The present invention generally relates to cutter assemblies and, more particularly, to cutter assemblies which are useful in trencher machines, boring machines, and profiling machines and similar cutting or abrading rock and earthen apparatuses.
One of the difficulties with present cutter assemblies, used in trenchers, is that the cutting elements are generally not suitable for trenching through both hard materials and soft materials without changing the cutting elements. Furthermore, the cutting elements are generally not capable of penetrating certain extremely hard materials, such as reinforced concrete, rocks, tree stumps, frozen earth and certain kinds of land fill, or at best penetrate such materials only very slowly and/or with a high rate of wear. Consequently, cutting through extremely hard materials is an extremely costly undertaking today, and in many cases is simply not feasible.
In accordance with the present invention, there is provided a universal cutter assembly for use in trenches on road profilers and the like, comprising a transport device carrying a plurality of free-wheeling rotatable cutting elements that have a cutting edge at an outer periphery thereof and a cutting face on at least one side thereof. At least a portion of the cutting elements are canted such that the cutting face is at an angle to the line of action of the cutting element, which is imparted by the transport device.
Other aspects and advantages of the invention will be apparent from the following detailed description and the accompanying drawings.
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
An aspect of the present invention is to provide an improved cutter assembly which is universal in the sense that it can include various types of transport devices such as linear, circular and the like that carry the cutting elements and in the sense that it is capable of cutting through extremely hard materials as well as soft materials, such as sandy loamy soil, without the need to frequently change the cutting elements.
Embodiments of the invention provide an improved cutter assembly which is capable of cutting through extremely hard materials with a high degree of cutting efficiency and, therefore, at relatively fast cutting rates, e.g., at rates of up to six to twelve inches per minute or greater through reinforced high-strength concrete of various thickness. In this connection, an aspect of the invention is to provide such a cutting assembly which produces a unique cutting action that fractures the material being cut by subjecting the material primarily to tensile forces rather than compressive forces.
In an embodiment, the invention provides a cutter assembly, in which the cutting elements have a relatively long operating life, thereby minimizing the down time for periodic replacement of the cutting elements and reducing replacement costs.
Turning now to the drawings,
Referring first to
In the particular embodiment illustrated, the cutting elements of the trencher are carried by an endless chain trained about a driven sprocket 17 at the upper end of the boom 12, and an idler sprocket 18 at the lower end of the boom. The chain 16, which is driven in the clockwise direction as viewed in
Mounted on the outer surface of each carrier plate 22 is a cluster of freewheeling cutting elements 30. As can be seen in
In an illustrated embodiment, the freewheeling connection of the cutting element with the mount is provided by a shaft that is integral with the cutting element 30 as a single monolithic piece held in the mount 32. Likewise, the mount 32 is securely attached to the carrier plate 22 in order to maintain a strong connection of the cutting elements to the chain 16. To hold the cutting elements in place, the shaft 31 can extend all the way through a hole formed in the mount 32 and be held captive therein by means of a snap ring 21 or other device. The wheel end of the hole in the mount 32 can be slightly flared, as shown in
As an alternative to direct engagement of the shaft 31 with the hole in the mount 32, a wear member in the form of a sleeve 33 can surround the shaft 31 to provide a wear surface between the shaft 31 and the mount 32. A suitable spring steel is an example of an acceptable material for the sleeve. As shown in
In certain applications, the outer working edge 38 of the cutting elements may be continuous, for example in a circular shape. However, in many applications where a more aggressive cutting action is desired, it may be preferable for the outer working edge to be notched or serrated so as to form teeth. For example, the cutting elements shown in
The cutting faces 36 of the cutting elements 30 are preferably dished out to form concave surfaces. This has the effect of lengthening the cutting teeth 34, and also further concentrates the cutting forces around the outer periphery of the cutting element 30, particularly at the outer working edge 38. The relieved central portions of the cutting face 36 also further facilitate removal of the loose material produced by the cutting action of the elements 30. Alternatively, the cutting faces 36 of the cutting elements 30 can be flat. For example, the cutting elements can be formed as simple wheels with or without teeth extending radially from an outer face of the wheel.
