Embodiments of the present application generally relate to recloser devices for power distribution systems. More particularly, but not exclusively, embodiments of the present application relate to reclosers that are latchable to cutouts in an open condition, and which in the absence of selective mechanical unlatching remain latched to the cutout regardless of the open or closed condition of the recloser or its operational state or history.
Fuse cutouts, or simply cutouts, are used to protect against electrical overload in power distribution systems. Traditional cutout designs often employ a high voltage dropout fuse and a mounting insulator that electrically isolates conductive portions of the cutout from the support to which the cutout is mounted. Often, an end of the dropout fuse is pivotally attached to the cutout, while the other end of the dropout fuse is configured to be releasable from the cutout upon the occurrence of certain electrical events, such as, for example, in response to at least certain fault currents. For example, in response to certain fault currents, an end of the dropout fuse can be melted such the melted end becomes detached from the cutout. The dropout fuse can then, under at least the force of gravity and/or the weight of the fuse, pivoted away from the cutout about the end of the fuse that remains pivotally coupled to the cutout. Such release of a portion of the dropout fuse from the cutout in direct response to the fault current can result in the fuse being moved to a visibly detectable drop position relative to at least the cutout at which only pivotally connected end of the dropout fuse remains connected to the cutout.
Rather than a dropout fuse, certain cutouts can employ a recloser that, via operation of an electromagnetic actuator, seeks to automatically reclose an open circuit. However, operation of an electromagnet actuator typically is dependent on the electromagnetic actuator receiving a supply of electrical energy. Yet, at least in certain situations, the recloser and associated electronics can cease to receive a supply of primary electrical power for relatively prolonged periods of time. Such unavailability of primary power can result in a depletion of stored electrical power for operation of the recloser. Accordingly, the stored electrical power, if any, can become insufficient to effectuate operation of the recloser, which can result in the recloser remaining in the open position.
An aspect of an embodiment of the present application is a cutout mountable recloser that includes a first terminal and a recloser assembly, the recloser assembly being electrically coupled to the first terminal. The recloser assembly can include a current interrupter, an electromagnetic actuator, and a pushrod. The recloser can further include a latch system that is coupled to the recloser assembly. The latch system can comprise a lower terminal latch plate that is pivotally displaceable between a first, raised position and a second, lowered position. The recloser can also include a second terminal that is electrically coupled to the recloser assembly, and which is coupled to the lower terminal latch plate. The second terminal can be pivotally displaceable between a raised position and a lowered position by the pivotable displacement of the lower terminal latch plate between the first, raised position and the second, lowered position. Additionally, the second terminal can be separated from the first terminal by a first linear distance when the second terminal is in the raised position, and by a second linear distance when the second terminal is in the lowered position, the first linear distance being smaller than the second linear distance.
Another aspect of an embodiment of the present application is a recloser that is structured for a selectively releasable latching engagement with a cutout. The recloser can include a driver, a first terminal, and a recloser assembly, the recloser assembly being electrically coupled to the first terminal and coupled to the driver. The recloser assembly can include a current interrupter, a pushrod, an electromagnetic actuator, and a closing mechanism. The closing mechanism can have at least one closer body and at least one mechanical biasing element. The at least one mechanical biasing element can release a force, when the closing mechanism is discharged from a charged state to a discharged state, that displaces the at least one closer body into a moving engagement with the pushrod. The moving engagement between the at least one closer body and the pushrod can displace the pushrod to a position that electrically closes the current interrupter. The recloser can also include a latch system that is coupled to the driver. The latch system can have a lower terminal latch plate that is pivotally displaceable in between a first, raised position and a second, lowered position. Additionally, the recloser can include a second terminal that can be coupled to the lower terminal latch plate and electrically coupled to at least the recloser assembly. The second terminal can be pivotally displaceable between a raised position and a lowered position by the pivotable displacement of the lower terminal latch plate between the first, raised position and the second, lowered position.
Another aspect of an embodiment of the present application is a method that includes rotably coupling a second terminal of a recloser to a lower hinge support of a cutout, the recloser including an electromagnetic actuator. A first terminal of the recloser can then be rotably displaced into engagement with an upper contact of an upper mounting bracket of the cutout. The recloser can be latched to the cutout by selectively increasing a linear distance between the first terminal and the second terminal via at least rotation of a driver of the recloser in a first rotational direction. Each of the preceding steps can, for example, be performed while the recloser is in an electrically opened condition. Moreover, according to certain embodiments, the recloser may not be closed until after the recloser has been latched to the cutout. Further, the recloser can be unlatched from the cutout by selectively decreasing the linear distance between the first terminal and the second terminal via at least rotation of the driver in a second rotational direction. Additionally, after unlatching the recloser, the first terminal can be rotably displaced from the upper contact.
The description herein makes reference to the accompanying figures wherein like reference numerals refer to like parts throughout the several views.
The foregoing summary, as well as the following detailed description of certain embodiments of the present application, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the application, there is shown in the drawings, certain embodiments. It should be understood, however, that the present application is not limited to the arrangements and instrumentalities shown in the attached drawings. Further, like numbers in the respective figures indicate like or comparable parts.
Certain terminology is used in the foregoing description for convenience and is not intended to be limiting. Words such as “upper,” “lower,” “top,” “bottom,” “first,” and “second” designate directions in the drawings to which reference is made. This terminology includes the words specifically noted above, derivatives thereof, and words of similar import. Additionally, the words “a” and “one” are defined as including one or more of the referenced item unless specifically noted. The phrase “at least one of” followed by a list of two or more items, such as “A, B or C,” means any individual one of A, B or C, as well as any combination thereof.
