Cutter assembly for a raise boring reamer

Information

  • Patent Grant
  • 8464813
  • Patent Number
    8,464,813
  • Date Filed
    Wednesday, January 27, 2010
    14 years ago
  • Date Issued
    Tuesday, June 18, 2013
    11 years ago
Abstract
A raise boring reamer assembly includes a saddle, and a journal assembly carried by the saddle. The journal assembly includes nose and gage shanks, and a cutter is carried by the journal assembly. Nose and gage wiper rings are positioned proximate to the nose and gage shanks, respectively. The nose and gage wiper rings move debris in opposed directions in response to the rotation of the cutter.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. patent application Ser. No. 11/425,366 filed on Jun. 20, 2006, the contents of which are incorporated by reference as though fully set forth herein.


BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to earth boring tools.


2. Description of the Related Art


Earth boring tools are commonly used to bore through a formation to form a borehole. Such boreholes may be formed for many different reasons, such as drilling for oil, minerals and water. One type of earth boring tool is a rotary earth bit. Several examples of rotary earth bits are disclosed in U.S. Pat. Nos. 3,550,972, 3,847,235, 4,096,917, 4,136,748, 4,427,307 and 4,688,651 4,741,471 and 5,358,061. A rotary earth bit generally includes one or more lugs coupled together to form an earth bit body, wherein the lugs include a lug journal positioned towards a lower portion of the corresponding lug. The rotary earth bit includes a cutting cone rotatably mounted to a corresponding lug journal to form a bit bearing cavity therebetween. The cutting cone is rotatably mounted to the lug journal using ball and roller bearings. One or more bit seal assemblies are positioned to hold lubricant in the bit bearing cavity to facilitate the rotation of the cutting cone about the lug journal.


In operation, the rotary earth bit is operatively coupled to a drill string, and moved downwardly through the formation and rotated to form the borehole. As the rotary earth bit moves downwardly and rotates, the cutting cone engages the formation and rotates about the lug journal in response. Debris flows towards the bit bearing cavity in response to the rotary earth bit being moved downwardly through the formation. Debris in the bit bearing cavity restricts the ability of the cutting cone to rotate about the lug journal. The debris can be of many different types, such as cuttings, water and/or mud.


Another type of earth boring tool is a raise boring reamer assembly. Several examples of raise boring reamer assemblies are disclosed in U.S. Pat. Nos. 3,220,494, 4,042,047, 4,053,244, 4,071,098, 4,142,598, 4,179,000, 4,191,267, 4,194,578, 4,228,863, 4,270,618, 4,301,876, 4,386,670, 4,456,082, 4,697,652, 4,832,135, 5,199,510, as well as U.S. Patent Application No. 20050252693 and International Application No. PCT/SE2003/000433.


A raise boring reamer assembly includes a raise boring body which carries one or more cutter assemblies. The cutter assemblies are positioned towards an upper portion of the raise boring body. In a typical set-up, the cutter assembly includes a saddle carried by the raise boring body, and a cutter rotatably mounted to a journal assembly to form a cutter bearing cavity therebetween. The journal assembly is mounted to the saddle in a repeatably removeable manner, and the cutter is rotatably mounted to the journal assembly using ball and roller bearings. One or more seal assemblies are positioned to hold lubricant in the cutter bearing cavity to facilitate the rotation of the cutter about the journal assembly.


In operation, the raise boring reamer assembly is operatively coupled to a drill string, and moved upwardly through the formation and rotated to form the borehole. As the raise boring reamer assembly moves upwardly and rotates, the cutter engages the formation and rotates about the journal assembly in response. Debris flows towards the cutter bearing cavity in response to the raise boring reamer assembly being moved upwardly through the formation. Debris in the cutter bearing cavity undesirably restricts the ability of the cutter to rotate about the journal assembly. Hence, it is desirable to restrict the ability of debris to flow to the cutter bearing cavity, and to move debris away.


BRIEF SUMMARY OF THE INVENTION

The present invention is directed to a raise boring reamer assembly. The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a and 1b are perspective and top views, respectively, of a raise boring reamer assembly.



FIG. 2
a is a perspective view of a cutter assembly of the raise boring reamer assembly of FIGS. 1a and 1b in an unassembled condition.



FIG. 2
b is a side view of the cutter assembly of FIG. 2a in an assembled condition.



FIGS. 2
c and 2d are perspective views of opposed sides of the cutter assembly of FIG. 2b.



FIGS. 2
e and 2f are opposed end views of the cutter assembly of FIG. 2b.



FIG. 3
a is a perspective view of a cutter of the cutter assembly of FIG. 2a.



FIG. 3
b is a side view of the cutter of FIG. 3a.



FIGS. 3
c and 3d are opposed end views of the cutter of FIG. 3a.



FIGS. 4
a and 4b are opposed perspective views of a saddle of the cutter assembly of FIG. 2a.



FIGS. 4
c and 4d are perspective end and side views, respectively, of the saddle of FIG. 4a.



FIG. 5
a is a side view of a journal assembly of FIGS. 1a and 1b mounted to the saddle of FIGS. 4a and 4b.



FIGS. 5
b and 5c are perspective views of opposed sides of the journal assembly of FIGS. 1a and 1b mounted to the saddle of FIGS. 4a and 4b.



FIGS. 6
a and 6b are opposed perspective views of the journal assembly of FIG. 5a.



FIG. 6
c is a side view of the journal assembly of FIGS. 6a and 6b.



FIGS. 6
d and 6e are in opposed perspective views of a journal body of the journal assembly of FIGS. 6a and 6b.



FIG. 6
f is a side view of the journal body of FIGS. 6d and 6e.



FIGS. 7
a and 7b are opposed perspective views of a nose wiper ring of the journal assembly of FIGS. 6a and 6b.



FIG. 7
c is a front side view of the nose wiper ring of FIGS. 7a and 7b.



FIG. 7
d is a side view of the nose wiper ring of FIGS. 7a and 7b.



FIG. 7
e is a close-up perspective view of the nose wiper ring of FIGS. 7a and 7b.



