Cut-resistant gloves containing fiberglass and para-aramid

Information

  • Patent Grant
  • 7934395
  • Patent Number
    7,934,395
  • Date Filed
    Monday, January 26, 2009
    15 years ago
  • Date Issued
    Tuesday, May 3, 2011
    13 years ago
Abstract
This invention relates to a cut-resistant knit glove comprising a) cut-resistant composite yarn having a core comprising at least two core yarns and at least one first wrapping yarn helically wrapped around the core, the core yarns including at least one 50 to 400 denier (56 to 440 dtex)glass fiber filament yarn and at least one 200 to 800 denier (220 to 890 dtex) para-aramid yarn, the first wrapping yarn including at least one 100 to 800 denier (110 to 890 dtex) yarn selected from the group consisting of aliphatic polyamide, polyester, and mixtures thereof;b) companion yarn of 200 to 1600 denier (220 to 1800 dtex) selected from the group consisting of aliphatic polyamide, polyester, natural fiber, cellulosic fiber, and mixtures thereof; andc) lining yarn comprising a composite yarn of from 500 to 1200 denier (560 to 1300 dtex) comprising aliphatic polyamide fiber, polyester fiber, natural fiber, cellulosic fiber, and mixtures thereof; and wherein the cut-resistant composite yarn, the companion yarn, and the lining yarn are co-knit in the glove with the lining yarn plated on the interior of the glove and the cut-resistant composite yarn and companion yarn forming the exterior of the glove.
Description
BACKGROUND OF INVENTION

1. Field of the Invention


This invention relates to improved constructions of cut-resistant knitted gloves containing glass filaments and para-aramid fiber. The gloves have improved comfort and abrasion resistance in part because of the addition of a mobile companion yarn in the knit structure.


2. Description of Related Art


Cut-resistant gloves are commercially available that are knit with para-aramid fiber yarns plated to such things as cotton, with the layer of cotton located on the inside of the glove next to the skin. The cotton helps improve the comfort of the glove because para-aramid fibers can be abrasive to the skin. U.S. Pat. No. 6,044,493 to Post discloses a protective material such as a glove comprising a plurality of cut-resistant strands and a plurality of elastic strands knitted together to form a plated knit in which the cut-resistant strands form the outer surface and the elastic strands form the inner surface of the material.


In an effort to improve the cut performance of cut-resistant yarns, materials with high hardness have been combined with cut-resistant yarns. U.S. Pat. No. 5,119,512 to Dunbar et al. discloses cut-resistant yarn, fabric and gloves made from a single yarn comprising at least one flexible cut-resistant fibrous material and at least another material having a high level of hardness. U.S. Pat. No.6,161,400 to Hummel discloses cut-resistant fabric and gloves made from two different yarns, one that contains cut-resistant fiber and one that contains fibers having high hardness. One of the two yarns is located predominantly on the exterior of the glove and the other predominantly on the interior. Likewise, U.S. Pat. No. 5,965,223 to Andrews et al. discloses a protective fabric and glove that has, at a minimum, an outer layer made with a yarn composed of an abrasive material plated to an inner layer of inherently cut-resistant or high-tensile strength material.


Bare glass fiber, while having high hardness, is also very brittle, easily abraded, and is highly irritating to the skin. One solution to this skin irritation problem has been to use fiberglass in the form of what has generally been referred to as composite yarns or wrapped yarns; that is, filaments of glass fiber are covered by a plurality of helically wrapped yarns. Representative yarns and processes for making such yarns as disclosed, for example, in U.S. Pat. No. 5,628,172 to Kolmes et al. and U.S. Pat. No. 5,845,476 to Kolmes. These wrappings generally are closely spaced and/or tightly wrapped around the core fiberglass filaments so as to get good coverage, but the unintended result is these composite or wrapped yarns tend to be stiff.