In accordance with embodiments of the present invention, each of the cutting elements 30 shown in
To demonstrate the directions in which the cutting elements are canted,
Thus, in order to improve the cutting action of the cutting elements 30 they are canted such that the axis is rotated forward in a plane parallel to the surface being cut P1, as shown in
However, for thicker cutting elements 30, a second cant angle may provide further advantages. For example, the cutting elements may be canted as shown in
The two angles α and β, by which the cutting elements 30 are canted, may be varied somewhat for different applications, and the optimum angles will depend in part on the particular material being cut and the material of which the cutting elements 30 are made. It is generally preferred, however, that each angle can be within the range of about 7.5° to 30° more or less. It has been found that angles within this range provide efficient cutting action without imposing an excessive load on the cutting elements 30. In the illustrative cutter assembly (
Referring now to
The rolling wedge action of the cutting elements breaks off the concrete in relatively large fragments, rather than abrading away the concrete through fractured compression loading as a dust or small particles. This type of cutting action is highly efficient and, therefore, can be carried out at relatively fast cutting rates while at the same time extending the life of the cutting elements.
As can be seen most clearly in
The lateral offsets or gauge among the various cutting elements 30(a)-30(m) in
The lateral offset or gauge between the cutting elements 30 and the actual number of cutting elements can be customized in accordance with the particular material being trenched or cut through. Depending on the material being trenched, both the gauge and the actual number of cutting elements 30 can be increased or decreased. For example in softer materials such as dirt, loam or relatively soft clay that is easily penetrated, fewer cutting elements 30 may be required and, in fact, some of the endless chain driven transport device segments 22 may have no cutting elements on them and simply include a paddle 55 for transporting cut material out of the trench, as shown in
An example of such a transport device segment 22 is shown in detail in
The embodiments illustrated in
In the alternative, when trenching through relatively more difficult materials to penetrate, such as shale, limestone and other higher compressive strength earthen materials and rocks, and asphalt, the number of cutting elements on the driven transport device can be increased as trenching difficulty increases, and the gauge or distance between the cutting elements on the driven transport device can also be decreased. An example of such an embodiment may include one driven transport device with cutting element(s) for every driven transport device segment with a paddle such as shown in
When the material being trenched is extremely hard and difficult to penetrate, the segments 22 of the driven transport device can be populated with near the maximum if not the maximum number of cutting elements 30. An example of such materials includes concrete, reinforced concrete and extremely hard rock typically found in mining applications. In an example of such an embodiment, each segment 22 of the driven transport device has one or more cutting elements mounted on it. Moreover, the gauge or distance between cutting elements in such extremely hard and difficult materials to trench can be further decreased to a minimum, which in some cases depends on the diameter of the cutting elements. For example, the gauge or cutting spacing between cutting elements could be as little as 0.25 or typically less than 0.375 inches.
The table below is a master list showing the possible spacing of the cutting elements 30 in an exemplary embodiment. The master list assumes a 0.125 inch spacing between adjacent elements 30. The table is set up for a trench of 8.5 inch width. If the trench is wider, the table expands appropriately.
From the Master TABLE 1 above, a variety of different chains can be constructed to best match the material being worked. TABLE 2 below shows three possible configurations derivable from the master spacing in TABLE 1.
TABLE 3 below illustrates an alternative spacing at 0.375 inch intervals.
