This disclosure relates to cutter elements formed of structures or bodies comprising polycrystalline diamond containing material, methods of making such cutter elements and to elements or constructions comprising polycrystalline diamond structures intended for applications where geological rock and construction materials, such as concrete, asphalt and the like, are broken down and removed. Such applications include oil well drilling, road planning, mining, building construction and the like.
Polycrystalline diamond materials (PCD) as considered in this disclosure are illustrated schematically in
Conventionally, the predominant custom and practice in the prior art is to use the binder metal of hard metal substrates caused to infiltrate into an adjacent mass of diamond powder, after melting of such binders at the elevated temperature and pressure. The PCD material created in this way forms a layer bonded to the hard metal substrate during the high pressure high temperature sintering process. This is infiltration of molten metal at the macroscopic scale of the mass of diamond powder leading to the conventional PCD layer being bonded to the substrate, i.e., infiltrating at the scale of millimeters. By far the most common process in the prior art includes the use of tungsten carbide, with cobalt metal binders as the hard metal substrate. This inevitably results in the hard metal substrate being bonded in-situ to the resultant PCD. Successful commercial exploitation of PCD materials to date has been very heavily dominated by such custom and practice.
For the purposes of this disclosure, PCD constructions which use hard metal substrates as a source of the molten metal sintering agent via directional infiltration and the bonding in-situ to that substrate are referred to as “conventional PCD” constructions or bodies. Such a conventional PCD construction is illustrated in
Historically, conventional PCD structures consisting of PCD material bonded and attached to carbide hard metal substrates are used for material removal elements attached and arranged in housing bodies. General applications where the material to be removed is rock include drill bits for oil well and mining purposes and the like. Applications such as road planing and building construction are included, where the material to be removed may be considered as synthetic or re-constituted rock-like materials such as asphalt, rock chipping containing asphalt, concrete, brick and the like, including combinations of such. Henceforth, as used herein the term “rock” will be considered to refer to both natural geological rocks and synthetic or re-constituted rock-like materials.
Very important applications such as oil well drilling use two main streams of drilling technology, either in competition with or complementing each other. These are drag bit and roller cone technologies. Both of these technologies exploit conventional PCD structures.
Conventional rock removal elements exhibit a series of limitations and problems during the rock removal applications which originate and follow from the use of large hard metal substrates as the dominant source of the metal network of the PCD material and that the said PCD material forms a layer bonded to the hard metal substrate during the manufacturing procedures. The two important considerations to do with the performance and useful life of rock removal elements are the wear progression characteristics of the PCD layers and its fracture related failure.
The first life limiting consideration is the wear characteristic of conventional rock removal elements in that, due to the limited PCD layer thickness, any developing wear scar extends into the hard metal substrate material, no matter what the shape of the rock removal element. Typical PCD material layer thicknesses in prior art conventional rock removing elements are in the range 0.5 mm to 2.5 mm. In such circumstances, the limited thickness of the PCD layer leads to the stage of wear where the wear scar extends into the hard metal substrate to occur for a limited degree of overall wear of the rock removal element. Because hard metal materials are far inferior to PCD in terms of all aspects of wear, several wear related phenomena arise which causes problems in the use of conventional rock removal elements. In particular, preferential removal of the hard metal substrate material leads to undercutting of the PCD layer which is now mechanically and thermally unsupported. In turn, this leads to the potential for increased local bending stresses on the PCD layer, which engenders fracture, and increases in local temperature in the PCD layer, which engenders thermal degradation and a very rapid decrease in wear resistance.
The second life limiting consideration is the potential for early fracture of the PCD layer which is an outcome of easy crack initiation and propagation in the PCD layer, leading to chipping and catastrophic spalling. Spalling occurs when the PCD layer wholly or in substantial part breaks away. This is as a result of cracks propagating to the free surface of the PCD layer. Such fracture behaviour is readily engendered by unavoidable macroscopic (extending across the overall dimensions of the rock removal element) residual stress involving significant tensile components inherent in conventional PCD rock removal elements. For a rock cutting element comprising a PCD layer bonded at one end of a right cylindrical carbide substrate, there are significant axial, radial and hoop residual tensile stresses in the PCD layer at a peripheral top edge of the element. This is schematically illustrated in
In conventional rock removing PCD elements, the carbide substrate often suffers from erosion greater than that of the layer of PCD material, resulting in undercutting and loss of support to the PCD layer and consequential fracture of that layer. Advantages are therefore to be expected if the erosion resistance of the material mechanically supporting the PCD layer is increased.