Further, such wrapped yarns help prevent skin irritation as long as the composite yarns remained undamaged. Unfortunately, during no rmal use, such gloves get nicks and abrasions that uncover the fiberglass which can irritate the skin even though the gloves remain useable.


Therefore what is needed is an improved glove construction for improved comfort and abrasion resistance during normal use.


BRIEF SUMMARY OF THE INVENTION

This invention relates to a cut-resistant knit glove comprising


a) cut-resistant composite yarn having a core comprising at least two core yarns and at least one first wrapping yarn helically wrapped around the core, the core yarns including at least one 50 to 400 denier (56 to 440 dtex) glass fiber filament yarn and at least one 200 to 800 denier (220 to 890 dtex) para-aramid yarn, the first wrapping yarn including at least one 100 to 800 denier (110 to 890 dtex) yarn selected from the group consisting of aliphatic polyamide, polyester, and mixtures thereof;


b) companion yarn of 200 to 1600 denier (220 to 1800 dtex) selected from the group consisting of aliphatic polyamide, polyester, natural fiber, cellulosic fiber, and mixtures thereof; and


c) lining yarn comprising a composite yarn of from 500 to 1200 denier (560 to 1300 dtex) comprising aliphatic polyamide fiber, polyester fiber, natural fiber, cellulosic fiber, and mixtures thereof; and wherein the cut-resistant composite yarn, the companion yarn, and the lining yarn are co-knit in the glove with the lining yarn plated on the interior of the glove and the cut-resistant composite yarn and companion yarn forming the exterior of the glove.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a representation of a cut-resistant glove made by knitting yarns using a glove knitting machine.



FIG. 2 is a representation of the cut-resistant composite yarn, companion yarn and lining yarn in the cut-resistant glove of FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

This invention relates to a cut-resistant knit glove construction comprising at least three types of yarns. These yarns include a cut-resistant composite yarn containing fiberglass, a companion yarn, and a liner yarn that are co-knit together with the lining yarn plated on the interior of the glove.


Cut-Resistant Composite Yarn


The cut-resistant composite yarn has a core comprising at least two different core yarns and at least one wrapping yarn helically wrapped around the two combined core yarns. At least one of the core yarns is glass fiber filament yarn having a linear density of from 50 to 400 denier (56 to 440 dtex). It is thought a denier less than 50 (dtex less than 56) does not provide adequate cut protection, while a denier greater than 400 (dtex greater than 440) results in a stiffer fabric than is desired. In some preferred embodiments, the final glove size is 10 gauge or thicker, and in some embodiments the glass fiber filament yarn has a linear density of from 100 to 200 denier (110 to 220 dtex).


The terms glass fiber and fiberglass are used interchangeably herein to mean glass fiber filament yarn. Glass fiber is formed by extruding molten silica-based or other formulation glass into thin strands or filaments with diameters suitable for textile processing. Two types of fiberglass commonly used are referred to as S-glass and E-glass. E-glass has good insulation properties and will maintain its properties up to 1500 degrees F. (800 degrees C.). S-glass has a high tensile strength and is stiffer than E-glass. Suitable glass fiber is available from B&W Fiber Glass, Inc. and a number of other glass fiber manufacturers. In some embodiments, the use of E-glass is preferred in the cut-resistant composite yarn.


This core yarn is combined with at least one other core yarn that is a para-aramid yarn having a linear density of from 200 to 800 denier (220 to 890 dtex). Para-aramid fibers are made from an aramid polymer wherein the two rings or radicals are para oriented with respect to each other along the molecular chain. Methods for making para-aramid fibers are generally disclosed in, for example, U.S. Pat. Nos. 3,869,430; 3,869,429; and 3,767,756. Such aromatic polyamide organic fibers and various forms of these fibers are available from E. I. du Pont de Nemours & Company, Wilmington, Del. sold under the trademark Kevlar® fibers and from Teijin Ltd. of Japan sold under the trademark Twaron® fibers. For the purposes herein, Technora® fiber, which is available from Teijin Ltd. of Tokyo, Japan, and is made from copoly(p-phenylene/3,4′diphenyl ester terephthalamide), is considered a para-aramid fiber. In some embodiments, the para-aramid yarn comprises staple fibers, in some embodiments the para-aramid yarn comprises continuous filaments. In some embodiments, the para-aramid is poly(paraphenylene terephthalamide).