The particular group of cutting elements 30 oriented to cut the side walls 51 and 52 of the trench in the illustrative embodiment in
As can seen most clearly in
In an alternative arrangement illustrated in
It will be understood that the entire group of cutting elements 30 illustrated in the embodiment of
In the illustrated embodiments of the invention, the cutter assembly is embodied as a trencher and the transport device is a chain that imparts a line of action to the cutting elements that remains linear for the portion of the chain's path where the cutting elements contact the surface being cut. However, the cutting assembly can be implemented in other embodiments, where the transport device takes on other forms. For example, the transport device could be designed as a large rotating body with the freewheeling cutting elements mounted thereon. In such an embodiment, the freewheeling cutting elements could be mounted to an outer circumference of the rotating body or to a face of the rotating body. For example, the transport device could be a large drum that forms a profiling machine. In this case, the cutting elements could be mounted in a freewheeling fashion to the circumference of the drum, which is spun to cut away at a surface. In another embodiment, the cutter assembly could be embodied as a rock wheel, with the wheel acting as the transport device and the cutting elements mounted in a freewheeling manner to the outer circumference of the wheel. In yet another example embodiment, the cutting elements could be mounted to a shaft that acts as the transport device so as to form a type of drill or boring machine. In such a case, the cutting elements could be mounted on the outer circumference of the shaft and/or on the end face of the shaft. Furthermore, the end face of the shaft could be flat, or could have a profile, such as a cone shape. In each of these cases, the transport device would have a rotational, rather than linear, movement and the line of action of the cutting elements would continuously change. However, the freewheeling cutting elements would still be canted and tilted to roll against the surface being cut and would be cutting material away from this surface.
In the embodiments illustrated in
Just as the configuration and spacing of the cutting elements 30 on the driven transport device can be variable, the diameter of the cutting elements can also be varied. For example, the cutting elements can range in size from several inches in diameter to less than an inch in diameter. The selection of diameter can depend on the particular driven transport device and the particular application for which the cutting elements are being applied. These variations are possible regardless of whether the transport device is a chain, as shown in the drawings, or if the cutting elements are mounted on a rotating shaft or tube.
The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Application No. 61/934,476, filed Jan. 31, 2014, U.S. Provisional Application No. 61/947,749, filed Mar. 4, 2014, and U.S. Provisional Application No. 62/010,171, filed Jun. 10, 2014.
Number | Name | Date | Kind |
---|---|---|---|
568933 | Wiles | Oct 1896 | A |
588051 | Bliss | Aug 1897 | A |
845837 | Wines | Mar 1907 | A |
908517 | Sturtevant | Jan 1909 | A |
982038 | Curry | Jan 1911 | A |
1185504 | Hemenway | May 1916 | A |
1202908 | Slauson et al. | Oct 1916 | A |
1203109 | Gitzendanner | Oct 1916 | A |
1236445 | Kast | Aug 1917 | A |
1236909 | Christensen | Aug 1917 | A |
1257482 | Davidson et al. | Feb 1918 | A |
1294559 | Sproul | Feb 1919 | A |