FIG. 7
f is a close-up perspective view of another embodiment of a nose wiper ring.



FIGS. 8
a and 8b are opposed perspective views of a gage wiper ring of the journal assembly of FIGS. 6a and 6b.



FIGS. 8
c and 8d are front and side views, respectively, of the gage wiper ring of FIGS. 8a and 8b.



FIG. 8
e is a close-up perspective view of the gage wiper ring of FIGS. 8a and 8b.



FIG. 8
f is a close-up perspective view of another embodiment of a gage wiper ring.



FIG. 9
a is a side view of the cutter of FIGS. 1a and 1b rotatably mounted to the journal assembly.



FIG. 9
b is a cut-away side view, taken along a cut-line 9b-9b of FIG. 9a, of the cutter of FIG. 9a rotatably mounted to the journal assembly.



FIG. 9
c is a cut-away side view, taken along a cut-line 9c-9c of FIG. 9a, of the cutter of FIG. 9a rotatably mounted to the journal assembly.



FIG. 9
d is a close-up view of the nose wiper ring in a nose seal region of FIG. 9b.



FIG. 9
e is a close-up view of the gage wiper ring in a gage seal region of FIG. 9b.



FIG. 9
f is another embodiment of nose wiper ring in a nose seal region of FIG. 9b.



FIG. 9
g is another embodiment of nose wiper ring in the nose seal region of FIG. 9b.



FIG. 9
h is another embodiment of gage wiper ring in the gage seal region of FIG. 9b.



FIG. 9
i is another embodiment of gage wiper ring in the gage seal region of FIG. 9b.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1
a and 1b are perspective and top views, respectively, of a raise boring reamer assembly 100. In this embodiment, raise boring reamer assembly 100 includes a raise boring body 101 which carries five cutter assemblies 102. The cutter assemblies are positioned proximate to an upper portion 101a of raise boring body 101, and away from a lower portion 101b of raise boring body. It should be noted that raise boring reamer assembly 100 generally includes one or more cutter assemblies carried by raise boring body 101. In this embodiment, five cutter assemblies 102 are shown for illustrative purposes.


The cutter assemblies carried by raise boring body 101 are coupled thereto in a repeatably removeable manner. The cutter assemblies can be coupled to raise boring body 101 in a repeatably removeable manner in many different ways, such as by using a fastener. There are many different types of fasteners which can be used to couple the cutter assemblies to raise boring body 101. In some embodiments, the fasteners include nuts and bolts.


In this embodiment, cutter assembly 102 includes a saddle 110 carried by raise boring body 101, and a cutter 120 rotatably mounted to a journal assembly 130 to form a cutter bearing cavity therebetween. Journal assembly 130 is mounted to saddle 110 in a repeatably removeable manner, and cutter 120 is rotatably mounted to journal assembly 130 using ball and roller bearings. One or more seal assemblies are positioned to hold lubricant in the cutter bearing cavity to facilitate the rotation of cutter 120 about journal assembly 130. It should be noted that the cutter bearing cavity, ball and roller bearings and seal assemblies are not shown in FIGS. 1a and 1b, but they are shown in FIGS. 9b and 9c, and will be discussed in more detail therewith.


In operation, raise boring reamer assembly 100 is operatively coupled to a drill string 104, and moved upwardly through the formation and rotated to form the borehole. It should be noted that raise boring reamer assembly 100 is operatively coupled to drill string 104 proximate to upper portion 101a of raise boring body 101, and away from lower portion 101b. In this way, raise boring reamer assembly 100 is operatively coupled to drill string 104 so that the cutter assemblies are positioned proximate to drill string 104, and away from lower portion 101b.


As raise boring reamer assembly 100 moves upwardly and rotates, cutter 120 engages the formation and rotates about journal assembly 130 in response. Debris flows towards the cutter bearing cavity in response to raise boring reamer assembly 100 being moved upwardly through the formation. Debris in the cutter bearing cavity restricts the ability of cutter 120 to rotate about journal assembly 130. Hence, it is desirable to restrict the ability of debris to flow to the cutter bearing cavity, and to move debris away. As will be discussed in more detail below, raise boring reamer assembly 100 includes one or more wipers (not shown) which restrict the ability of the debris to flow to the seal assemblies, and to move debris away. In this way, debris is less likely to undesirably flow into the cutter bearing cavity, and more likely to move away.



FIG. 2
a is a perspective view of cutter assembly 102 in an unassembled condition, and FIG. 2b is a side view of cutter assembly 102 in an assembled condition. FIGS. 2c and 2d are perspective views of opposed sides of cutter assembly 102 of FIG. 2b, and FIGS. 2e and 2f are opposed end views of cutter assembly 102 of FIG. 2b.


As shown in FIGS. 1a and 1b and FIGS. 2a-2f, cutter assembly 102 includes cutter 120, which is shown in a perspective view in FIG. 3a. FIG. 3b is a side view of cutter 120, and FIGS. 3c and 3d are opposed end views of cutter 120.


In this embodiment, cutter 120 includes a cutter body 121 having cutter body nose and gage ends 123a and 123b, which are shown in the opposed end views of FIGS. 3c and 3d, respectively. It should be noted that cutter body 121 has a larger outer dimension proximate to cutter body gage end 123b relative to an outer dimension proximate to cutter body nose end 123a. In this way, cutter body 121 has a frusto-conical shape. Cutter 120 includes a plurality of cutter teeth 124, which extend annularly around an outer periphery of cutter body 121.


In this embodiment, cutter 120 includes a cutter body channel 122 which extends through cutter body 121 between opposed cutter body nose and gage ends 123a and 123b. Cutter body channel 122 includes opposed gage and nose channel openings 122a and 122b (FIGS. 3b, 3c and 3d) positioned proximate to cutter body nose and gage ends 123a and 123b, respectively.