As discussed below, the upper mounting bracket 16 and the lower hinge support 18 are configured to at least accommodate selective latching, as well as selective unlatching, of the recloser 10 to/from the cutout 12. Additionally, the upper mounting bracket 16 and the lower hinge support 18 are configured to be electrically coupled to the recloser 10. According to the illustrated embodiment, the upper mounting bracket 16 includes an upper contact 28, a contact spring 30, and an upper support plate 32. The upper contact 28, which is coupled to the upper support plate 32, can constructed to provide an electrical contact through which primary power can be delivered to the recloser 10. The contact spring 30 can, at least when the recloser 10 is latched to the cutout 12, provide a tension force that can at least assist in retaining the recloser 10 latched to the cutout 12. The lower hinge support 18 can be configured to accommodate selective rotation of the recloser 10 relative to the cutout 12, such as, for example, rotation associated with an operator displacing the recloser 10 into at least engagement with the cutout 12 at an orientation that can accommodate subsequent latching of the recloser 10 to the cutout 12, as shown in at least
According to the illustrated embodiment, the cutout 12 is mounted to an associated structure, such as, for example, a utility pole or tower, among other structures, at an orientation that can assist with the selective downward rotational displacement, or a drop, of the recloser 10 from the cutout in response to an operator or other individual electing to mechanically unlatch the recloser 10 from the cutout 12. For example, according to certain embodiments, the cutout 12 can be mounted at an acute angle relative to a corresponding ground surface such that the upper mounting bracket 16 and the lower hinge support 18 can generally outwardly extend from the insulating rod 22 in a downwardly sloping direction. Moreover, according to certain embodiments, the cutout 12 can be angularly offset in the vertical direction in a manner that can utilize at least gravitational forces and/or the weight of the recloser 10 to pivotally displace, or drop, the recloser 10 about the lower hinge support 18 after the recloser 10 has been selectively mechanically unlatched from the cutout 12 by an operator or individual.
Referencing
Additionally, the recloser 10 can also include a first, upper terminal 114 (H1 terminal) that is configured to securely engage the upper mounting bracket 16 when the recloser 10 is latched to the cutout 12. Moreover, the first terminal 114 is configured to be electrically coupled to the upper contact 28 of the upper mounting bracket 16 of the cutout 12 at least when the recloser 10 is latched to the cutout 12 such that primary power can be received by the recloser 10 at the first terminal 114. Additionally, as discussed below, the recloser 10 is configured to remain latched to the cutout 12 in the event the recloser 10 is in an open position such that the first terminal 114 remains at least in contact with the upper contact 28 of the upper mounting bracket 16 of the cutout 12. For example, as discussed below, in the event the recloser 10 is opened, including, for example, when the electromagnetic actuator 104 has locked the recloser 10 in the open position, the recloser can remain latched to the cutout 12, as shown, for example, in
The recloser 10 can also include a second, lower terminal 116 (H2 terminal) that can be secured to the lower hinge support 18 of the cutout 12. According to the illustrated embodiment, the second, lower terminal 116 can include a lower main terminal 46 and a lower terminal trunnion 48. According to certain embodiments, the lower terminal trunnion 48 can be attached to the lower main terminal 46, such as, for example, by a mechanical fastener 50, including but not limited to, a bolt, screw, and/or pin, among other fasteners. Moreover, one or both of the lower main terminal 46 and the lower terminal trunnion 48 can be modular relative to the recloser 10 to at least assist in the recloser 10 being adaptable for use with a variety of different sized, shaped, and/or rated cutouts 12. Additionally, the orientation of the lower terminal trunnion 48 relative to the lower main terminal 46 can be adjusted to further facilitate the adaptability of the recloser 10 to various cutouts 12. For example, the lower terminal trunnion 48 can be sized or configured for different voltage ratings, thereby allowing the remainder of the recloser 10 to be useable in a variety of different rated applications. As shown by at least
As shown by at least
As also shown by at least
According to certain embodiments, the current interrupter 102 can be coupled to the upper housing portion 36, such as, for example, via a threaded connection. A variety of different types of current interrupters can be used as the current interrupter 102 for the recloser 10 and/or the recloser assembly 100, including, for example, an embedded vacuum interrupter and a gas current interrupter, among other types of current interrupters. For at least purposes of discussion,
Conversely, when the current interrupter 102 is in an open position, as shown for example by
According to the illustrated embodiment, the electromagnetic actuator 102, which, again, can be housed within the housing 34, can be electrically controlled to displace the moveable contact 112 away from, as well as toward, the fixed contact 110 so that the current interrupter 102 is selectively placed in the corresponding open or closed positions. While the recloser 10 can employ a variety of different types of electromagnetic actuators, according to the illustrated embodiment, the illustrated electromagnet actuator includes an actuator arm 118 that is coupled to a first end 120 of the pushrod 106, a second end 122 of the pushrod 106 being coupled to the moveable contact 112. While the first and second ends 120, 122 of the pushrod 106 can be coupled to the actuator arm 118 and the moveable contact 112, respectively, in a variety of different manners, as shown by the schematics of
According to certain embodiments, the actuator arm 118 can include an armature 126 that is constructed from an electrically conductive material, such as for example, aluminum or copper. Further, according to certain embodiments, the electromagnetic actuator 104 can include one or more primary coils 128 that can comprise a conductor that is wound in a number of turns, and which is connected to a power source 130. For example, the primary coil(s) 128 of the electromagnetic actuator 104 can be connected to a primary power source 130 through which electrical power is provided to the recloser 10, and/or to power source 130 in the form of one more power storage devices or components, such as, for example, one or more capacitors or a capacitor bank of the electronics associated with the recloser 10 and/or electromagnetic actuator 104, among other storage devices and components. Additionally, according to certain embodiments, rather than including an armature 126, the actuator arm 118 can include coils that are wound in a direction opposite to that of the primary coils 128 of the electromagnetic actuator 104, and which can be electrically coupled to the power source 130.