1404835 | Christine | Jan 1922 | A |
1449697 | Richards | Mar 1923 | A |
1550669 | Bowman | Apr 1925 | A |
1555218 | Kennedy | Sep 1925 | A |
1582332 | Brutus | Apr 1926 | A |
1586196 | Halvorsen | May 1926 | A |
1618591 | Jacobsen | Feb 1927 | A |
1651122 | Hoffert | Nov 1927 | A |
1658397 | Schmidt | Feb 1928 | A |
1765602 | McKinlay | Jun 1930 | A |
1845412 | Hathaway | Feb 1932 | A |
1883307 | Livingston et al. | Oct 1932 | A |
1903772 | Bowman | Apr 1933 | A |
2025527 | Schramm | Dec 1935 | A |
2096875 | Bertovich | Oct 1937 | A |
2149462 | Oppliger | Mar 1939 | A |
2163732 | Kleineberg et al. | Jun 1939 | A |
2210919 | Joy | Aug 1940 | A |
2310289 | Hokanson | Feb 1943 | A |
2325455 | Williams | Jul 1943 | A |
RE22359 | Christensen | Aug 1943 | E |
2336335 | Zublin | Dec 1943 | A |
2363969 | Jones | Nov 1944 | A |
2550202 | Robbins | Apr 1951 | A |
2634971 | Schweizer | Apr 1953 | A |
2650812 | Joy | Sep 1953 | A |
2650813 | Rollins et al. | Sep 1953 | A |
2659586 | Leven | Nov 1953 | A |
2676005 | Joy | Apr 1954 | A |
2693356 | Hofferth | Nov 1954 | A |
2698174 | Deuel et al. | Dec 1954 | A |
2709584 | Kleinberg | May 1955 | A |
2720717 | Arps | Oct 1955 | A |
2736999 | Rouan et al. | Mar 1956 | A |
2737378 | Barrett | Mar 1956 | A |
2742281 | Whitecar | Apr 1956 | A |
2742439 | Hallett | Apr 1956 | A |
2796255 | Mitchell | Jun 1957 | A |
2798712 | Ball | Jul 1957 | A |
2810567 | Kirkham | Oct 1957 | A |
2856182 | Cantrell | Oct 1958 | A |
2867427 | Russell et al. | Jan 1959 | A |
2873112 | Crafts et al. | Feb 1959 | A |
2926896 | Krekeler | Mar 1960 | A |
2935308 | Zorn | May 1960 | A |
2939692 | Russell et al. | Jun 1960 | A |
2966354 | Gore | Dec 1960 | A |
3039208 | Oglesby et al. | Jun 1962 | A |
3059391 | Volks et al. | Oct 1962 | A |
3061291 | Jones | Oct 1962 | A |
3140898 | Rogers | Jul 1964 | A |
3176778 | Bezzerides | Apr 1965 | A |
RE25806 | Oglesby et al. | Jun 1965 | E |
3295232 | Oglesby et al. | Jan 1967 | A |
3299232 | Oglesby et al. | Jan 1967 | A |
3361481 | Maddock | Jan 1968 | A |
3397012 | Krekeler | Aug 1968 | A |
3397013 | Krekeler | Aug 1968 | A |
3471950 | Ferwerda | Oct 1969 | A |
3493268 | Bower, Jr. | Feb 1970 | A |
3498677 | Morrow | Mar 1970 | A |
3512838 | Kniff | May 1970 | A |
3519309 | Engle et al. | Jul 1970 | A |
3554605 | Elders | Jan 1971 | A |
3627381 | Krekeler | Dec 1971 | A |
3650565 | Kniff | Mar 1972 | A |
3652130 | Elders | Mar 1972 | A |
3658318 | Bunting et al. | Apr 1972 | A |
3663007 | Preiter | May 1972 | A |
3663063 | Johnmeyer, Sr. | May 1972 | A |
3679265 | Krekeler | Jul 1972 | A |
3695726 | Krekeler | Oct 1972 | A |
3697137 | Krekeler | Oct 1972 | A |
RE27686 | Kniff | Jun 1973 | E |
3746396 | Radd | Jul 1973 | A |
3749449 | Krekeler | Jul 1973 | A |
3752534 | Rollins et al. | Aug 1973 | A |
3767266 | Krekeler | Oct 1973 | A |
3778112 | Krekeler | Dec 1973 | A |
3784259 | Munger et al. | Jan 1974 | A |
3787091 | Paolini et al. | Jan 1974 | A |
3796464 | Hansen et al. | Mar 1974 | A |
3801158 | Radd et al. | Apr 1974 | A |
3807803 | Rollins et al. | Apr 1974 | A |
3820848 | Kniff | Jun 1974 | A |
3833264 | Elders | Sep 1974 | A |
3833265 | Elders | Sep 1974 | A |
3841707 | Kniff | Oct 1974 | A |
RE28310 | Krekeler | Jan 1975 | E |
3865437 | Crosby | Feb 1975 | A |
3888133 | Krekeler | Jun 1975 | A |
3913979 | Strauss et al. | Oct 1975 | A |
3926423 | Merker et al. | Dec 1975 | A |
3945681 | White | Mar 1976 | A |
3954301 | Stepp | May 1976 | A |
3957307 | Varda | May 1976 | A |
3968995 | Arentzen | Jul 1976 | A |
3979843 | Nissen | Sep 1976 | A |
3988016 | Merker et al. | Oct 1976 | A |