Cutter body channel 122 is sized and shaped to receive journal assembly 130. A cutter bearing cavity 103 is formed in response to journal assembly 130 being received by cutter body channel 122, wherein cutter bearing cavity 103 is shown in FIGS. 2e and 2f. It should be noted that cutter bearing cavity 103 is shown in FIGS. 9b and 9c and will be discussed in more detail therewith. As indicated by indication arrows 105a and 105b in FIGS. 2e and 2f, respectively, cutter bearing cavity 103 extends between cutter 120 and journal assembly 130, as well as between nose and gage interface openings 129a and 129b. Nose and gage interface openings 129a and 129b extend annularly around journal assembly 130, and are proximate to nose and gage shanks 135a and 135b, respectively, of journal assembly 130.


It should be noted that journal assembly 130 extends through opposed gage and nose channel openings 122a and 122b. Journal assembly 130 extends through opposed gage and nose channel openings 122a and 122b because it extends away from cutter body channel 122 and cutter body nose and gage ends 123a and 123b. In particular, opposed nose and gage shanks 135a and 135b of journal assembly 130 extend beyond opposed nose and gage cutter body ends 123a and 123b of cutter 120. Further, journal assembly 130 extends through opposed gage and nose channel openings 122a and 122b because it is longer than cutter body channel 122. In this way, journal assembly 130 extends through opposed gage and nose channel openings 122a and 122b.


As shown in FIGS. 1a and 1b and FIGS. 2a-2f, cutter assembly 102 includes saddle 110, which is shown in opposed perspective views in FIGS. 4a and 4b. FIGS. 4c and 4d are perspective end and side views, respectively, of saddle 110.


In this embodiment, saddle 110 includes a saddle body 111 having a cutter recess 112 extending therethrough. Cutter recess 112 is sized and shaped to receive cutter 120, as shown in FIGS. 2b-2f.


In this embodiment, saddle body 111 includes nose and gage shank couplers 113a and 113b positioned proximate to opposed sides of cutter recess 112. As will be discussed in more detail below, cutter 120 is rotatably mounted to journal assembly 130, and journal assembly 130 is coupled to nose and gage shank couplers 113a and 113b so cutter 120 and journal assembly 130 extend through cutter recess 112 (FIGS. 2a-2f). In this way, cutter 120 is received by cutter recess 112, and is rotatably mounted therein.



FIG. 5
a is a side view of journal assembly 130 mounted to saddle 110, and FIGS. 5b and 5c are perspective views of opposed sides of journal assembly 130 mounted to saddle 110. As shown in FIGS. 4a, 4b and 4c, nose shank coupler 113a includes a nose shank coupler recess 116a positioned between nose shank coupler arms 114a and 114b. As shown in FIGS. 2d, 5b and 5c, nose shank coupler recess 116a is sized and shaped to receive a nose shank 135a of journal assembly 130.


In this embodiment, nose shank coupler 113a includes a nose bolt opening 118a, which extends through saddle body 111 between nose shank coupler arms 114a and 114b. As will be discussed in more detail below, nose bolt opening 118a is sized and shaped to receive a nose bolt 117a which holds nose shank 135a to saddle body 111 (FIGS. 2a and 2d). Nose bolt 117a is held to saddle body 111 by a nut 119a, as shown in FIGS. 2c and 5c. Nose bolt opening 118a is aligned with a nose shank opening 136a (FIG. 6b) of nose shank 135a in response to nose shank 135a being received by nose shank coupler recess 116a.


As shown in FIGS. 4a, 4b and 4c, gage shank coupler 113b includes a gage shank coupler recess 116b positioned between gage shank coupler arms 115a and 115b. As shown in FIGS. 2d and 5b, gage shank coupler recess 116b is sized and shaped to receive a gage shank 135b of journal assembly 130.


In this embodiment, gage shank coupler 113b includes a gage bolt opening 118b, which extends through saddle body 111 between gage shank coupler arms 115a and 115b. As will be discussed in more detail below, gage bolt opening 118b is sized and shaped to receive a gage bolt 117b which holds gage shank 135b to saddle body 111. Gage bolt 117b is held to saddle body 111 by a nut 119b, as shown in FIGS. 2c and 5c. Gage bolt opening 118b is aligned with a gage shank opening 136b of gage shank 135b (FIG. 6a) in response to gage shank 135b being received by gage shank coupler recess 116b.


As shown in FIGS. 1a and 1b and FIGS. 2a-2f, cutter assembly 102 includes journal assembly 130, which is shown in opposed perspective views in FIGS. 6a and 6b, and in a side view in FIG. 6c.


In this embodiment, journal assembly 130 includes a journal body 131 having nose and gage shanks 135a and 135b positioned at opposed ends. Journal body 131 is shown in opposed perspective views in FIGS. 6d and 6e, and in a side view in FIG. 6f.


In this embodiment, nose and gage shanks 135a and 135b are integrated with journal body 131. In this way, journal body 131 and nose and gage shanks 135a and 135b are a single piece of material. In other embodiments, nose and gage shanks 135a and 135b are separate pieces of material that are coupled to journal body 131 at opposed ends.


Nose and gage shanks 135a and 135b are sized and shaped to be received by nose and gage shank coupler recesses 116a and 116b, respectively, as shown in FIGS. 2a, 2d, 5b and 5c. In particular, nose shank 135a is sized and shaped to be received by nose shank coupler recess 116a between nose shank coupler arms 114a and 114b. Further, gage shank 135b is sized and shaped to be received by gage shank coupler recess 116b between gage shank coupler arms 115a and 115b.


In this embodiment, nose and gage shanks 135a and 135b include nose and gage shank openings 136a and 136b, respectively, which extend therethrough. As mentioned above, nose and gage shank openings 136a and 136b are sized and shaped to receive nose and gage bolts 117a and 117b, respectively (FIG. 2a). Nose shank opening 136a is aligned with nose bolt opening 118a in response to nose shank 135a being received by nose shank coupler recess 116a. Further, gage shank opening 136b is aligned with gage bolt opening 118b in response to gage shank 135b being received by gage shank coupler recess 116b. Nose and gage bolts 117a and 117b hold journal assembly 130 to saddle 110 (FIG. 2d). In this way, journal assembly 130 is mounted to saddle 110 in a repeatably removeable manner.