When the electromagnetic actuator 104 is to open the current interrupter 102, such as, for example, upon detection of a fault current, the power source 130 can provide a current that flows through the primary coil(s) 128 of the electromagnetic actuator 104 in a manner that generates a relatively strong magnetic field around the primary coil(s) 128. The generated magnetic field can induce eddy currents in the armature 126 of the actuator arm 118 in a manner that repels, or otherwise displaces, via an electromagnetic force, the armature 126 generally in the first direction (“D1” in
The distance the pushrod 106, and thus at least the moveable contact 112, can be displaced in the first direction (as indicated by direction “D1” in
According to certain embodiments, after facilitating the opening of the current interrupter 102, current provided by the power source 130 can flow through the primary coil(s) 128 in a manner or direction that attracts the armature 126 toward the primary coil(s) 128. Such displacement of the armature 126, and thus the pushrod 106 and the moveable contact 112 coupled thereto, can generally be in a second linear direction (as indicated by “D2” in
In certain situations, when the current interrupter 102 is in the open position, the power source 130 may be unavailable, or otherwise may have insufficient power to facilitate displacement, via operation of the electromagnetic actuator 104, of at least the pushrod 106 in the second direction. Further, with the current interrupter 102 opened for a certain duration of time, energy storage devices, such as, for example, one or more capacitors or capacitor banks of the power source 130, can be depleted such that insufficient current is unavailable to operate the electromagnetic actuator 104 in a manner that can facilitate the closing of the opened current interrupter 102. In such situations, the closing mechanism 108 can, as discussed below, be operated to release mechanical energy that is stored by the closing mechanism 108 to close the recloser 10, and, moreover, close the current interrupter 102 via mechanical, rather than magnetic, displacement of the pushrod 106. Such closing of the current interrupter 102 can, if primary power is available, facilitate a supply of energy for storage by the power source 130 and/or for operation of the electromagnetic actuator 104 such that the electromagnetic actuator 104 can subsequently, in a relatively short time period, be capable of re-opening the closed current interrupter 102. Thus, as discussed below, in addition to being configured to mechanically close the opened recloser 10, and more specifically the current interrupter 102, at least a portion of the closing mechanism 108 can also be configured to relatively quickly be displaced to a position that prevents the closing mechanism 108 from interfering with potential subsequent reopening of the current interrupter 102 by operation of the electromagnetic actuator 104.
As shown in at least
According to certain embodiments, the first closer bracket 136a can be coupled at one or more locations to the second closer bracket 136b. For example, as shown in at least
The sidewall 138 of the first and second closer brackets 136a, 136b can include and an outer surface 146 and an inner surface 148. The inner surfaces 148 of the sidewalls 138 of the first and second closer brackets 136a, 136b can generally define an interior region 150 of the closing mechanism 108 that houses at least a portion components of the closing mechanism 108 that can selectively physically engage or contact at least a portion of the pushrod 106 to mechanically displace the pushrod 106 in a the second direction (a generally indicated by direction “D2” in
For at least purposes of discussion, the linkage system 152 is discussed below with respect to the first closer bracket 136a. However, according to certain embodiments, the below discussed a similar linkage system 152 can also, or, optionally, alternatively, be positioned about the second closer bracket 136b. Thus, as indicated by at least
The driving fork 156 is rotably coupled to the sidewall 138. According to certain embodiments, the driving fork 156 can rotate about a central axis 174 (
The driving fork 156 can also include, or be coupled to, a driven hub 178 that is configured for selective coupling of the driving fork 156 with the driver 180, such as, for example, a handle. For example, the driven hub 178 can have a configuration that accommodates mating engagement of the driven hub 178 with the driver 180 such that rotational displacement of the driver 180 can be translated to the driving fork 156 via the driven hub 178. According to certain embodiments, the driven hub 178 is a non-round protrusion, such as, for example, a protrusion having at least one outer flat side edge such that rotation of the driver 180 can be translated to rotational displacement of at least the driven hub 178. While the driver 180 illustrated in
The first leg 176a of the driving fork 156 can be coupled to a secondary biasing element 182, such as, for example, a spring, that can be configured to assist in biasing the driving fork 156 to a neutral position, as shown, for example, in at least
As shown by at least
Additionally, as also discussed below, the second leg 176b of the drive fork 156 can be pivotally coupled to a first end 184 of the release link 162, while the third leg 176c can be coupled to the link guide 158. For example, according to certain embodiments, a guide pin 186 can extend through a through-hole of, or otherwise project from, each of the second and third legs 176b, 176c in a manner that rotably couples the second and third legs 176b, 176c to the secondary latch lever 162 and the link guide 158, respectively.