At least one additional yarn is then helically wrapped around the combined core yarns. This at least one wrapping yarn includes fibers selected from the group consisting of aliphatic polyamide, polyester, and mixtures thereof and has a linear density of from 100 to 800 denier (110 to 890 dtex). In some preferred embodiments, the wrapping yarn has a linear density of from 150 to 600 denier (167 to 680 dtex). In some embodiments, the yarn is wrapped around the core yarn at a frequency of 5 to 20 turns per inch (2 to 8 turns per cm). A higher frequency than 20 turns per inch (8 turns per cm) will result it a very stiff yarn and a lower frequency than 5 turns per inch (2 turns per cm) will hurt the durability of the glove in that the glass fiber filament core will not be fully covered. In some embodiments, the wrapping yarn is a spun staple yarn, in some other embodiments the wrapping yarn is a continuous filament yarn. In some preferred embodiments, the wrapping yarn is a textured continuous filament yarn.


Since two highly cut resistant yarns are used in the core of the cut-resistant composite yarn, it is the inclusion of theses core yarns that provide the primary cut resistance to the glove. In some preferred embodiments the core of the cut-resistant composite yarn consists solely of only two core yarns, one of fiberglass and the other of para-aramid fiber, particularly poly(paraphenylene terephthalamide) fiber, and the wrapping of one yarn of aliphatic nylon or polyester.


Companion Yarn


While the cut-resistant composite yarn can include a plurality of wrapping yarns about the core yarns, only one yarn is preferred due to stiffness imparted to the cut-resistant composite yarn, caused by multiple tight helical wrappings of the yarn about the cores. Instead, additional protection from the potential irritation from the fiberglass of the cut-resistant composite yarn is provided by a companion yarn knit with the cut-resistant composite yarn that helps randomly cover the cut-resistant composite yarn. The companion yarn is selected from the group consisting of aliphatic polyamide, polyester, natural fiber, cellulosic fiber, and mixtures thereof. The companion yarn also provides lubricity to the yarn bundle knitted in the glove, allowing the knitted yarns more mobility in the knitted structure. In some embodiments the linear density of the companion yarn is 200 to 1600 denier (220 to 1800 dtex). This yarn size range allows for improved comfort and abrasion resistance without substantially decreasing the cut-resistance of the glove fabric. In some preferred embodiments, the companion yarn consists solely of a single type of yarn, such as an aliphatic polyamide yarn or a polyester yarn. In some embodiments, the companion yarn can be singles yarns; in some embodiments the companion yarn can be double or plied yarns. In some embodiments the companion yarn is a spun staple yarn, in some other embodiments the companion yarn is a continuous filament yarn. In some preferred embodiments, the companion yarn is a textured continuous filament yarn. In some preferred embodiments, the companion yarn includes fibers having high abrasion resistance or fiber blends having high abrasion resistance fiber. High abrasion resistant fiber includes such as aliphatic polyamide fiber and polyester fiber, and mixtures thereof.


Lining Yarn


The third yarn component in the knitted glove provides a layer of a looped lining yarn next to the skin. The lining yarn has a total yarn linear density of from 500 to 1200 denier (560 to 1300 dtex), and in some preferred embodiments the lining yarn contains solely apparel staple fiber yarns, that is, yarns used in traditional wearing apparel, such as aliphatic polyamide fibers, polyester fibers, natural fibers, cellulosic fibers, and mixtures thereof. In some embodiments, the lining yarn consists solely of a single type of yarn. In some embodiments, the lining yarn can be singles yarns; in some embodiments the lining yarn can be double or plied yarns. In some embodiments, the lining yarn is a spun staple yarn, in some other embodiments the lining yarn is a textured continuous filament yarn. In some preferred embodiments the lining yarn provides high comfort with softness and moisture regain. In some preferred embodiments the lining yarn includes blends of cotton (or cellulosic fiber) and polyester or nylon, with the cotton or cellulosic fiber content being more than 50 percent weight of the lining yarn.


