriate hardware which may be a dedicated system or systems, or a general purpose computer system, or distributed processing computer system, all of which are well understood in the art, and a detailed description of how to make or use such computers is not deemed necessary herein. When the computer system is used to execute the logic of the processes described herein, such computer(s) and/or execution can be conducted at a same geographic location or multiple different geographic locations. Furthermore, the execution of the logic can be conducted continuously or at multiple discrete times. Further, such logic can be performed about simultaneously with the capture of the images, or thereafter or combinations thereof.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to those skilled in the art that certain changes and modifications may be practiced without departing from the spirit and scope thereof, as described in this specification and as defined in the appended claims below.
The present patent application is a continuation of the patent application identified by U.S. Ser. No. 16/577,806, filed Sep. 20, 2019, which is a continuation of the patent application identified by U.S. Ser. No. 15/897,997, filed Feb. 15, 2018, which issued as U.S. Pat. No. 10,424,047, which is a continuation of the patent application identified by U.S. Ser. No. 14/829,105, filed Aug. 18, 2015, which issued as U.S. Pat. No. 9,898,802, which is a continuation of the patent application identified by U.S. Ser. No. 14/045,460, filed Oct. 3, 2013, which issued as U.S. Pat. No. 9,147,276, which is a continuation of U.S. Ser. No. 12/221,571, filed Aug. 5, 2008, which issued as U.S. Pat. No. 8,588,547, the entire contents of each of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2273876 | Lutz et al. | Feb 1942 | A |
3153784 | Petrides et al. | Oct 1964 | A |
3594556 | Edwards | Jul 1971 | A |
3614410 | Bailey | Oct 1971 | A |
3621326 | Hobrough | Nov 1971 | A |
3661061 | Tokarz | May 1972 | A |
3716669 | Watanabe et al. | Feb 1973 | A |
3725563 | Woycechowsky | Apr 1973 | A |
3864513 | Halajian et al. | Feb 1975 | A |
3866602 | Furihata | Feb 1975 | A |
3877799 | O'Donnell | Apr 1975 | A |
4015080 | Moore-Searson | Mar 1977 | A |
4044879 | Stahl | Aug 1977 | A |
4184711 | Wakimoto | Jan 1980 | A |
4240108 | Levy | Dec 1980 | A |
4281354 | Conte | Jul 1981 | A |
4344683 | Stemme | Aug 1982 | A |
4360876 | Girault et al. | Nov 1982 | A |
4382678 | Thompson et al. | May 1983 | A |
4387056 | Stowe | Jun 1983 | A |
4396942 | Gates | Aug 1983 | A |
4463380 | Hooks | Jul 1984 | A |
4489322 | Zulch et al. | Dec 1984 | A |
4490742 | Wurtzinger | Dec 1984 | A |
4491399 | Bell | Jan 1985 | A |
4495500 | Vickers | Jan 1985 | A |
4527055 | Harkless et al. | Jul 1985 | A |
4543603 | Laures | Sep 1985 | A |
4586138 | Mullenhoff et al. | Apr 1986 | A |
4635136 | Ciampa et al. | Jan 1987 | A |
4653136 | Denison | Mar 1987 | A |
4653316 | Fukuhara | Mar 1987 | A |
4673988 | Jansson et al. | Jun 1987 | A |
4686474 | Olsen et al. | Aug 1987 | A |
4688092 | Kamel et al. | Aug 1987 | A |
4689748 | Hofmann | Aug 1987 | A |
4707698 | Constant et al. | Nov 1987 | A |
4758850 | Archdale et al. | Jul 1988 | A |
4805033 | Nishikawa | Feb 1989 | A |
4807024 | Mclaurin et al. | Feb 1989 | A |
4814711 | Olsen et al. | Mar 1989 | A |
4814896 | Heitzman et al. | Mar 1989 | A |
4843463 | Michetti | Jun 1989 | A |
4899296 | Khattak | Feb 1990 | A |
4906198 | Cosimano et al. | Mar 1990 | A |