As shown in at least
The link guide 158 can also be pivotally coupled to the spring arm 160. More specifically, according to the illustrated embodiment, the second end 192 of the link guide 158 can be pivotally coupled, such as, for example, by an arm pin 200, to the spring arm 160 at or around a first end 202 of the spring arm 160. According to certain embodiments, the arm pin 200 can be a pin or mechanical fastener that extends at least partially through orifices of the link guide 158 and spring arm 160. Alternatively, according to other embodiments, the arm pin 200 can be a protrusion of one of the link guide 158 and spring arm 160 that is received in an opening in the other of the link guide 158 and spring arm 160.
The spring arm 160, at or around a second end 208 of the spring arm 160, can also be pivotally coupled to a release bracket shaft 204 (
The spring arm 160 can also be pivotally coupled to a first end 209 of the guide body 164. According to the illustrated embodiment, the guide body 164 includes a base 210 and a guide rod 212, the base 210 being generally positioned around at least the first end 209 of the guide body 164, and the guide rod 212 generally extending from the base 210. The guide rod 212 can have an outer size, such as, for example, a diameter or width, that can accommodate placement of the biasing element 166, such as, for example, a spring, about, or around, at least a portion of the guide rod 212. For example, an inner size, such as, for example, an inner diameter, of the biasing element 166 can be sized relative to a corresponding outer size of the guide rod 212 such that the biasing element 166 can be positioned about or over, as well as capable of being generally linearly displaced along, at least a portion of the guide rod 212. Additionally, the base 210 can have a size, such as, for example, a width, that is at least as large as, if not larger than, the inner diameter of the biasing element 166 such that a wall of the base 210 that is adjacent to the biasing element 166 provides a first shoulder 214 that can support the biasing element 166 and/or provide interference to at least assist in retaining the biasing element 166 on the guide rod 212. Further, the first shoulder 214, as well as a portion of the main bracket 170 can be positioned to at least compress or charge the biasing element 166 such that, when the biasing element 166 is discharged, the biasing element 166 can provide a force used to displace the pushrod to a position that closes an open current interrupter 102, as discussed below.
According to the illustrated embodiment, a portion of the guide body 164 that is generally approximate to a second end 216 of the guide body 164 can be sized to accommodate at least a portion of the guide body 164 being slidingly coupled to the main bracket 170. Further, according to the illustrated embodiment, the main bracket 170 includes a bracket body 218 and a pair of sidewalls 220. The bracket body 218 can generally extend in the interior region 150 of the closing mechanism 108 at least a portion of the distance between the inner surfaces 148 of the first and second closer brackets 136a, 136b. Each sidewall 220 of the main bracket 170 can include an arm 222 that extends from the interior region 150 of the closing mechanism 108 and through an aperture 224 in the sidewall 138 such that the arm 222 can be coupled to the guide body 164. The aperture 224 in the sidewall 138 can be sized to accommodate displacement of the main bracket 170 that is associated with the pushrod 106 being displaced to a position that closes the opened current interrupter 102. According to the illustrated embodiment, the arm 222 includes an orifice 226 that receives slideable placement of at least a portion of the guide rod 212. Further, similar to the base 210, the arm 222 can have a size, such as, for example, a width, that is at least as large as, if not larger than, the inner diameter of the biasing element 166 such that that arm 222 provides a second shoulder 228 that provides interference for at least assisting in retaining the biasing element 166 on the guide rod 212. When charged, the biasing element 166 can be compressed or otherwise charged between the first shoulder 214 of the guide body 164 and the second shoulder 228 of the arm 222. Additionally, as discussed below, rotational displacement of the guide body 164 can facilitate rotational displacement of the main bracket 170, as rotation of the guide rod 212 can exert a force against at least a portion of the arm 222 at or around the orifice 226 that can translate a rotational force to the main bracket 170.
As shown by at least
As previously discussed, the second leg 176b of the driving fork 156 can be pivotally coupled to a first end 184 of the release link 162. As shown in at least
According to the illustrated embodiment, the release bracket 172 includes sidewalls 292 positioned on opposing sides of a body portion 294 of the release bracket 172. Further, the sidewalls 292 can include apertures through which the release bracket shaft 204 extends, the release bracket 172 being rotatable about the release bracket shaft 204. Additionally, as shown by at least
At least a portion of the linkage system 152 is coupled to a closer body 254 that is configured to selectively, via operation of the closing mechanism 108, physically contact and displace the pushrod 106 in manner that facilitates the closing of an open current interrupter 102. According to such an embodiment, when activated, the linkage system 152 can trigger the closer body 254 to be displaced from a first position, as shown in at least
The closer body 254 can have a variety of different shapes and configurations. For example, according to certain embodiments, the closer body 254 can be a projection that extends from, or is otherwise coupled to, the main bracket 170. According to the illustrated embodiment, the closer body 254 is a roller 256 that is coupled to the sidewall(s) 220 of the main bracket 170, such as, for example, by a closer fastener 258, including, for example, a screw, pin, or bolt, among other fasteners. According to the illustrated embodiment, as the closer body 254 is coupled to the main bracket 170, the displacement of the closer body 254 from the first position to the second position can proceed along a curved or arced path of travel that is generally similar to the rotational movement of the main bracket 170. Thus, in an effort to at least minimize the degree of impact or jolt associated with the closer body 254 being delivered into physical contact with the pushrod 106, at least an outer the portion of the closer body 254, namely a contact surface 260 of the closer body 254, that can come into contact with the pushrod 106 via operation of the closing mechanism 108, and which provides a location for the transmission of the displacement force to the pushrod 106, can have a curved or arced shape. Thus, for example, according to embodiments in which the closer body 254 is a roller, the contact surface 260 can be a portion of the outer circular surface of the roller 256.