In this embodiment, journal body 131 includes gage and nose roller bearing surfaces 132 and 133, and a ball bearing groove 134 positioned therebetween. Gage and nose roller bearing surfaces 132 and 133 are annular surfaces which extend annularly around journal body 131. Further, ball bearing groove 134 is an annular groove which extends annularly around journal body 131. Journal body 131 includes an annular protrusion 137 which is positioned between nose roller bearing surface 133 and ball bearing groove 134. It should be noted that gage roller bearing surface 132 is positioned between ball bearing groove 134 and gage shank 135b, and nose roller bearing surface 133 is positioned between annular protrusion 137 and nose shank 135a.


As will be discussed in more detail below, gage and nose roller bearing surfaces 132 and 133 are engaged by roller bearings positioned between journal body 131 and cutter 120. Further, ball bearing groove 134 is engaged by a ball bearing positioned between cutter 120 and journal body 131. The ball and roller bearings facilitate the ability of cutter 120 to rotate relative to journal assembly 130. It should be noted that cutter 120 rotates about a longitudinal journal axis 138, as shown in FIGS. 6c and 6f. Hence, longitudinal journal axis 138 corresponds to an axis of rotation of cutter 120.


In this embodiment, journal body 131 includes nose and gage seal assembly surfaces 148a and 148b, which are shown in FIGS. 6c and 6f. Nose seal assembly surface 148a is positioned between nose shank 135a and nose roller bearing surface 133, and gage seal assembly surface 148b is positioned between gage shank 135b and gage roller bearing surface 132. Nose and gage seal assembly surfaces 148a and 148b are engaged by a nose and gage seal assemblies 170 and 171, which are shown in FIGS. 9b and 9c. Nose and gage seal assemblies establish a seal between journal body 131 and cutter 120.


In this embodiment, journal assembly 130 includes a nose wiper ring 140 positioned proximate to nose shank 135a and away from gage shank 135b (FIGS. 6a, 6b and 6c). In particular, nose wiper ring 140 is positioned between nose roller bearing surface 133 and nose shank 135a. In this embodiment, nose wiper ring 140 is coupled to journal body 131 so it is repeatably removeable therefrom. In particular, nose wiper ring 140 is coupled to journal body 131 so it engages a journal nose wiper ring surface 139, which is shown in FIGS. 6d, 6e and 6f. Nose wiper ring 140 can be coupled to journal body 131 so it is repeatably removeable therefrom in many different ways, such as by using one or more fasteners which fasten it to journal body 131. In other embodiments, nose wiper ring 140 is integrated with journal body 131 so they are a single piece of material.


In this embodiment, nose wiper ring 140 moves debris away from cutter bearing cavity 103. In particular, nose wiper ring 140 moves debris away from cutter bearing cavity 103 in response to the rotation of cutter 120. In this embodiment, nose wiper ring 140 moves debris through nose interface opening 129a and towards nose shank 135a. In particular, nose wiper ring 140 moves debris through nose interface opening 129a and towards nose shank 135a in response to the rotation of cutter 120. In this embodiment, nose wiper ring 140 moves debris away from nose roller bearing surface 133. In particular, nose wiper ring 140 moves debris away from nose roller bearing surface 133 in response to the rotation of cutter 120. In this embodiment, nose wiper ring 140 moves debris towards nose shank 135a. In particular, nose wiper ring 140 moves debris towards nose shank 135a in response to the rotation of cutter 120. Nose wiper ring 140 can move debris away from cutter bearing cavity 103, nose roller bearing surface 133 and towards nose shank 135a in many different ways, one of which will be discussed in more detail presently.



FIGS. 7
a and 7b are opposed perspective views of nose wiper ring 140. FIGS. 7c and 7d are front and side views, respectively, of nose wiper ring 140, and FIG. 7e is a close-up perspective view of nose wiper ring 140.


In this embodiment, nose wiper ring 140 includes an annularly shaped wiper ring body 141, which has a wiper ring body opening 142 extending therethrough. Wiper ring body opening 142 extends between opposed outer wiper ring surface edges 144 and 145, which are shown in FIG. 7d. It should be noted that, as shown in FIG. 6c, outer wiper ring surface edge 144 faces nose shank 135a, and outer wiper ring surface edge 145 faces away from nose shank 135a. Wiper ring body 141 includes an outer wiper ring surface 143, which extends annularly around the outer periphery thereof and faces away from wiper ring body opening 142. Outer wiper ring surface 143 extends between opposed outer wiper ring surface edges 144 and 145.


In this embodiment, wiper ring 140 includes four wipers, which are denoted as wipers 146a, 146b, 146c and 146d and are carried by nose wiper ring body 141. It should be noted that wiper ring 140 generally includes one or more wipers carried by nose wiper ring body 141. In this embodiment, four wipers are shown for illustrative purposes.


In this embodiment, wipers 146a, 146b, 146c and 146d move debris away from cutter bearing cavity 103. In particular, wipers 146a, 146b, 146c and 146d move debris away from cutter bearing cavity 103 in response to the rotation of cutter 120. In this embodiment, wipers 146a, 146b, 146c and 146d move debris through nose interface opening 129a and towards nose shank 135a. In particular, wipers 146a, 146b, 146c and 146d move debris through nose interface opening 129a and towards nose shank 135a in response to the rotation of cutter 120. In this embodiment, wipers 146a, 146b, 146c and 146d move debris away from nose roller bearing surface 133. In particular, wipers 146a, 146b, 146c and 146d move debris away from nose roller bearing surface 133 in response to the rotation of cutter 120. In this embodiment, wipers 146a, 146b, 146c and 146d move debris towards nose shank 135a. In particular, wipers 146a, 146b, 146c and 146d move debris towards nose shank 135a in response to the rotation of cutter 120. In this way, nose wiper ring 140 moves debris away from cutter bearing cavity 103, nose roller bearing surface 133 and towards nose shank 135a. It should be noted that the direction of rotation of cutter 120 is in a counter-clockwise direction 107a, which is indicated in FIG. 7c.