4953227 | Katsuma et al. | Aug 1990 | A |
4956872 | Kimura | Sep 1990 | A |
5034812 | Rawlings | Jul 1991 | A |
5086314 | Aoki et al. | Feb 1992 | A |
5121222 | Endoh et al. | Jun 1992 | A |
5138444 | Hiramatsu | Aug 1992 | A |
5155597 | Lareau et al. | Oct 1992 | A |
5164825 | Kobayashi et al. | Nov 1992 | A |
5166789 | Myrick | Nov 1992 | A |
5187754 | Currin et al. | Feb 1993 | A |
5191174 | Chang et al. | Mar 1993 | A |
5200793 | Ulich et al. | Apr 1993 | A |
5210586 | Grage et al. | May 1993 | A |
5231435 | Blakely | Jul 1993 | A |
5247356 | Ciampa | Sep 1993 | A |
5251037 | Busenberg | Oct 1993 | A |
5265173 | Griffin et al. | Nov 1993 | A |
5267042 | Tsuchiya et al. | Nov 1993 | A |
5270756 | Busenberg | Dec 1993 | A |
5296884 | Honda et al. | Mar 1994 | A |
5335072 | Tanaka et al. | Aug 1994 | A |
5342999 | Frei et al. | Aug 1994 | A |
5345086 | Bertram | Sep 1994 | A |
5353055 | Hiramatsu | Oct 1994 | A |
5369443 | Woodham | Nov 1994 | A |
5402170 | Parulski et al. | Mar 1995 | A |
5414462 | Veatch | May 1995 | A |
5467271 | Abel et al. | Nov 1995 | A |
5481479 | Wight et al. | Jan 1996 | A |
5486948 | Imai et al. | Jan 1996 | A |
5506644 | Suzuki et al. | Apr 1996 | A |
5508736 | Cooper | Apr 1996 | A |
5555018 | von Braun | Sep 1996 | A |
5604534 | Hedges et al. | Feb 1997 | A |
5617224 | Ichikawa et al. | Apr 1997 | A |
5633946 | Lachinski et al. | May 1997 | A |
5668593 | Lareau et al. | Sep 1997 | A |
5677515 | Selk et al. | Oct 1997 | A |
5798786 | Lareau et al. | Aug 1998 | A |
5835133 | Moreton et al. | Nov 1998 | A |
5841574 | Willey | Nov 1998 | A |
5844602 | Lareau et al. | Dec 1998 | A |
5852753 | Lo et al. | Dec 1998 | A |
5894323 | Kain et al. | Apr 1999 | A |
5899945 | Baylocq et al. | May 1999 | A |
5963664 | Kumar et al. | Oct 1999 | A |
6037945 | Loveland | Mar 2000 | A |
6075905 | Herman et al. | Jun 2000 | A |
6088055 | Lareau et al. | Jul 2000 | A |
6094215 | Sundahl et al. | Jul 2000 | A |
6097854 | Szeliski et al. | Aug 2000 | A |
6108032 | Hoagland | Aug 2000 | A |
6130705 | Lareau et al. | Oct 2000 | A |
6157747 | Szeliski et al. | Dec 2000 | A |
6167300 | Cherepenin et al. | Dec 2000 | A |
6222583 | Matsumura et al. | Apr 2001 | B1 |
6236886 | Cherepenin et al. | May 2001 | B1 |
6256057 | Mathews et al. | Jul 2001 | B1 |
6373522 | Mathews et al. | Apr 2002 | B2 |
6421610 | Carroll et al. | Jul 2002 | B1 |
6434280 | Peleg et al. | Aug 2002 | B1 |
6597818 | Kumar et al. | Jul 2003 | B2 |
6639596 | Shum et al. | Oct 2003 | B1 |
6711475 | Murphy | Mar 2004 | B2 |
6731329 | Feist et al. | May 2004 | B1 |
6747686 | Bennett | Jun 2004 | B1 |
6810383 | Loveland | Oct 2004 | B1 |
6816819 | Loveland | Nov 2004 | B1 |
6826539 | Loveland | Nov 2004 | B2 |
6829584 | Loveland | Dec 2004 | B2 |
6834128 | Altunbasak et al. | Dec 2004 | B1 |
6876763 | Sorek et al. | Apr 2005 | B2 |
7009638 | Gruber et al. | Mar 2006 | B2 |
7018050 | Ulichney et al. | Mar 2006 | B2 |
7046401 | Dufaux et al. | May 2006 | B2 |
7061650 | Walmsley et al. | Jun 2006 | B2 |
7065260 | Zhang et al. | Jun 2006 | B2 |
7123382 | Walmsley et al. | Oct 2006 | B2 |
7127348 | Smitherman et al. | Oct 2006 | B2 |
7133551 | Chen | Nov 2006 | B2 |
7142984 | Rahmes et al. | Nov 2006 | B2 |
7184072 | Loewen et al. | Feb 2007 | B1 |
7233691 | Setterholm | Jun 2007 | B2 |
7262790 | Bakewell | Aug 2007 | B2 |
7348895 | Lagassey | Mar 2008 | B2 |
7359555 | Porikli et al. | Apr 2008 | B2 |
7499586 | Agarwala et al. | Mar 2009 | B2 |
7509241 | Guo | Mar 2009 | B2 |