According to the illustrated embodiment, when being moved to the second position, the contact surface 260 of the closer body 254 can selectively engage one or more protrusions or projections of the pushrod 106. For example, as shown by at least
The main bracket 170 and the release bracket 172 can each include, or be coupled to, portions of a main latch 264 that is configured to selectively lockingly engage the main bracket 170 to the release bracket 172. For example, according to the illustrated embodiment, an upper latch member or portion 266 of the main latch 264 that extends from a lower wall 268 of the bracket body 218 of the main bracket 170 can matingly engage a lower latch member or portion 270 of the main latch 264 that extends from an upper wall 272 of the release bracket 172. According to the illustrated embodiment, the upper and lower latch members 266, 270 are curved shaped projections, extensions, hooks, and/or arms, among other configurations or components, that can lockingly engage each other when the closing mechanism 108 is at least in a charged state or condition. As shown in at least
As the main bracket 170 is rotably displaced such that the closer body 254 can be displaced to the second position, the closer fastener 258 or other projection or protrusion extending from or otherwise coupled to the main bracket 170 is similarly rotably displaced. As shown by at least
The lever spindle 280 can also be coupled to a second end 282 (
As discussed below, when the closing mechanism 108 is in a charged state, a portion of the spring arm 160 can be lockingly engaged with the close latch 168. For example, as shown in at least
Referencing
The lower terminal latch plate 302 includes a plate portion 306 and one or more latch plate arms 308. The plate portion 306 can comprise one or more plates that generally extend from, or between, the closer brackets 136a, 136b of the closing mechanism 108. According to certain embodiments, at least a portion of the plate portion 306 can be sized and/or positioned to abut an end surface 137 of the closer brackets 136a, 136b, as shown, for example, in
The plate portion 306 can further include one or more apertures 310 that are each configured to receive placement of a latch body 312 of the lower terminal latch 304 in connection with locking the lower terminal latch plate 302 in at least one of the first, raised position, as shown in
According to the illustrated embodiment, the lower terminal latch plate 302 includes a pair of opposing latch plate arms 308, each latch plate arm 308 extending from opposing ends of the plate portion 306. While
According to the illustrated embodiment, the driven shaft 320, about which the lower terminal latch plate 302 can rotate, can include, be, or be coupled to the driven hub 178. Thus, the driven shaft 320 can generally be directly rotated via rotation of the driver 180 when the driver 180 is operably engaged with the driven hub 178. Further, according to certain embodiments, the driving fork 156 can be mounted to the driven shaft 320 in a manner that facilitates rotation of the driving fork 156 as the driven shaft 320 is rotated. Thus, according to certain embodiments, the driven shaft 320 provides the central axis 174 (
As shown in at least
The lower terminal latch 304 includes a latch panel 325 and at least one latch arm 326, each latch arm 326 having a lever portion 328 and a latch portion 330. The latch portion 330 can include the one or more of the previously discussed latch bodies 312 that are configured to be received in an aperture 310 in the plate portion 306 of the lower terminal latch plate 302 in a manner that can at least assist in securing the lower terminal latch plate 302 in at least one of the first, raised position and the second, lowered position.
The lower terminal latch 304 can be rotated about the lever spindle 280. For example, the latch arm(s) 326 can include an orifice 332 that is sized to receive placement of at least a portion of the lever spindle 280. However, unlike the close latch 168 and the secondary latch lever 154, according to certain embodiments, the lower terminal latch 304 can be rotated about the lever spindle 280 independent of the rotation, if any, of the lever spindle 280. Thus, according to certain embodiments, the outer surface lever spindle 280 can include one or more non-round shapes, such as, for example, one or more flat sides, and the close latch 168 and the secondary latch lever 154 similar shaped mating openings, while the orifice(s) 332 of the latch arm(s) 326 can have a generally rounded shape so that the lower terminal latch 304 is not directly rotated by rotation of the lever spindle 280.
According to certain embodiments, the lower terminal latch 304 can be biased in a direction that facilitates the lower terminal latch 304 lockingly engaging the lower terminal latch plate 302 at least when the lower terminal latch plate 302 is at the second, lowered position. For example, referencing the orientation of at least the latch system 300 depicted in
Such biasing of the lower terminal latch 304 can be attained in a variety of different manners, including, for example, via the use of one or more mechanical biasing elements, such as, but not limited to, one or more springs. For example, according to certain embodiments, the lower terminal latch 304 can be biased in the first rotational direction (as designated by “R1” in
Referencing
According to the illustrated embodiment, rotation of the driven shaft 320 in the first rotational direction (as indicted by “R1” in
Similarly, as the second, lower terminal 116 is coupled to the lower terminal latch plate 302, the lowering of the position of the lower terminal latch plate 302 can also result in the second, lower terminal 116 also being displaced from its first, raised position, as shown, for example, in
Further, the displacement of the lower terminal latch plate 302 to the second, lowered position can, according to at least certain embodiments, coincide with similar rotational displacement of the lower terminal latch 304, such as, for example, via biasing forces exerted against the lower terminal latch 304. Again, such displacement of the lower terminal latch 304 can facilitate a latching engagement between the lower terminal latch 304 and the lower terminal latch plate 302 that is configured to maintain the lower terminal latch plate 302, and thus the second, lower terminal 116, at their respective second, lowered positions.