3992061 | Rollins | Nov 1976 | A |
4244625 | Turner | Jan 1981 | A |
4448269 | Ishikawa | May 1984 | A |
5338102 | Lent | Aug 1994 | A |
7950170 | Hall et al. | May 2011 | B2 |
20080163523 | Seidl | Jul 2008 | A1 |
20080282584 | Hall | Nov 2008 | A1 |
20100107455 | Hall | May 2010 | A1 |
Entry |
---|
International Search Report and Written Opinion for co-pending International Application No. PCT/US2015/13997 dated Apr. 23, 2015. |
Table 2-1, Draft and Power Requirement of Crop Machine, from Crop-Production Equipment, p. 20, Mar. 17, 1977. |
“Disk Tools”, Chapter 13 from Crop-Production Equipment, pp. 138-147, Mar. 17, 1977. |
“Disk Implements”, Chapter 7 from Principles of Farm Equipment, pp. 153-168. |
Article entitled: “More Miles of tunnel. More Miles of Shafts and Raises. More than 300 Machines Worldwide” from Robbins Company, Jan. 1981 (p. 82). |
Article entitled “Chicago's Grand Plan Imperiled” ENR/Dec. 17, 1981, p. 33. |
Article entitled: “When Rock Talks, We Listen” from Timken Company, p. 116, Jan. 1981. |
Article entitled:“Ripperveyor Cutter Head Gives Higher Production, Better Clean-Up” from Joy Manufacturing Company, inventor first became aware of this in early 1981. |
Article entitled “Depend on McNally Repairs to Minimize Equipment Replacement”, Mc Nally Mountain States Steel Co., p. 17, Jul. 1981. |
Article entitled “Take another look at our—There's more than meets the eye—hidden benefits such a proven new approaches to productivity—significant reliability and safety benefits”, Jeffrey Mining Machinery Division Dresser Industries, Inc., inventor first became aware of this in early 1981. |
Article entitled “Kennametal Tools for Road Planning”, pp. 10, 11, and 13-15, inventor first became aware of this in early 1981. |
Roto-Mill PR-750 Pavement Profiler, Features and Specifications, inventor first became aware of this in early 1981. |
Pengo Corporation—Interchangeable Teeth, Bulletin 114, 1977. |
Article entitled “Straight Creek Miners Discover 6,354 Extra Fee on a Hughes HH44”, Huges Toll Company, inventor first became aware of this in early 1981. |
Austin Drill Heads, Speed Auger and Air Drilling, Austin Power Company, LL-9724, inventor first became aware of this in early 1981. |
H&L Tooth Company, Litho, US, Brochure HL-227A (pp. 7, 9, 13 & 15), inventor first became aware of this in early 1981. |
Pengo Augers, For use on all makes of boring machines, for use on all types of boring machines, fast digging in all kinds of material, Designed fro Strength and durability, Bulletin 92A, 1978. |
Hensley Ripping Attachments, inventor first became aware of this in early 1981. |
Wain Roy, Ripper Bucket, Excavate caliches, coral, frost, limestone, sandstone and shale (1 page), inventor first became aware of this in early 1981. |
Information Cones with Carbide button Tips (2 pages), inventor first became aware of this in early 1981. |
ESCO, Ground Engagement Tools (1 page), inventor first became aware of this in early 1981. |
Tradeshow Pictures (1 page), inventor first became aware of this in early 1981. |
Alpine Cutters, “Rock & Concrete Cutter”, MCS Magazine (Modern Contractor Solutions), Oct. 2013 (1 page). |
Altcut Products, “Flat Face Carbide Cutters”, retrieved from http:www.altcutproducts.com/item.php?pageid=ffctfail&units on Jan. 30, 2009, (1 page). |
Grayson, Wayne, “Baby Bertha? Bechtel builds mimi tunnel-boring machine using 50,000 Legos”, Construction News, retrieved from http:www.equipmentworld.com/video-baby-bertha-bechtel-builds-mini-tunnel-boring-ma . . . on Feb. 10, 2014 (1 page). |