7630579 | Mai et al. | Dec 2009 | B2 |
7728833 | Verma | Jun 2010 | B2 |
7778491 | Steedly et al. | Aug 2010 | B2 |
7832267 | Woro | Nov 2010 | B2 |
7840032 | Ofek | Nov 2010 | B2 |
7844499 | Yahiro | Nov 2010 | B2 |
7873238 | Schultz et al. | Jan 2011 | B2 |
8078396 | Meadow | Dec 2011 | B2 |
8233741 | Wilson et al. | Jul 2012 | B1 |
8593518 | Schultz et al. | Nov 2013 | B2 |
8705843 | Lieckfeldt | Apr 2014 | B2 |
20020041328 | LeCompte et al. | Apr 2002 | A1 |
20020041717 | Murata et al. | Apr 2002 | A1 |
20020114536 | Xiong et al. | Aug 2002 | A1 |
20030014224 | Guo et al. | Jan 2003 | A1 |
20030043824 | Remboskl et al. | Mar 2003 | A1 |
20030088362 | Melero et al. | May 2003 | A1 |
20030164962 | Nims et al. | Sep 2003 | A1 |
20030214585 | Bakewell | Nov 2003 | A1 |
20040057633 | Mai et al. | Mar 2004 | A1 |
20040105090 | Schultz et al. | Jun 2004 | A1 |
20040167709 | Smitherman et al. | Aug 2004 | A1 |
20050063608 | Clarke et al. | Mar 2005 | A1 |
20050073241 | Yamauchi et al. | Apr 2005 | A1 |
20050088251 | Matsumoto | Apr 2005 | A1 |
20050147322 | Saed | Jul 2005 | A1 |
20050169521 | Hel-Or | Aug 2005 | A1 |
20050209774 | Finlay | Sep 2005 | A1 |
20060028550 | Palmer et al. | Feb 2006 | A1 |
20060092043 | Lagassey | May 2006 | A1 |
20060238383 | Kimchi et al. | Oct 2006 | A1 |
20060250515 | Koseki et al. | Nov 2006 | A1 |
20070024612 | Balfour | Feb 2007 | A1 |
20070046448 | Smitherman | Mar 2007 | A1 |
20070237420 | Steedly et al. | Oct 2007 | A1 |
20080120031 | Rosenfeld et al. | May 2008 | A1 |
20080123994 | Schultz et al. | May 2008 | A1 |
20080158256 | Russell et al. | Jul 2008 | A1 |
20090177458 | Hochart et al. | Jul 2009 | A1 |
20090208095 | Zebedin | Aug 2009 | A1 |
20090304227 | Kennedy et al. | Dec 2009 | A1 |
20100296693 | Thornberry et al. | Nov 2010 | A1 |
20110033110 | Shimamura et al. | Feb 2011 | A1 |
20130246204 | Thornberry et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
331204 | Jul 2006 | AT |
9783798 | Apr 1999 | AU |
3874400 | Sep 2000 | AU |
03291364 | Jun 2004 | AU |
0316110 | Sep 2005 | BR |
2402234 | Sep 2000 | CA |
2505566 | May 2004 | CA |
1735897 | Feb 2006 | CN |
60017384 | Mar 2006 | DE |
60306301 | Nov 2006 | DE |
1418402 | Oct 2006 | DK |
1010966 | Feb 1999 | EP |
1180967 | Feb 2002 | EP |
1418402 | May 2004 | EP |
0 979 487 | Mar 2006 | EP |
1696204 | Aug 2006 | EP |
2266704 | Mar 2007 | ES |
1088421 | Nov 2006 | HK |
2003317089 | Nov 2003 | JP |
2006505794 | Feb 2006 | JP |
PA05004987 | Feb 2006 | MX |
200503341 | May 2007 | SG |
WO9918732 | Apr 1999 | WO |
WO2000053090 | Sep 2000 | WO |
WO2004044692 | May 2004 | WO |
WO2005088251 | Sep 2005 | WO |
WO1999006943 | Mar 2006 | WO |
WO2008028040 | Mar 2008 | WO |
Entry |
---|
Ackermann, Prospects of Kinematic GPS Aerial Triangulation, ITC Journal, 1992. |
Ciampa, John A., “Pictometry Digital Video Mapping”, SPIE. vol. 2598, pp. 140-148, 1995. |
Ciampa, J. A., Oversee, Presented at Reconstruction After Urban earthquakes, Buffalo, NY, 1989. |
Dunford et al., Remote Sensing for Rural Development Planning in Africa, The Journal for the International Institute for Aerial Survey and Earth Sciences, 2:99-108, 1983. |
Gagnon, P.A., Agnard, J. P., Nolette, C., & Boulianne, M., “A Micro-Computer based General Photogrammetric System”, Photogrammetric Engineering and Remote Sensing, vol. 56, No. 5., pp. 623-625, 1990. |
Konecny, G., “Issues of Digital Mapping”, Leibniz University Hannover, Germany, GIS Ostrava 2008, Ostrava 27.—Jan. 30, 2008, pp. 1-8. |