Conversely, when the latch release bracket 324 is rotated in the second rotational direction, and the lower terminal latch plate 302 is latched in the second, lowered position, the latch release bracket(s) 324 can exert a force against at least a portion of the pushrod 106 in a manner that can at least partially assist in the manual opening of current interrupter 102. For example, referencing
For example, according to certain embodiments, when the current interrupter 102, and thus the recloser 10, is in the closed position, the electromagnetic actuator 104 can generate a magnetic field, such as, for example, via use of the primary coils 12 of the electromagnetic actuator 104, that seeks to attract an armature 126 of the electromagnetic actuator 104 that is coupled to the pushrod 106 at a position in relative close proximity to those primary coils 128. When the latch release bracket(s) 324 is rotated in the second rotational direction and in contact with the pushrod 106, the force exerted by the upper portion 334 of the latch release bracket(s) 324 on the pushrod 106 can be sufficient to displace the pushrod 106 a distance in the first direction (as indicated by direction “D1” in
Additionally, the continued rotation of at least the latch release bracket 324 in the second rotational direction, including, for example, rotation beyond a position that facilitated the manual opening of the closed current interrupter 102, can facilitate the release of the latched engagement between the lower terminal latch plate 302 and the lower terminal latch 304 of the latch system 300. Such releasing of the latched engagement can facilitate the lower terminal latch plate 302, as well as the second, lower terminal 116, being rotated in the second rotational direction from their respective second, lowered positions to their first, raised positions. More specifically, as the latch release bracket 324 continues to be displaced in the second rotational direction, the latch release bracket 324 can contact the adjacent lever portion 328 of the latch arm 326 of the lower terminal latch 304 to facilitate rotation of the lower terminal latch 304 in the second rotational direction. Such displacement of the lower terminal latch 304 can unlatch the lower terminal latch 304 from the lower terminal latch plate 302, including, for example, facilitate the removal of the latch body(ies) 312 from the corresponding aperture(s) 310 of the lower terminal latch plate 302. With the lower terminal latch plate 302 unlatched from the lower terminal latch 304, the lower terminal latch 304 no longer precludes the lower terminal latch plate 302 from being rotated back from the second, lowered position to the first, raised position. Therefore, forces exerted on the lower terminal latch plate 302, including, for example, biasing forces from associated mechanical biasing elements, as well as gravitational forces when the recloser 10 is latched to the cutout 12, can facilitate the lower terminal latch plate 302 being rotated back to the first, raised position. Further, again, as the second, lower terminal 116 is coupled to the lower terminal latch plate 302, the second, lower terminal 116 can also be raised to its first, raised position with the raising of the lower terminal latch plate 302 to the first, raised position.
At stage 1, as shown in
As shown by
According to certain embodiments, during, as well as up to stage 2 of installation, tension in the latch system 300, and, more specifically, at least tension on the lower terminal latch plate 302, can maintain the lower terminal latch plate 302 in the first, raised position. Further, by maintaining the lower terminal latch plate 302 in the first, raised position, the latch system 300 may also thereby maintain the second, lower terminal 116 in the first, raised position, and thereby prevent premature, or unintended, latching of the recloser 10 to the cutout 12.
At stage 3, as shown by
With respect to the latching system 300, as previously discussed, according to the illustrated embodiment, the rotation of the driver 180 in the first rotational direction can facilitate the latch release brackets 324 contacting, as well as providing a force against, against an upper portion of the plate portion 306 of the lower terminal latch plate 302 such that the lower terminal latch plate 302 is rotated in the first rotational direction to its corresponding the second, lowered positions. As also previously mentioned, according to certain embodiments, the lower terminal latch plate 302 can remain at the second, lowered position by at least a latching engagement with the lower terminal latch 304, which can, at least when the lower terminal latch plate 302 is displaced to the second, lowered position, be biased into the latching engagement with the lower terminal latch plate 302 via a mechanical biasing element, such as, for example, a torsion spring. Further, again, such latching of the lower terminal latch 304 to the lower terminal latch plate 302 can include latch bodies 312 of the lower terminal latch 304 being received in apertures 310 in the plate portion 306 of the lower terminal latch plate 302.
As previously discussed, the downward rotational displacement of the lower terminal latch plate 302 can result similar downward rotational displacement of the second, lower terminal 116. Moreover, as the second, lower terminal 116 is rotated in the first rotational direction to the second, lowered position of the second, lower terminal 116, a linear distance between at least the first, upper terminal 114 and the second, lower terminal 116 increases. Such an increase in distance between the first and second terminals 114, 116 can increase, and/or result in, an outward force being exerted by the recloser 10 against the upper mounting bracket 16 and the lower hinge support 18. Such a force can result in at least the compression of the contact spring 30 between the upper contact 28 and the upper support plate 32. Moreover, as the linear distance between at least the first, upper terminal 114 and the second, lower terminal 116 increases, the tension force exerted by the cutout 12 on the recloser 10, via, for example, the upper mounting bracket 16, including the compressed contact spring 30, and the lower hinge support 18, increases such that the recloser 10 is latched to the cutout 12, and the recloser 10 is thus generally lockingly secured to the cutout 12.
Additionally, as the driver 180, which is operably coupled to one or more linkage systems 152 of the recloser 10, is rotated in the first rotational direction during stage 3, and the current interrupter 102 is open, the driving fork 156 is also rotated in the first rotational direction (as indicated by “R1” in
As previously discussed, the link guide 158 can be rotably coupled to a first end 202 of the spring arm 160. Accordingly, such displacement of the link guide 158 in the first rotational direction via operation of the driver 180 can, with respect to the orientation depicted in
As the spring arm 160 is rotated about the release bracket shaft 204 (
Additionally, as the driven hub 178 is rotated in the first rotational direction, the spring arm 160 can be lifted to a position at which the spring arm 160 can be lockingly engage with, or otherwise be held in a lifted position by, the close latch 168. For example, as previously discussed, according to certain embodiments, rotation of the spring arm 160 can result in the spring arm 160 being at a position at which a protrusion 290 and/or area of the spring arm 160 adjacent to the recess 288 in the spring arm 288 can lockingly engage a generally mating portion of the close latch 168, such as, for example, a portion of the close latch 168 that is adjacent to the recess 288 in the close latch 168.