Glove


The glove is constructed such that the lining yarn is plated during knitting on the interior of the glove, while the cut resistant composite yarn and companion yarn are plated during knitting on the exterior of the glove. Construction of the glove in this manner provides several advantages. The wearer of the glove is thus provided with improved protection from the cut resistant composite yarn in two ways, first by the lining yarn that contacts the skin of the wearer and separates the cut resistant yarn from the skin, and second by the companion yarn, which is randomly positioned between the lining yarn and the cut resistant composite yarn throughout the glove.


For improved comfort, in preferred embodiments the companion yarn is not pre-assembled with the cut-resistant composite yarn prior to forming the exterior of the glove. This allows the companion yarn and the cut-resistant composite yarn to shift in relationship to each other on a localized scale. In the preferred embodiment, the companion yarn and the cu-resistant composite yarn are not restricted from moving against one another longitudinally within the layer along the surfaces of the yarn because they are not joined or twisted together in the fabric, but can move in relation to each other for improved comfort and abrasion resistance.


Further, the companion yarn and the cut-resistant composite yarn lie in the same knit layer in the glove but can move locally within that layer to shift either to the exterior or the interior of the layer; that is, the two yarns are knit such that the companion yarn is not preferentially located in the glove fabric either to the interior of the cut-resistant composite yarn in the glove or to the exterior of the cut-resistant composite yarn in the glove, but is randomly distributed over the exterior, the interior, and beside the cut-resistant composite yarn. This allows the companion yarn to provide both additional abrasion resistance to cut-resistant composite yarn from the outside of the glove while also providing additional cover from the cut-resistant composite yarn to the inside of the glove, adding additional protection to the wearer.


In some preferred embodiments, the entire glove, with the exception of any special treatment for the cuff, is knitted using the combination of cut-resistant composite yarn, companion yarn, and lining yarn. That is, as shown in the FIGURE, the entire surface of all finger stalls 2 of the glove 1, and the tubular portion 3 of the glove that forms the palm, sides, and back of the glove, are formed from a combination of yarns consisting of the cut-resistant composite yarn, companion yarn, and the lining yarn. Typically, the sleeve or cuff 4 of the glove can have additional elastomeric yarn to if desired; if the cuff is different, it still comprises the three yarn combination plus any additional gripping or sealing yarns or features.



FIG. 2 illustrates the knitted construction of the fabric with 5 representing the cut resistant composite yarn, 6 representing the companion yarns and 7 representing the lining yarn. As previously described the lining yarn is plated on the interior of the glove and the cut-resistant composite yarn and lining yarn forming the exterior of the glove.


In one embodiment, the gloves are very suitable when a heavier weight cut-resistant glove having improved protection from the irritation from fiberglass is desired. In some embodiments, the glove has a knit fabric basis weight for from 14 to 24 ounces per square yard (475 to 815 grams per square meter). In some embodiments, the gloves have a cut resistance index of 100 grams force per ounce per square yard of fabric (3 grams force per gram per square meter of fabric) or higher.


Process for Making Gloves


In one embodiment, a glove can be made by first assembling the individual yarns used in the glove and creating a first bobbin of cut-resistant composite yarn, a second bobbin of companion yarn, and a third bobbin of lining yarn. The yarns from the three individual bobbins are then co-knit directly, essentially in one step, into a glove using commercially available glove knitting machines, such as those made by Shima Seiki Corporation. These machines can knit completed gloves from the individual yarns. In a preferred embodiment, the individual yarns are fed to the knitting machine without plying or otherwise combining the yarns. The liner yarn is fed into the knitter and held in such a way that is in front of the cut-resistant and companion yarns when the yarns are knitted so that the liner yarn it plated throughout the inside surface of the glove. The resulting glove has a mixture of cut-resistant and companion yarns throughout the outside surface of the glove and the liner yarn throughout the inside surface of the glove.