Another important function of the material supporting the PCD layer is to act as a thermal heat sink and conduit for the removal of heat from the PCD layer. It is important to maintain the temperature of the PCD layer below certain critical levels above which very damaging thermal degradation mechanisms can occur. Clearly, increasing the thermal conductivity of the material of that supports the PCD layer can be advantageous.
There is therefore a need for a cutter element and method of producing a cutter element that ameliorates or substantially eliminates the above problems.
Viewed from a first aspect there is provided a cutter element for rock removal comprising:
Viewed from a second aspect there is provided a method for producing the above-defined cutter element wherein the PCD body comprises one or more physical volumes, each a preselected combination of intergrown diamond grains of specific average grain size and size distribution with an independently preselected interpenetrating metallic network of specific atomic composition with an independently preselected overall metal to diamond ratio, the method comprising the steps of:
Embodiments will now be described by way of example only and with reference to the accompanying drawings in which:
a to f schematically depict the range of rock removal modes from pure shear at
a, b and c are examples of mirror planes extending from distal extremities of the functional working volumes of free standing PCD bodies based on a right cylinder predominantly intended for shearing rock, where the distal extremities are a curved edge, a straight edge and a vertex, respectively, showing that the mirror plane of symmetry corresponds to the plane determined by the vertical and tangential components of the applied force;
a and 12b are illustrations of examples of dome-ended and chisel-ended embodiments of PCD rock removal inserts or bodies for the general case of rock removal inserts intended for predominantly crushing the rock, exhibiting n-fold axes of rotational symmetry through the distal extremities of the functional working volumes;
a, b and c are examples where flat surfaces truncate a conical working volume where the distal extremity of the working volume may be chosen to be a position on the curved edge which bounds the flat truncation facet and the curved surface of the cone;
a and d shows how the embodiments of
a to e show schematically some general means of attachment of free standing PCD bodies to housing bodies and provides an indication of the general shape of the functional support volumes which are appropriate for the means of attachment indicated;
a is a schematic diagram of particular embodiment of a 3-dimensional, right circular cylindrical free standing PCD body, where one physical volume of PCD material is a layer of substantial thickness which extends across one end of the PCD body;
b shows schematically the worn PCD rock removal body at end of life for this latter case;
a and b are schematic, cross-sectional representations of two right circular cylindrical embodiments where the functional working volume consists of multiple physical volumes arranged as alternating layers of dissimilar PCD materials, for use as shear elements in drag bits.
This disclosure pertains to bodies or elements which are collectively, cooperatively and supportively, attached to or inserted into housing bodies and used for the removal of material such as rock, concrete and the like by mechanical action such as shearing and crushing. Housing bodies include the drill bits used in subterranean rock drilling such as those shown in
The bodies or elements of embodiments disclosed herein are free standing and made “solely and exclusively” of PCD materials. As used herein, the phrase “made solely of PCD materials” is to be understood to mean that there is an absence of volumes or regions or attached volumes which are made of non-PCD materials incorporated during manufacture of the PCD materials. Such non-PCD materials include hard metal substrates, ceramics and bulk metals and the like. The free standing PCD body may constitute any combination of different PCD materials which fall within the definition of PCD material as described above.
In the present applicants' co-pending patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734 (references 1 and 2) it was disclosed that free standing PCD bodies of a multitude of 3-dimensional shapes and sizes limited only by the size and character of the high pressure high temperature apparatus used for their manufacture. The present disclosure exploits this capability and discloses embodiments of 3-dimensional shape and size as designed for and directed at rock removal elements. The contents of patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, are herein incorporated by reference for all they contain.