Additionally, rotation of the driving fork 156 in the first rotational direction can facilitate the second leg 176b, which, as previously discussed is coupled to the release link 162, exerting a force against the release link 162 that can result in a portion of the release link 162 at or around a second end 238 of an elongated release slot 240 of the release link 162 coming into contact with the release pin 242 that is coupled to the release bracket 172. As also previously discussed, with at least a portion of the release link 162 at or around the second end 238 of the elongated release slot 240, the continued displacement of the driving fork 156 in the first rotational direction can result in the release pin 242 being displaced toward the first end 250 of the elongated bracket slot 248 in the closer brackets 136a, 136b, which can facilitate rotation of the release bracket 172 about the release bracket shaft 204 in the first rotational direction. Moreover, such displacement of the release pin 242, and thus the release bracket 172, can result in the lower latch member 270 being rotably displaced to a position at which, in association with the upper latch member 266 of the main bracket 170, facilities the locking the main latch 264, as shown, for example, by at least
Accordingly, with the main bracket 170 lockingly engaged with the release bracket 172 via at least the main latch 264, and the mechanical biasing element 166 being held in a compressed or charged state, the linkage system 152 and/or the closing mechanism 108 is in the charged state. Further, when the linkage system 152 and/or the closing mechanism 108 is in the charged state, the closer body 254 can be at a first position, as shown for example by at least
At stage 4, with the recloser 10 latched to the cutout 12, the lifted driver 180 can, via rotation of the driver 180 in the second rotational direction (as designated by “R2” in
More specifically, as previously discussed, according to the illustrated embodiment, with the closing mechanism 108 in the charge state, and the driving fork 156, and at least the associated third leg 176c, being displaced in the second rotational direction, the guide pin 186 that is coupled to the third leg 176c can be displaced away from the first slot end 196 of the elongated guide slot 194. Further, according to certain embodiments, as the driving fork 156 is displaced in the second rotational direction and the guide pin 186 is traveling toward the second slot end 198 of the guide slot 194, the release link 162, via the coupling of the release link 162 to the second leg 176b, is displaced in direction that facilitates a portion of the release link 162 at or around second end 246 of the elongated release slot 240 contacting the release pin 242. Moreover, as the driving fork 156 continues to be rotably displaced in the second rotational direction, a portion of the release link 162 at or around the second end 246 of the elongated release slot 240 of the release link 162 can exert a force against the release pin 242 that displaces the release pin 242 toward the first end 250 of the elongated bracket slot 248 in the closer bracket 136a, 136b. Such displaced of release pin 242 by the release link 162 can facilitate rotational displacement of the release bracket 172 in the second rotational direction.
As the release bracket 172 is rotated in the second rotational direction in response to at least displacement of the release pin 242, the lower latch member 270 that extends from the release bracket 172 can be moved away from the upper latch member 266 that extends from the main bracket 170 so that the main latch 264 is unlocked. Further, according to at least certain embodiments, at or around the time the main latch 264 is unlocked, the guide pin 186 can reach a position at or generally around the second slot end 198 of the guide slot 194 in the link guide 158.
With the main latch 264 unlocked, the main latch 264 may no longer prohibit operable rotational displacement of the main bracket 170. Thus, according to the illustrated embodiment, at or around the time that the main latch 264 is unlocked, the mechanical biasing element 166 can be discharged, and the main bracket 170 can begin to be relatively rapidly displaced via a force(s) provided by at least the release of the stored energy of the previously charged mechanical biasing element 166. Accordingly, as the main bracket 170 is displaced, the closer body 254 is displaced from the first position, at which the closer body 254 is not engaged with the pushrod 106, to an intermediate position at which the closer body 254 at least comes into contact with the pushrod 106. As previously discussed, according to certain embodiments, such engagement or contact can occur between the contact surface(s) 260 of the closer body(ies) 254 and a generally outwardly extending flange 262 of the pushrod 106. As the main bracket 170 continues to be displaced to the above-discussed second position of the closer body(ies) 254, the engagement and/or contact between the closer body(ies) 254 and the pushrod 106 can facilitate the displacement of the pushrod 106 to a position that facilitates the at least temporary closing of the current interrupter 102. For example, according to certain embodiments, when the closer body 254 has reached the second position, as shown for example in
With the current interrupter 102 being closed via the operation of the closing mechanism 108, current may again flow through the recloser 10. Further, such a supply of primary power through the recloser 10 may also provide power that can be stored by the electronics of the recloser 10, including, for example, the electromagnetic actuator 104, for subsequent operation of the electromagnetic actuator 104.
However, in at least certain situations, following the mechanical closing of the recloser 10, an existing or new fault current may result in the recloser 10 being opened in a relatively short time period after the recloser 10 had been closed by operation of the closing mechanism 108. Such relatively rapid reopening of the recloser 10 can be facilitated by the subsequent operation of the electromagnetic actuator 104. Accordingly, the closing mechanism 108 can also be configured to, after discharging of the closing mechanism 108 and associated displacement of the closer body(ies) 254 to the second position, relatively rapidly displace at least the closer body 254 and/or the main bracket 170, among other portions of the closing mechanism 108, to a position(s) such that the closing mechanism 108 does not interfere with any subsequent re-opening of the current interrupter 102 by operation of the electromagnetic actuator 104.