Coated Gloves


If additional gripping performance is desired for the glove, a flexible polymer coating can be provided to the glove. In some embodiments, the glove is provided with an exterior synthetic polymer coating selected from the group consisting of nitrile, latex, polyurethane, neoprene, rubber, and mixtures thereof. Generally, such coatings are applied by dipping the glove or a portion of the glove into a polymer melt or solution and then curing the coating.


Test Methods

Cut Resistance. The method used is the “Standard Test Method for Measuring Cut Resistance of Materials Used in Protective Clothing”, ASTM Standard F 1790-97. In performance of the test, a cutting edge, under specified force, is drawn one time across a sample mounted on a mandrel. At several different forces, the distance drawn from initial contact to cut through is recorded and a graph is constructed of force as a function of distance to cut through. From the graph, the force is determined for cut through at a distance of 25 millimeters and is normalized to validate the consistency of the blade supply. The normalized force is reported as the cut resistance force. The cutting edge is a stainless steel knife blade having a sharp edge 70 millimeters long. The blade supply is calibrated by using a load of 400 g on a neoprene calibration material at the beginning and end of the test. A new cutting edge is used for each cut test. The sample is a rectangular piece of fabric cut 50×100 millimeters on the bias at 45 degrees from both the warp and fill. The mandrel is a rounded electro-conductive bar with a radius of 38 millimeters and the sample is mounted thereto using double-face tape. The cutting edge is drawn across the fabric on the mandrel at a right angle with the longitudinal axis of the mandrel. Cut through is recorded when the cutting edge makes electrical contact with the mandrel. As reported herein, the index is preferably reported as the cut through force in grams divided by the basis weight in ounces per square yard, but conversion to SI units is easily accomplished.


Abrasion Performance. The abrasion performance of fabrics is determined in accordance with ASTM D-3884-01 “Standard Guide for Abrasion Resistance of Textile Fabrics (Rotary Platform, Double Head Method)”. The number of cycles to abrade the knit fabric to the first hole is recorded as the abrasion resistance of the glove fabric.


EXAMPLE

A cut-resistant glove was made in the following manner. A bobbin of cut-resistant composite yarn was made having a longitudinal core of 220 dtex (200 denier) E fiberglass combined with a 590 dtex (532 denier or 20/2cotton count) poly(paraphenylene terephthalamide)staple spun yarn. The core was wrapped with two wrappings of a 167 dtex (150) denier textured continuous filament polyester yarn at a frequency of 7 turns per inch (3 turns per cm) of core. A bobbin of lining yarn of 590 dtex (532 denier or 20/2 cotton count) polyester staple spun yarn was also obtained. Yarns from these two bobbins of yarns, along with a yarn from a bobbin of a companion yarn of 737.5 dtex (665 denier or 16/2 cotton count ) cotton/polyester blend yarn, were fed, without any prior assembly (i.e. plying, twisting) of the yarns into a Shima Seiki 10-guage automatic glove knitting machine having plating capability. A glove was made with the lining yarn plated on the interior of the glove and the cut-resistant composite yarn and the companion yarn on the exterior of the glove. The estimated glove properties are shown in the Table.