Konecny, G., “Analytical Aerial Triangulation with Convergent Photography”, Department of Surveying Engineering, University of New Brunswick, pp. 37-57, 1966. |
Konecny, G., “Interior Orientation and Convergent Photography”, Photogrammetric Engineering, pp. 625-634, 1965. |
Graham, Lee A., “Airborne Video for Near-Real-Time Vegetation Mapping”, Journal of Forestry, 8:28-32, 1993. |
Graham, Horita TRG-50 SMPTE Time-Code Reader, Generator, Window Inserter, 1990. |
Hess, L.L, et al., “Geocoded Digital Videography for Validation of Land Cover Mapping in the Amazon Basin”, International Journal of Remote Sensing, vol. 23, No. 7, pp. 1527-1555, 2002. |
Hinthorne, J., et al., “Image Processing in The Grass GIS”, Geoscience and Remote Sensing Symposium, 4:2227-2229, 1991. |
Imhof, Ralph K., “Mapping from Oblique Photographs”, Manual of Photogrammetry, Chapter 18, 1966. |
Jensen, John R., Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice-Hall, 1986; 399 pages. |
Lapine, Lewis A., “Practical Photogrammetric Control by Kinematic GPS”, GPS World, 1(3):44-49, 1990. |
Lapine, Lewis A., Airborne Kinematic GPS Positioning for Photogrammetry—The Determination of the Camera Exposure Station, Silver Spring, MD, 11 pages, at least as early as 2000. |
Linden et al., Airborne Video Automated Processing, US Forest Service Internal report, Fort Collins, CO, 1993. |
Myhre, Dick, “Airborne Video System Users Guide”, USDA Forest Service, Forest Pest Management Applications Group, published by Management Assistance Corporation of America, 6 pages, 1992. |
Myhre et al., “An Airborne Video System Developed Within Forest Pest Management—Status and Activities”, 10 pages, 1992. |
Myhre et al., “Airborne Videography—A Potential Tool for Resource Managers”—Proceedings: Resource Technology 90, 2nd International Symposium on Advanced Technology in Natural Resource Management, 5 pages, 1990. |
Myhre et al., Aerial Photography for Forest Pest Management, Proceedings of Second Forest Service Remote Sensing Applications Conference, Slidell, Louisiana, 153-162, 1988. |
Myhre et al., “Airborne Video Technology”, Forest Pest Management/Methods Application Group, Fort Collins, CO, pp. 1-6, at least as early as Jul. 30, 2006. |
Norton-Griffiths et al. 1982. “Sample surveys from light aircraft combining visual observations and very large scale color photography”. University of Arizona Remote Sensing Newsletter 82-2:1-4. |
Norton-Griffiths et al., “Aerial Point Sampling for Land Use Surveys”, Journal of Biogeography, 15:149-156, 1988. |
Novak, Rectification of Digital Imagery, Photogrammetric Engineering and Remote Sensing, 339-344, 1992. |
Slaymaker, Dana M., “Point Sampling Surveys with GPS-logged Aerial Videography”, Gap Bulletin No. 5, University of Idaho, http://www.gap.uidaho.edu/Bulletins/5/PSSwGPS.html, 1996. |
Slaymaker, et al., “Madagascar Protected Areas Mapped with GPS-logged Aerial Video and 35mm Air Photos”, Earth Observation magazine, vol. 9, No. 1, http://www.eomonline.com/Common/Archives/2000jan/00jan__tableofcontents.html, pp. 1-4, 2000. |
Slaymaker, et al., “Cost-effective Determination of Biomass from Aerial Images”, Lecture Notes In Computer Science, 1737:67-76, http://portal.acm.org/citation.cfm?id=648004.743267&coll=GUIDE&dl=, 1999. |
Slaymaker, et al., “A System for Real-time Generation of Geo-referenced Terrain Models”, 4232A-08, SPIE Enabling Technologies for Law Enforcement Boston, MA, ftp://vis-ftp.cs.umass.edu/Papers/schultz/spie2000.pdf, 2000. |