Therefore, as previously discussed, as the main bracket 170 is being displaced during discharging of the closing mechanism 108, the closer fastener 258 is also displaced such that a sliding engagement between the closer fastener 258 and the secondary release lever 154 facilitates the rotational displacement of the secondary latch lever 154 in the first rotational direction. As the secondary latch lever 154 is coupled to the lever spindle 280, which is also coupled to the close latch 168, such rotation of the secondary latch lever 154 is translated, via the lever spindle 280, to the close latch 168. Accordingly, such rotation of the secondary latch lever 154 via engagement with the closer fastener 258 results in the close latch 168 also being rotably displaced in the second rotational direction.
As the close latch 168 is rotated in the second rotational direction, the close latch 168 is disengaged from the locking engagement with the spring arm 160. Further, as the spring arm 160 is coupled to the guide body 164, with the spring arm 160 unlatched from the close latch 168, the spring arm 160 is able to, with respect to the linkage system 152 orientation depicted in
According to certain embodiments, the timing of the release of the spring arm 160 from locking engagement with the close latch 168 can generally coincide with, or be shortly after, the closer body 254 reaching, via discharging of at least the mechanical biasing element 166, the second position and/or the pushrod 106, via operation of the closing mechanism 108, closing the current interrupter 102. Accordingly, with the force or pressure of the mechanical biasing element 166 being reduced and/or relieved and the pushrod 106 positioned for the current interrupter to be, or have been, closed, the secondary mechanical biasing element(s) 183 that is/are coupled to main bracket 170 and another portion of the closing mechanism 108 can exert a force that displaces at least the main bracket 170 to a position that can prevent or minimize the ability of the closer body(ies) 254 to interfere with the subsequent displacement, if any, of the pushrod 106 that may be associated with the electromagnetic actuator 104 re-opening the current interrupter 102. For example, according to the illustrated embodiment, the secondary mechanical biasing element(s) 183 that is/are coupled to both the arm 222 of the main bracket 170 and a portion of the pin can, at or around the timing of the closing of the current interrupter 102 via operation of the closing mechanism 108 and associated mechanical displacement of the pushrod 106, exert a force on the main bracket 170 that displaces the closer body(ies) 254 away from the second position of the closer body(ies) 254 and toward, or to, the first position of the closer body(ies) 254. The closing mechanism 108 may then be at the discharged state or condition, as show, for example, in at least
Additionally, during normal operation of the recloser 10 and/or the associated electrical power system, the closing mechanism 108 may remain in the discharged state while the recloser 10 remains latched to the cutout 12, as shown, for example, by at least
As indicated by the foregoing example, such re-charging and subsequent discharging of the closing mechanism 108, and associated mechanical closing of the recloser 10, can occur while the recloser 10 remains latched to the cutout 12. Further, despite the occurrence of an event(s) that had resulted in the recloser 10 being opened, as well as the inability of the recloser 10 to be closed via operation of the electromagnetic actuator 104, the recloser 10 remains latched to the cutout 12, such as, for example, at a position shown by at least
Accordingly, regardless of whether the recloser 10 is closed or is locked in an open condition, the recloser 10 is configured for unlatching from the cutout 12 via manipulation of the driver 180 by an operator or other individual. For example, at stage 5, as indicated by
At step 6, as shown by
Further, as previously discussed, as the second, lower terminal 116 is coupled to the lower terminal latch plate 302, the second, lower terminal 116 can also be raised to its first, raised position with the raising of the lower terminal latch plate 302 to the first, raised position. Such raising of the second, lower terminal 116 can result in a reduction of forces being exerted between recloser 10 and the cutout 12, such that the recloser 10 is unlatched from the cutout 12. For example, with the second, lower terminal 116 at its first, raised position, as shown for example in
With the recloser 10 opened and unlatched from the cutout 12, at stage 7, as shown by
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment(s), but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as permitted under the law. Furthermore it should be understood that while the use of the word preferable, preferably, or preferred in the description above indicates that feature so described may be more desirable, it nonetheless may not be necessary and any embodiment lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow. In reading the claims it is intended that when words such as “a,” “an,” “at least one” and “at least a portion” are used, there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
4321575 | Koszewa et al. | Mar 1982 | A |
4795996 | Brown | Jan 1989 | A |
5854582 | Clark | Dec 1998 | A |
6392526 | Roberts | May 2002 | B1 |
6687110 | Murray | Feb 2004 | B2 |
7948352 | Tang | May 2011 | B2 |
8334738 | Smith | Dec 2012 | B2 |
8772633 | Behnken | Jul 2014 | B2 |
20040144756 | Rhein et al. | Jul 2004 | A1 |
20090212898 | Montante | Aug 2009 | A1 |
20100230263 | Haj-Maharsi | Sep 2010 | A1 |
20150116878 | Richard | Apr 2015 | A1 |
Entry |
---|
International Search Report and Written Opinion, issued by the ISA/US United States Receiving Office, regarding corresponding patent application Serial No. PCT/US2018/067507; dated Mar. 22, 2019; 10 pages. |
Number | Date | Country | |
---|---|---|---|
20200328054 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62611716 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/067507 | Dec 2018 | US |
Child | 16915061 | US |