Grayson, Wayne, “Big Bertha, world's largest tunnel-boring machine arrives in Seattle”, on Apr. 4, 2013, Construction News retrieved from http:www.equipmentworld.com/bi-bertha-worlds-largest-tunnel-boring-machine-arrives . . . (Feb. 10, 2014) (3 pages). |
CONEQTEC Universal—“Call you dealer to fine out about new reduced prices”, Slot Cutters, retrieved from http:www.coneqtecuniversal.com/slotcutter.html on Jan. 30, 2009, (10 pages). |
Duratooth Combos110K Chains, Ditch Systems Parts Catalog, 2013 (3 pages). |
Kirian, Denny, “DK-628 Chain Trencher”, Done Right, inventor first became aware of this article in 2000. (3 pages). |
“Introducing the New SL 900”, A Winning Combination: High Productivity, High Availability and EiControl Automation, 2 page from Coal Age Magazine, Apr. 2011. |
Jeffrey Machine, Inc., “Drilling Tools Field Guide”, pp. 5-9, 30, 36-42, 46 and 52-53, © 2011-2012, Jeffrey Machine Inc. (18 pages). |
Marais Groupe, SMC 200 R Wheel Trencher for the mechanical laying of networks, Product Brochure, Feb. 2006, (10 pages). |
Mastenbroek Technologie Novatrice, Product Brochure, HRT, 2006 (4 pages). |
Mastenbroek, Rock Trenchers, Mastenbroek rock trenchers combine innovative and robust design together with quality components and the versatility afforded by a variety of installation systems, Apr. 2014 (6 pages). |
Port Industries, Hydramaxx 2500, 2600 and 2400, Product Brochure, Jan. 1, 2007 (6 pages). |
Rivard Product Brochure for “RIV 503 TR 250 Rock Saw Wheel Trencher”, 2009, (4 pages). |
Rivard Product Brochure for Trancheuse 500 CH and RIV 523 TR 250, Wheel Trenchers, 2009 (4 pages). |
Smith Manufacturing website information, retrieved from http://www.smithmfg.com on Jan. 30, 2009 (2 pages). |
TESMEC, USA, Inc., 775DT “Dirt Series”, Product Brochure, Aug. 1, 2013, (2 pages). |
Roepke, Wallace W., et al., “Bureau of Mines Coal Cutting Technology Facilities at the Twin Cities Research Center”, Bureau of Mines Information Circular/1983, Information Circular 8951 (31 pages). |
United States Department of the Interior Bureau of Mines, Mounting Post Drawing, Feb. 25, 1988, (1 page). |
Vermeer , T1655 Terrain Leveler ® Surface Excavation Machine, © 2012, (6 pages). |
Vermeer, “Our Newest High Performance Machine, This is Where the Name of the Machine Matters Most”, pages from International Mining Magazine, May 2011, (2 pages). |
Vermeer Risa Trancheuses Et Equipment Brochure, © 2001, (3 pages). |
Vermeer Utility Tracker, RTX 1250 Product Brochure, © 2009, (6 pages). |
International Preliminary Report on Patentability for co-pending International Application No. PCT/US2015/13997 dated Aug. 11, 2016. |
Disc Blades, Disc Harrow Blades, Notched and Plain, retrieved from Home/Grizzly® Brand, Agri Supply—Shop—Home, retrieved (http://www.agrisupply.com/grizzly/c/8000005), (2016), (7 pages). |
Kepner, R.A., et al., Principles of Farm Machinery, Second Edition, “Disk Implements”, Chapter 7, The AVI Publishing Company, Inc., 1972, (pp. 153-160). |
Richey, C.B., et al., Agricultural Engineers Handbook, “Disk Tools”, Chapter 13, McGraw-Hill Book Company, Inc., 1981, (11 pages). |
“Disc Harrow Requirements”, Equipment How-to, Small Farmers Journal, (6 pages), originally appeared in Small Farmers Journal, Issue 28-3 (2016). |
Article entitled “Earth Materials”, from Wikipedia, the free encyclopedia, retrieved from https://en.wikipedia.org/wiki/Earth—materials#Definitions, Sep. 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20150218776 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61934476 | Jan 2014 | US | |
61947749 | Mar 2014 | US | |
62010171 | Jun 2014 | US |