Slaymaker, et al., “Integrating Small Format Aerial Photography, Videography, and a Laser Profiler for Environmental Monitoring”, In ISPRS WG III/1 Workshop on Integrated Sensor Calibration and Orientation, Portland, Maine, 1999. |
Slaymaker, et al., “Calculating Forest Biomass With Small Format Aerial Photography, Videography And A Profiling Laser”, In Proceedings of the 17th Biennial Workshop on Color Photography and Videography in Resource Assessment, Reno, NV, 1999. |
Slaymaker et al., Mapping Deciduous Forests in Southern New England using Aerial Videography and Hyperclustered Multi-Temporal Landsat TM Imagery, Department of Forestry and Wildlife Management, University of Massachusetts, 1996. |
Star et al., “Geographic Information Systems an Introduction”, Prentice-Hall, 1990. |
Tomasi et al., “Shape and Motion from Image Streams: a Factorization Method”—Full Report on the Orthographic Case, pp. 9795-9802, 1992. |
Warren, Fire Mapping with the Fire Mousetrap, Aviation and Fire Management, Advanced Electronics System Development Group, USDA Forest Service, 1986. |
Welch, R., “Desktop Mapping with Personal Computers”, Photogrammetric Engineering and Remote Sensing, 1651-1662, 1989. |
Westervelt, James, “Introduction to GRASS 4”, pp. 1-25, 1991. |
“RGB Spectrum Videographics Report, vol. 4, No. 1, McDonnell Douglas Integrates RGB Spectrum Systems in Helicopter Simulators”, pp. 1-6, 1995. |
RGB “Computer Wall”, RGB Spectrum, 4 pages, 1995. |
“The First Scan Converter with Digital Video Output”, Introducing . . . The RGB/Videolink 1700D-1, RGB Spectrum, 2 pages, 1995. |
ERDAS Field Guide, Version 7.4, A Manual for a commercial image processing system, 1990. |
“Image Measurement and Aerial Photography”, Magazine for all branches of Photogrammetry and its fringe areas, Organ of the German Photogrammetry Association, Berlin-Wilmersdorf, No. 1, 1958. |
“Airvideo Analysis”, MicroImages, Inc., Lincoln, NE, 1 page, Dec. 1992. |
Zhu, Zhigang, Hanson, Allen R., “Mosaic-Based 3D Scene Representation and Rendering”, Image Processing, 2005, ICIP 2005, IEEE International Conference on 1(2005). |
Mostafa, et al., “Direct Positioning and Orientation Systems How do they Work? What is the Attainable Accuracy?”, Proceeding, American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, MO, Apr. 24-27, 2001. |
“POS AV” georeferenced by APPLANIX aided inertial technology, http://www.applanix.com/products/posav_index.php. |
Mostafa, et al., “Ground Accuracy from Directly Georeferenced Imagery”, Published in GIM International vol. 14 N. Dec. 12, 2000. |
Mostafa, et al., “Airborne Direct Georeferencing of Frame Imagery: An Error Budget”, The 3rd International Symposium on Mobile Mapping Technology, Cairo, Egypt, Jan. 3-5, 2001. |
Mostafa, M.R. and Hutton, J., “Airborne Kinematic Positioning and Attitude Determination Without Base Stations”, Proceedings, International Symposium on Kinematic Systems in Geodesy, Geomatics, and Navigation (KIS 2001) Banff, Alberta, Canada, Jun. 4-8, 2001. |
Mostafa, et al., “Airborne DGPS Without Dedicated Base Stations for Mapping Applications”, Proceedings of ION-GPS 2001, Salt Lake City, Utah, USA, Sep. 11, 2014. |
Mostafa, “ISAT Direct Exterior Orientation QA/QC Strategy Using POS Data”, Proceedings of OEEPE Workshop: Integrated Sensor Orientation, Hanover, Germany, Sep. 17-18, 2001. |
Mostafa, “Camera/IMU Boresight Calibration: New Advances and Performance Analysis”, Proceedings of the ASPRS Annual Meeting, Washington, D.C., Apr. 21-26, 2002. |