As mentioned above, wipers 146a, 146b, 146c and 146d are carried by wiper ring body 141. Wipers 146a, 146b, 146c and 146d can be carried by wiper ring body 141 in many different ways so they move debris away from cutter bearing cavity 103, nose roller bearing surface 133 and towards nose shank 135a in response to the rotation of cutter 120 relative to journal assembly 130. In this embodiment, wipers 146a, 146b, 146c and 146d are positioned proximate to outer wiper ring surface 143 so they face cutter 120. In particular, wipers 146a, 146b, 146c and 146d are engaged with outer wiper ring surface 143 so they face cutter 120, and extend between opposed outer wiper ring surface edges 144 and 145.


In this embodiment, wipers 146a, 146b, 146c and 146d include wiper surfaces 148a, 148b, 148c and 148d, respectively, as shown in FIG. 7c. Wiper surfaces 148a, 148b, 148c and 148d face away from wiper ring body opening 142 and outer wiper ring surface 143. It should be noted that wiper surfaces 148a, 148b, 148c and 148d curve in response to the curvature of outer wiper ring surface 143. Wiper surfaces 148a, 148b, 148c and 148d are each spaced from outer wiper ring surface 143. In this embodiment, wiper surfaces 148a, 148b, 148c and 148d are each spaced from outer wiper ring surface 143 by a distance t1, as shown in FIG. 7c. Further, wiper surfaces 148a, 148b, 148c and 148d each have a width of WI, which is a distance between the leading and trailing surfaces of the corresponding wipers 146a, 146b, 146c and 146d. For example, width W1 extends between leading and trailing surfaces 149a and 149b of wiper 146a, as shown in FIG. 7e. Edges 149a and 149b are leading and trailing edges, respectively, because cutter 120 rotates about journal assembly 130 from edge 149a to edge 149b. In some embodiments, width W1 is between about five times to about ten times the value of thickness t1.


It should be noted that wipers 146a, 146b, 146c and 146d extend between outer wiper ring surface edges 144 and 145 so that their lengths are not parallel to a reference line 106. Reference line 106 extends perpendicular to outer wiper ring surface edges 144 and 145. The lengths of wipers 146a, 146b, 146c and 146d are not parallel to reference line 106 because leading and trailing edges 149a and 149b are not parallel to reference line 106. In this way, wipers 146a, 146b, 146c and 146d do not extend perpendicular to outer wiper ring surface edges 144 and 145, and wipers 146a, 146b, 146c and 146d are angled wipers.


In this embodiment, the angle between leading and trailing edges 149a and 149b and reference line 106 is denoted as θ1. In some embodiments, angle θ1 has an angular value between about ten degrees (10°) and eighty degrees (80°). In some embodiments, angle θ1 has an angular value between about thirty degrees (30°) and sixty degrees (60°). In general, more and less debris is moved by wipers 146a, 146b, 146c and 146d towards nose shank 135a in response to increasing and decreasing angle θ1, respectively.


An example in which a wiper extends between outer wiper ring surface edges 144 and 145 so that its length is parallel to reference line 106 is shown in FIG. 7f. In this example, leading and trailing edges 149a and 149b are parallel to reference line 106.


In this embodiment, journal assembly 130 includes a gage wiper ring 150 positioned proximate to gage shank 135b and away from nose shank 135a (FIGS. 6a, 6b and 6c). In particular, gage wiper ring 150 is positioned between gage roller bearing surface 132 and gage shank 135b. In this embodiment, gage wiper ring 150 is integrated with journal body 131 so they are a single piece of material. In other embodiments, gage wiper ring 150 is coupled to journal body 131 so it is repeatably removeable therefrom. Gage wiper ring 150 can be coupled to journal body 131 so it is repeatably removeable therefrom in many different ways, such as by using one or more fasteners which fasten it to journal body 131.


In this embodiment, gage wiper ring 150 moves debris away from cutter bearing cavity 103. In particular, gage wiper ring 150 moves debris away from cutter bearing cavity 103 in response to the rotation of cutter 120. In this embodiment, gage wiper ring 150 moves debris through gage interface opening 129b and towards gage shank 135b. In particular, gage wiper ring 150 moves debris through gage interface opening 129b and towards gage shank 135b in response to the rotation of cutter 120. In this embodiment, gage wiper ring 150 moves debris away from gage roller bearing surface 132. In particular, gage wiper ring 150 moves debris away from gage roller bearing surface 132 in response to the rotation of cutter 120. In this embodiment, gage wiper ring 150 moves debris towards gage shank 135b. In particular, gage wiper ring 150 moves debris towards gage shank 135b in response to the rotation of cutter 120. Gage wiper ring 150 can move debris away from cutter bearing cavity 103, gage roller bearing surface 132 and towards gage shank 135b in many different ways, one of which will be discussed in more detail presently.



FIGS. 8
a and 8b are opposed perspective views of gage wiper ring 150. FIGS. 8c and 8d are front and side views, respectively, of gage wiper ring 150, and FIG. 8e is a close-up perspective view of gage wiper ring 150.


In this embodiment, gage wiper ring 150 includes an annularly shaped wiper ring body 151, which has a wiper ring body opening 152 extending therethrough. Wiper ring body opening 152 extends between opposed outer wiper ring surface edges 154 and 155, which are shown in FIG. 8d. It should be noted that, as shown in FIG. 6c, outer wiper ring surface edge 154 faces gage shank 135b, and outer wiper ring surface edge 155 faces away from gage shank 135b. Wiper ring body 151 includes an outer wiper ring surface 153, which extends annularly around the outer periphery thereof and faces away from wiper ring body opening 152. Outer wiper ring surface 153 extends between opposed outer wiper ring surface edges 154 and 155.


In this embodiment, wiper ring 150 includes four wipers, which are denoted as wipers 156a, 156b, 156c and 156d and are carried by gage wiper ring body 151. It should be noted that wiper ring 150 generally includes one or more wipers carried by gage wiper ring body 151. In this embodiment, four wipers are shown for illustrative purposes.