TABLE






Cut



Basis
Resistance
Abrasion


Weight
Index
Resistance


(oz/yd2)
(grams/oz/yd2)
(cycles)







14-16
110-120
300-500








Claims
  • 1. A cut-resistant knit glove comprising: a) cut-resistant composite yarn having a core comprising at least two core yarns and at least one first wrapping yarn helically wrapped around the core, the core yarns including at least one 50 to 400 denier (56 to 440 dtex) glass fiber filament yarn and at least one 200 to 800 denier (220 to 890 dtex) para-aramid yarn,the first wrapping yarn including at least one 100 to 800 denier (110 to 890 dtex) yarn selected from the group consisting of aliphatic polyamide, polyester, and mixtures thereof;b) companion yarn of 200 to 1600 denier (220 to 1800 dtex) selected from the group consisting of aliphatic polyamide, polyester, natural fiber, cellulosic fiber, and mixtures thereof; andc) lining yarn comprising a composite yarn of from 500 to 1200 denier (560 to 1300 dtex) selected from the group consisting of aliphatic polyamide fiber, polyester fiber, natural fiber, cellulosic fiber, and mixtures thereof; and
  • 2. The cut-resistant knit glove of claim 1 wherein the para-aramid yarn comprises staple fibers or continuous filaments.
  • 3. The cut-resistant knit glove of claim 1 wherein the para-aramid is poly(paraphenylene terephthalamide).
  • 4. The cut-resistant knit glove of claim 1 further having a cut resistance index of 100 grams force per ounce per square yard of fabric (3 grams force per gram per square meter of fabric) or higher.
  • 5. The cut-resistant knit glove of claim 4 having a knit fabric basis weight of from 14 to 24 ounces per square yard (475 to 815 grams per square meter).
  • 6. The cut-resistant knit glove of claim 1 further comprising an exterior synthetic polymer coating selected from the group consisting of nitrile, latex, polyurethane, neoprene, rubber, and mixtures thereof.
US Referenced Citations (46)
Number Name Date Kind
2929801 Koller Mar 1960 A
2929802 Katz Mar 1960 A
2929803 Frazer et al. Mar 1960 A
2929804 Steuber Mar 1960 A
2953839 Kohrn et al. Sep 1960 A
2957852 Frankenburg et al. Oct 1960 A
2962470 Jung Nov 1960 A
2999839 Arvidson, Jr. et al. Sep 1961 A
3009901 Frazer Nov 1961 A
3490224 Bourgeas Jan 1970 A
3767756 Blades Oct 1973 A
3869429 Blades Mar 1975 A
3869430 Blades Mar 1975 A
4384449 Byrnes et al. May 1983 A
4470251 Bettcher Sep 1984 A
4838017 Kolmes et al. Jun 1989 A
4936085 Kolmes et al. Jun 1990 A
5119512 Dunbar et al. Jun 1992 A
5177948 Kolmes et al. Jan 1993 A
5628172 Kolmes et al. May 1997 A
5845476 Kolmes Dec 1998 A
5965223 Andrews et al. Oct 1999 A
6016648 Bettcher et al. Jan 2000 A
6044493 Post Apr 2000 A
6161400 Hummel Dec 2000 A
6260344 Chakravarti Jul 2001 B1
6266951 Chakravarti Jul 2001 B1
6279305 Hummel Aug 2001 B1
6341483 Kolmes et al. Jan 2002 B1
6349531 Kolmes et al. Feb 2002 B1
6351932 Hummel Mar 2002 B1
6363703 Kolmes Apr 2002 B1
6381940 Kolmes et al. May 2002 B1
6413636 Andrews et al. Jul 2002 B1
6460192 Kindler Oct 2002 B2
6467251 Kolmes Oct 2002 B1
RE38136 Kolmes Jun 2003 E
6581366 Andrews Jun 2003 B1
6701703 Patrick Mar 2004 B2
6779330 Andrews et al. Aug 2004 B1
6826898 Hummel Dec 2004 B1
6978643 Akers et al. Dec 2005 B2
7111445 Threlkeld et al. Sep 2006 B2
7121077 Andrews et al. Oct 2006 B2
7178323 Kolmes et al. Feb 2007 B2
7332196 Kosuge et al. Feb 2008 B2
Related Publications (1)
Number Date Country
20100186144 A1 Jul 2010 US