Hiatt, “Sensor Integration Aids Mapping at Ground Zero”, Photogrammetric Engineering and Remote Sensing, Sep. 2002, p. 877-878. |
Mostafa, “Precision Aircraft GPS Positioning Using CORS”, Photogrammetric Engineering and Remote Sensing, Nov. 2002, p. 1125-1126. |
Mostafa, et al., System Performance Analysis of INS/DGPS Integrated System for Mobile Mapping System (MMS), Department of Geomatics Engineering, University of Calqary, Commission VI, WG VI/4, Mar. 2004. |
Artes F., & Hutton, J., “GPS and Inertial Navigation Delivering”, Sep. 2005, GEOconnexion International Magazine, p. 52-53, Sep. 2005. |
“POS AV” APPLANIX, Product Outline, airborne@applanix.com, 3 pages, Mar. 28, 2007. |
Postrack, “Factsheet”, APPLANIX, Ontario, Canada, www.applanix.com, Mar. 2007. |
POS AV “Digital Frame Camera Applications”, 3001 Inc., Brochure, 2007. |
POS AV “Digital Scanner Applications”, Earthdata Brochure, Mar. 2007. |
POS AV “Film Camera Applications” AeroMap Brochure, Mar. 2007. |
POS AV “LIDAR Applications” MD Atlantic Brochure, Mar. 2007. |
POS AV “OEM System Specifications”, 2005. |
POS AV “Synthetic Aperture Radar Applications”, Overview, Orbisat Brochure, Mar. 2007. |
“POSTrack V5 Specifications” 2005. |
“Remote Sensing for Resource Inventory Planning and Monitoring”, Proceeding of the Second Forest Service Remote Sensing Applications Conference—Slidell, Louisiana and NSTL, Mississippi, Apr. 11-15, 1988. |
“Protecting Natural Resources with Remote Sensing”, Proceeding of the Third Forest Service Remote Sensing Applications Conference—Apr. 9-13, 1990. |
Heipke, et al., “Test Goals and Test Set Up for the OEEPE Test—Integrated Sensor Orientation”, 1999. |
Kumar, et al., “Registration of Video to Georeferenced Imagery”, Sarnoff Corporation, CN5300, Princeton, NJ, 1998. |
McConnel, Proceedings Aerial Pest Detection and Monitoring Workshop—1994.pdf, USDA Forest Service Forest Pest Management, Northern Region, Intermountain region, Forest Insects and Diseases, Pacific Northwest Region. |
“Standards for Digital Orthophotos”, National Mapping Program Technical Instructions, US Department of the Interior, Dec. 1996. |
Tao, “Mobile Mapping Technology for Road Network Data Acquisition”, Journal of Geospatial Engineering, vol. 2, No. 2, pp. 1-13, 2000. |
“Mobile Mapping Systems Lesson 4”, Lesson 4 SURE 382 Geographic Information Systems II, pp. 1-29, Jul. 2, 2006. |
Konecny, G., “Mechanische Radialtriangulation mit Konvergentaufnahmen”, Bildmessung und Luftbildwesen, 1958, Nr. 1. |
Myhre, “ASPRS/ACSM/RT 92” Technical papers, Washington, D.C., vol. 5 Resource Technology 92, Aug. 3-8, 1992. |
Rattigan, “Towns get new view from above,” The Boston Globe, Sep. 5, 2002. |
Mostafa, et al., “Digital image georeferencing from a multiple camera system by GPS/INS,” ISP RS Journal of Photogrammetry & Remote Sensing, 56(I): I-12, Jun. 2001. |
Dillow, “Grin, or bare it, for aerial shot,” Orange County Register (California), Feb. 25, 2001. |
Anonymous, “Live automatic coordinates for aerial images,” Advanced Imaging, 12(6):51, Jun. 1997. |
Anonymous, “Pictometry and US Geological Survey announce—Cooperative Research and Development Agreement,” Press Release published Oct. 20, 1999. |
Miller, “Digital software gives small Arlington the Big Picture,” Government Computer NewsState & Local, 7(12), Dec. 2001. |
Garrett, “Pictometry: Aerial photography on steroids,” Law Enforcement Technology 29(7):114-116, Jul. 2002. |