In this embodiment, wipers 156a, 156b, 156c and 156d move debris away from cutter bearing cavity 103. In particular, wipers 156a, 156b, 156c and 156d move debris away from cutter bearing cavity 103 in response to the rotation of cutter 120. In this embodiment, wipers 156a, 156b, 156c and 156d move debris through gage interface opening 129b and towards gage shank 135b. In particular, wipers 156a, 156b, 156c and 156d move debris through gage interface opening 129b and towards gage shank 135b in response to the rotation of cutter 120. In this embodiment, wipers 156a, 156b, 156c and 156d move debris away from gage roller bearing surface 132. In particular, wipers 156a, 156b, 156c and 156d move debris away from gage roller bearing surface 132 in response to the rotation of cutter 120. In this embodiment, wipers 156a, 156b, 156c and 156d move debris towards gage shank 135b. In particular, wipers 156a, 156b, 156c and 156d move debris towards gage shank 135b in response to the rotation of cutter 120. In this way, gage wiper ring 150 moves debris away from cutter bearing cavity 103, gage roller bearing surface 132 and towards gage shank 135b. It should be noted that the direction of rotation of cutter 120 is in a clockwise direction 107b, which is indicated in FIG. 8c.


As mentioned above, wipers 156a, 156b, 156c and 156d are carried by wiper ring body 151. Wipers 156a, 156b, 156c and 156d can be carried by wiper ring body 151 in many different ways so they move debris away from gage roller bearing surface 132 and towards gage shank 135b in response to the rotation of wiper ring body 151. In this embodiment, wipers 156a, 156b, 156c and 156d are positioned proximate to outer wiper ring surface 153. In particular, wipers 156a, 156b, 156c and 156d are engaged with outer wiper ring surface 153 and extend between opposed outer wiper ring surface edges 154 and 155.


In this embodiment, wipers 156a, 156b, 156c and 156d include wiper surfaces 158a, 158b, 158c and 158d, respectively, as shown in FIG. 8c. Wiper surfaces 158a, 158b, 158c and 158d face away from wiper ring body opening 152 and outer wiper ring surface 153. It should be noted that wiper surfaces 158a, 158b, 158c and 158d curve in response to the curvature of outer wiper ring surface 153. Wiper surfaces 158a, 158b, 158c and 158d are spaced from outer wiper ring surface 153. In this embodiment, wiper surfaces 158a, 158b, 158c and 158d are each spaced from outer wiper ring surface 153 by a distance t2, as shown in FIG. 8c. Further, wiper surfaces 158a, 158b, 158c and 158d each have a width of W2, which is a distance between the leading and trailing surfaces of the corresponding wipers 156a, 156b, 156c and 156d. For example, width W2 extends between leading and trailing surfaces 159a and 159b of wiper 156a, as shown in FIG. 8e. Edges 159a and 159b are leading and trailing edges, respectively, because cutter 120 rotates about journal assembly 130 from edge 159a to edge 159b. In some embodiments, width W2 is between about five times to about ten times the value of thickness t2.


It should be noted that wipers 156a, 156b, 156c and 156d extend between outer wiper ring surface edges 154 and 155 so that their lengths are not parallel to reference line 106. Reference line 106 extends perpendicular to outer wiper ring surface edges 154 and 155. The lengths of wipers 156a, 156b, 156c and 156d are not parallel to reference line 106 because leading and trailing edges 159a and 159b are not parallel to reference line 106. In this way, wipers 156a, 156b, 156c and 156d do not extend perpendicular to outer wiper ring surface edges 154 and 155, and wipers 156a, 156b, 156c and 156d are angled wipers.


In this embodiment, the angle between leading and trailing edges 159a and 159b and reference line 106 is denoted as θ2. In some embodiments, angle θ2 has an angular value between about ten degrees (10°) and eighty degrees (80°). In some embodiments, angle θ2 has an angular value between about thirty degrees (30°) and sixty degrees (60°). In general, more and less debris is moved by wipers 156a, 156b, 156c and 156d towards gage shank 135b in response to increasing and decreasing angle θ2, respectively.


An example in which a wiper extends between outer wiper ring surface edges 154 and 155 so that its length is parallel to reference line 106 is shown in FIG. 8f. In this example, leading and trailing edges 159a and 159b are parallel to reference line 106.



FIG. 9
a is a side view of cutter 120 rotatably mounted to journal assembly 130. FIG. 9b is a cut-away side view of cutter 120 rotatably mounted to journal assembly 130 taken along a cut-line 9b-9b of FIG. 9a. FIG. 9c is a cut-away side view of cutter 120 rotatably mounted to journal assembly 130 taken along a cut-line 9c-9c of FIG. 9a.


In this embodiment, a plurality of roller bearings, some of which are denoted as roller bearings 125a, 125b, 126a and 126b, extend through cutter bearing cavity 103. Roller bearings 125a and 125b engage cutter 120 and gage roller bearing surface 132 of journal body 131, and roller bearings 126a and 126b engage cutter 120 and nose roller bearing surface 133 of journal body 131. A plurality of ball bearings, some of which are denoted as ball bearings 127a and 127b, extend through cutter bearing cavity 103. Ball bearings 127a and 127b engage cutter 120 and ball bearing groove 134 of journal body 131. The roller and ball bearings facilitate the ability of cutter 120 to rotate about journal assembly 130.


In this embodiment, nose and gage seal assembly surfaces 148a and 148b are engaged by nose and gage seal assemblies 170 and 171. Nose and gage seal assemblies establish a seal between journal body 131 and cutter 120. Nose seal assembly 170 is positioned between nose wiper ring 140 and roller bearings 126a and 126b, and gage seal assembly 171 is positioned between gage wiper ring 150 and roller bearings 125a and 125b.


In this embodiment, nose seal assembly 170 is annular in shape and includes a central opening for receiving journal body 131. Nose seal assembly 170 can include many different components. In some embodiments, nose seal assembly 170 includes an O-ring seal and/or metal face seal.


In this embodiment, gage seal assembly 171 is annular in shape and includes a central opening for receiving journal body 131. Gage seal assembly 171 can include many different components. In some embodiments, nose seal assembly 170 includes an O-ring seal and/or metal face seal.


In operation, raise boring reamer assembly 100 (FIGS. 1a and 1b) is operatively coupled to a drill string (not shown), and moved upwardly through the formation and rotated to form the borehole. As raise boring reamer assembly 100 moves upwardly and rotates, cutter 120 engages the formation and rotates in a rotation direction 107 (FIG. 9c) about journal assembly 130 in response. Debris flows towards cutter bearing cavity 103 in response to raise boring reamer assembly 100 being moved upwardly through the formation. In particular, debris flows towards cutter bearing cavity 103 through nose and gage interface openings 129a and 129b in response to raise boring reamer assembly 100 being moved upwardly through the formation. As mentioned above, debris in cutter bearing cavity 103 restricts the ability of cutter 120 to rotate about journal assembly 130. Hence, it is desirable to restrict the ability of debris to flow to cutter bearing cavity 103, and to move debris away from cutter bearing cavity 103.


In this embodiment, nose seal assembly 170 restricts the ability of debris to flow to cutter bearing cavity through nose interface opening 129a. Nose seal assembly 170 restricts the ability of debris to flow to cutter bearing cavity through nose interface opening 129a because it establishes a seal between journal body 131 and cutter 120. In particular, nose seal assembly 170 establishes a seal between nose seal assembly surface 148a and cutter 120.



FIG. 9
d is a close-up view of a nose seal region 128a of FIG. 9b. In this embodiment, the wipers of nose wiper ring 140 move debris away from cutter bearing cavity 103. In particular, the wipers of nose wiper ring 140 move debris away from cutter bearing cavity 103 through nose interface opening 129a. The wipers of nose wiper ring 140 move debris away from cutter bearing cavity 103 through nose interface opening 129a towards nose shank 135a. As mentioned above, the wipers of nose wiper ring 140 move debris in response to the rotation of cutter 120. The wipers of nose wiper ring 140 move debris in direction 108, as shown in FIG. 9c, in response to the rotation of cutter 120. It should be noted that direction 108 is substantially parallel to longitudinal journal axis 138. In this embodiment, the wipers of nose wiper ring 140 include wipers 146a, 146b, 146c and 146d, wherein nose wiper ring 146b is shown in FIG. 9d.


In this embodiment, nose seal assembly 170 restricts the ability of debris to flow to cutter bearing cavity through nose interface opening 129a. Nose seal assembly 170 restricts the ability of debris to flow to cutter bearing cavity through nose interface opening 129a because it establishes a seal between journal body 131 and cutter 120. In particular, nose seal assembly 170 establishes a seal between nose seal assembly surface 148a and cutter 120.



FIG. 9
e is a close-up view of a gage seal region 128b of FIG. 9b. In this embodiment, the wipers of gage wiper ring 150 move debris away from cutter bearing cavity 103. In particular, the wipers of gage wiper ring 150 move debris away from cutter bearing cavity 103 through gage interface opening 129b. The wipers of gage wiper ring 140 move debris away from cutter bearing cavity 103 through gage interface opening 129b towards gage shank 135b. As mentioned above, the wipers of gage wiper ring 150 move debris in response to the rotation of cutter 120. The wipers of gage wiper ring 150 move debris in direction 109, as shown in FIG. 9c, in response to the rotation of cutter 120. It should be noted that direction 109 is substantially parallel to longitudinal journal axis 138. In this embodiment, the wipers of gage wiper ring 150 include wipers 156a, 156b, 156c and 156d, wherein gage wiper ring 156b is shown in FIG. 9e.


In this embodiment, gage seal assembly 171 restricts the ability of debris to flow to cutter bearing cavity through gage interface opening 129b. Gage seal assembly 171 restricts the ability of debris to flow to cutter bearing cavity through gage interface opening 129b because it establishes a seal between journal body 131 and cutter 120. In particular, gage seal assembly 171 establishes a seal between gage seal assembly surface 148b and cutter 120.



FIG. 9
f is another embodiment of nose wiper ring 140 in nose seal region 128a. In this embodiment, nose wiper ring 140 includes an inwardly tapered outer wiper ring surface, which is denoted as inwardly tapered outer wiper ring surface 143a. Surface 143a is tapered because it does not extend parallel to longitudinal journal axis 138. In this particular embodiment, inwardly tapered outer wiper ring surface 143a extends along a reference line 182, which is at an angle θ3 relative to longitudinal journal axis 138. Surface 143a is tapered inwardly because it extends towards shank 135a as it extends away from nose seal assembly 170 (FIG. 9b). It should be noted that outer wiper ring surface 143, as shown in FIGS. 7a, 7b, 7c and 7d, is a non-tapered surface because it does extend parallel to longitudinal journal axis 138.



FIG. 9
g is another embodiment of nose wiper ring 140 in nose seal region 128a. In this embodiment, nose wiper ring 140 includes an outwardly tapered outer wiper ring surface, which is denoted as outwardly tapered outer wiper ring surface 143b. Surface 143b is tapered because it does not extend parallel to longitudinal journal axis 138. In this particular embodiment, outwardly tapered outer wiper ring surface 143b extends along a reference line 183, which is at an angle θ4 relative to longitudinal journal axis 138. Surface 143b is tapered outwardly because it extends away from nose shank 135a as it extends away from nose seal assembly 170 (FIG. 9b).



FIG. 9
h is another embodiment of gage wiper ring 150 in gage seal region 128b. In this embodiment, gage wiper ring 150 includes an inwardly tapered outer wiper ring surface, which is denoted as inwardly tapered outer wiper ring surface 153a. Surface 153a is tapered because it does not extend parallel to longitudinal journal axis 138. In this particular embodiment, inwardly tapered outer wiper ring surface 153a extends along a reference line 184, which is at an angle θ5 relative to longitudinal journal axis 138. Surface 153a is tapered inwardly because it extends towards gage shank 135b as it extends away from gage seal assembly 171 (FIG. 9b). It should be noted that outer wiper ring surface 153, as shown in FIGS. 8a, 8b, 8c and 8d, is a non-tapered surface because it does extend parallel to longitudinal journal axis 138.