Weaver, “County gets an eyeful,” The Post-Standard (Syracuse, NY), May 18, 2002. |
Reed, “Firm gets latitude to map O.C. in 3D,” Orange County Register (California), Sep. 27, 2000. |
Reyes, “Orange County freezes ambitious aerial photography project,” Los Angeles Times, Oct. 16, 2000. |
Aerowest Pricelist of Geodata as of Oct. 21, 2005 and translations to English 3 pages. |
www.archive.org Web site showing archive of German AeroDach Web Site http://www.aerodach.de from Jun. 13, 2004 (retrieved Sep. 20, 2012) and translations to English 4 pages. |
AeroDach®Online Roof Evaluation Standard Delivery Format and 3D Data File: Document Version 01.00.2002 with publication in 2002, 13 pages. |
Noronha et al., “Detection and Modeling of Building from Multiple Aerial Images, ” Institute for Robotics and Intelligent Systems, University of Southern California, Nov. 27, 2001, 32 pages. |
Applicad Reports dated Nov. 25, 1999-Mar. 9, 2005, 50 pages. |
Applicad Online Product Bulletin archive from Jan. 7, 2003, 4 pages. |
Applicad Sorcerer Guide, Version 3, Sep. 8, 1999, 142 pages. |
Xactimate Claims Estimating Software archive from Feb. 12, 2010, 8 pages. |
Bignone et al, Automatic Extraction of Generic House Roofs from High Resolution Aerial Imagery, Communication Technology Laboratory, Swiss Federal Institute of Technology ETH, CH-8092 Zurich, Switzerland, 12 pages, 1996. |
Geospan 2007 Job proposal. |
Greening et al., Commercial Applications of GPS-Assisted Photogrammetry, Presented at GIS/LIS Annual Conference and Exposition, Phoenix, AZ, Oct. 1994. |
Gaoxiang et al., “Second Generation Mosaic: A Novel Mechanism Based on Reference Database for Map Updating”, ISPRS Workshop on Geospatial Data Infrastructure: from data acquisition and updating to smarter services, Oct. 2011, pp. 80-86. |
Mikhail, Edward M., Multi-Source Feature Extraction and Visualization in Urban Environments, International Archives of Photogrammetry and Remote Sensing, vol. XXXIII, Part B3 Amsterdam 2000. |
PCT/US2009/052776 International Search Report, dated Mar. 15, 2010. |
PCT/US2009/052776 Preliminary Report on Patentability, dated Feb. 8, 2011. |
Supplementary European Search Report and European Search opinion regarding EP App. No. 09805478.6 dated Jun. 14, 2017. |
Supplementary European Search Report regarding EP App. No. 09805478.6 dated Apr. 12, 2017, 8 pages. |
Soille, Pierre, “Morphological Image Compositing,” IEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 5, 12 pages, May 2006. |
Araujo Jr., “A Morphological Algorithm for Photomosaicking,” Signal Processing VIII: Theories and Applications, pp. 1881-1884, Sep. 1996. |
Paparoditis, “Building Detection and Reconstruction from Mid- and High-Resolution Aerial Imagery,” Computer Vision and Image Understanding, vol. 72, No. 2, pp. 122-142, Nov. 1998. |
European Patent Office, Examination Report regarding European Patent Application No. 09805478.6, dated Sep. 11, 2018. |
Pictometry International Corp., Response to Sep. 11, 2018 Examination Report regarding European Patent Application No. 09805478.6, Filed Mar. 20, 2019. |
Number | Date | Country | |
---|---|---|---|
20210133924 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16577806 | Sep 2019 | US |
Child | 17095407 | US | |
Parent | 15897997 | Feb 2018 | US |
Child | 16577806 | US | |
Parent | 14829105 | Aug 2015 | US |
Child | 15897997 | US | |
Parent | 14045460 | Oct 2013 | US |
Child | 14829105 | US | |
Parent | 12221571 | Aug 2008 | US |
Child | 14045460 | US |