FIG. 9
i is another embodiment of gage wiper ring 150 in gage seal region 128b. In this embodiment, gage wiper ring 150 includes an outwardly tapered outer wiper ring surface, which is denoted as outwardly tapered outer wiper ring surface 153b. Surface 153b is tapered because it does not extend parallel to longitudinal journal axis 138. In this particular embodiment, outwardly tapered outer wiper ring surface 153b extends along a reference line 185, which is at an angle θ6 relative to longitudinal journal axis 138. Surface 153b is tapered outwardly because it extends away from gage shank 135b as it extends away from gage seal assembly 171 (FIG. 9b).


The embodiments of the invention described herein are exemplary and numerous modifications, variations and rearrangements can be readily envisioned to achieve substantially equivalent results, all of which are intended to be embraced within the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A raise boring cutter, comprising: a journal assembly having nose and gage shanks;a cutter carried by the journal assembly;a nose wiper ring carried by the journal assembly, the nose wiper ring being positioned proximate to the nose shank, wherein the nose wiper ring moves debris towards the nose shank in response to the rotation of the cutter, wherein the nose wiper ring includes a plurality of nose wipers on an outer nose wiper ring surface which extend at a non-zero angle relative to an axis of rotation of the cutter; anda gage wiper ring carried by the journal assembly, the gage wiper ring being positioned proximate to the gage shank, wherein the gage wiper ring moves debris towards the gage shank in an axial direction in response to the rotation of the cutter, wherein the gage wiper ring includes a plurality of gage wipers on an outer nose wiper ring which extend at a non-zero angle relative to an axis of rotation of the cutter.
  • 2. A raise boring cutter, comprising: a saddle;a journal assembly carried by the saddle, wherein the journal assembly includes a nose shank;a cutter carried by the journal assembly to form a cutter bearing cavity therebetween;a nose seal assembly;a nose wiper ring positioned proximate to the nose shank, wherein the nose wiper ring includes a nose wiper carried by the nose wiper ring on an outer wiper ring surface which extends at a non-perpendicular angle between opposed outer wiper ring surface edges of the nose wiper ring; andwherein the nose wiper ring moves debris away from the cutter bearing cavity in response to the rotation of the cutter.
  • 3. The raise boring cutter of claim 2, wherein the nose wiper ring moves debris towards the nose shank in response to the rotation of the cutter.
  • 4. The raise boring cutter of claim 2, wherein the journal assembly includes a gage shank.
  • 5. The raise boring cutter of claim 4, further including a gage wiper ring positioned proximate to the gage shank, wherein the gage wiper ring move debris away from the cutter bearing cavity in response to the rotation of the cutter.
  • 6. The raise boring cutter of claim 5, wherein the gage wiper ring moves debris towards the gage shank in response to the rotation of the cutter.
  • 7. The raise boring cutter of claim 5, wherein the gage wiper ring has a larger outer dimension than the nose wiper ring.
  • 8. A raise boring cutter, comprising: a saddle;a journal assembly carried by the saddle, wherein the journal assembly includes nose and gage shanks;a cutter carried by the journal assembly;nose and gage seal assemblies; andnose and gage wiper rings positioned proximate to the nose and gage shanks, respectively, wherein the nose wiper ring includes a nose wiper which extends at a non-perpendicular angle between opposed outer wiper ring surface edges of the nose wiper ring and the gage wiper ring includes a gage wiper which extends at a non-perpendicular angle between opposed outer wiper ring surface edges of the gage wiper ring;wherein the nose and gage wiper rings move debris in opposed directions in response to the rotation of the cutter.
  • 9. The raise boring cutter of claim 8, wherein the nose and gage wiper rings moves debris towards the nose and gage shanks, respectively, in response to the rotation of the cutter.
  • 10. The raise boring cutter of claim 8, wherein the nose and gage wiper rings each include wiper ring body openings through which the journal extends.
  • 11. The raise boring cutter of claim 8, wherein the saddle includes a cutter recess through which the cutter extends.
  • 12. The raise boring cutter of claim 8, wherein the saddle includes nose and gage shank couplers coupled to the nose and gage shanks, respectively.
US Referenced Citations (37)
Number Name Date Kind
3220494 Cannon et al. Nov 1965 A
3550972 Coski Dec 1970 A
3847235 Goodfellow Nov 1974 A
4042047 Dively et al. Aug 1977 A
4053244 Dively Oct 1977 A
4071098 Dively et al. Jan 1978 A
4096917 Harris Jun 1978 A
4136748 Dickerhoff Jan 1979 A
4142598 Maxsted Mar 1979 A
4167980 Saxman Sep 1979 A
4179000 Mitchell et al. Dec 1979 A
4191267 Snaddon Mar 1980 A
4194578 Mitchell Mar 1980 A
4228863 Liljekvist et al. Oct 1980 A
4270618 Owens Jun 1981 A
4301876 Harrison et al. Nov 1981 A
4386670 Westermark Jun 1983 A
4427307 Norlander et al. Jan 1984 A
4456082 Harrison Jun 1984 A
4688651 Dysart Aug 1987 A
4697652 Walk Oct 1987 A
4741471 Sullivan May 1988 A
4832135 Walk et al. May 1989 A
5056610 Oliver et al. Oct 1991 A
5199510 Stanley et al. Apr 1993 A
5341890 Cawthorne et al. Aug 1994 A
5358061 Van Nguyen Oct 1994 A
5429200 Blackman et al. Jul 1995 A
5740871 Williams Apr 1998 A
5842700 Fang et al. Dec 1998 A
6336512 Siracki et al. Jan 2002 B1
6533051 Singh et al. Mar 2003 B1
20040134687 Radford et al. Jul 2004 A1
20050178588 Lin Aug 2005 A1
20050252693 Brannstrom Nov 2005 A1
20060191721 Brolund Aug 2006 A1
20070289780 Osborne Dec 2007 A1
Foreign Referenced Citations (1)
Number Date Country
03078787 Sep 2003 WO
Related Publications (1)
Number Date Country
20100126778 A1 May 2010 US
Continuation in Parts (1)
Number Date Country
Parent 11425366 Jun 2006 US
Child 12694609 US