Each of the embodiments of the cutter elements disclosed herein for rock removal elements or bodies is considered to be configured in two functional regions or volumes. The first functional region or volume is the “working volume” of the element, which is the region or volume which comes into contact with the rock and causes the progressive removal of the rock by a combination of shearing and crushing and itself is progressively worn away during the lifetime of the rock removal element. The PCD material associated with the working volume, being composed of one or more physical region or volume, is designed in composition and structure for wear resistance. In the context of this disclosure, the word “functional” pertains to the specific role or behaviour expected by a part or region of the overall rock removal element or body. In contrast, the word “physical” pertains to specific and differentiable PCD materials occupying actual regions or partial volumes of the overall body. The second functional region or volume is the “support volume” of the element or body, which is extant to the life of the rock removal element, in that it remains and is the surviving portion of said PCD rock removal element or body after normal use. The functional support volume is a region or volume extending from the functional working volume and provides, by dint of its designed shape and dimensions, the means of attachment of the rock removal element to the housing body appropriate for the particular application. In addition, the PCD materials occupying the physical volumes which are associated with the functional support volume are designed in composition and structure to have appropriate properties for the provision of mechanical and thermal support to the functional working volume. The mechanical and thermal supports provided by the functional support volume to the functional working volume are key roles of the functional support volume.
A number of embodiments concern the relationship between two or more physical volumes and the two functional volumes but embodiments comprising one physical volume are also included.
To reiterate, from here on, when the terms “working volume” and “support volume” are used, it is always inherent that these are the functional volumes characterized in terms of their roles and behaviors in application. It may be re-iterated that the overall PCD body comprises one or more “physical volumes” which make up the functional working volume and functional support volume which are determined in use. When two or more physical volumes are employed, they differ with respect to the PCD materials which occupy these volumes and thus they differ in material properties.
The functional working volume is chosen to be distal to the overall volume and extends from a free surface or edge or boundary between free surfaces, which is part of the external boundary of the body. Distal in this context is defined to be a point or position away from the geometric centre or centroid of the overall free standing PCD body or element and also away from the position or area of attachment of the PCD body to the housing body. The distal extremity of the functional working volume is the position of first, initial point of contact with the rock to be removed.
The functional working volume extends to the functional support volume which is proximal to the overall PCD body volume, is opposite the distal working volume and has the purpose of providing means of attachment to the housing body. Proximal in this context is defined to be a point or position, including the point or position of attachment. The support volume encompasses the centroid or geometric centre of the overall free standing PCD body. The centroid or geometric centre is defined as the intersection of all planes that divide the 3-dimensional volume into two parts of equal moment. Where the 3-dimensional volume is made of material of uniform density, the centroid corresponds to the centre of gravity of the body.
The functional working volume extends from a distal free surface or boundary between adjacent free surfaces of the PCD body or element and comprises any combination of edges, vertices, convex curved surfaces or protrusions. These form the distal extremity of the working volume and are the part or parts of the PCD body which are first made to bear on the rock surface.
Where the dominant rock removal mechanism is by shearing the rock, in order to provide a controlled chosen initial degree of sharpness, the preferred distal extremity will be an edge which is the boundary between two free surfaces. Such edges may be created by forming a chamfer or multiple chamfer arrangements at the distal extremity of the working volume. Such arrangements of multiple chamfers for cutting elements of earth boring tools are taught and claimed in patent applications WO 2008/102324 A1 and WO 2011/041693 A2, references 5 and 6, respectively, the contents of this reference are incorporated in the present disclosure for all they contain. Depending on the 3-dimensional geometry of the PCD body, such edges may be straight or curved.
Where the dominant rock removal mechanism is by crushing the rock, the preferred distal extremity will be a curved convex surface, for example a dome.
Depending upon the relative degree of chosen rock removal mechanism between shearing and crushing, the preferred distal extremity may be a rounded vertex, apex or protrusion, for example a rounded conical apex.
One of the functions of the support volume is to provide mechanical support to the working volume to engender strength to the working volume and to reduce applied stresses. An appropriate consideration of mechanical support may be derived from the principle of massive support as introduced in the context of high pressure apparatus design by P W Bridgman in 1935, reference 7. This principle exploits the 3-dimensional shape of a body whereby an applied force to the body is spread out over an increasing cross-sectional area so that the stress, which is nominally the force divided by the area of the section at right angles to the force, is reduced. In the context of the present disclosure, forces applied to the PCD rock removal body or element during application via the functional working volume are spread out to reduce stress by an increasing cross-sectional area in the working volume as the functional working volume extends into the functional support volume. This can be illustrated by considering
A further feature of the principle of massive support is to organize the volume and aspect ratio of a body to withstand rotational moments and bending stresses. The consequences of the application of this aspect of the principle of massive support to the geometry of the general free standing PCD embodiments are that the functional support volume is greater in volume than the functional working volume and should necessarily contain the centroid of the overall PCD body and, in addition, a specified aspect ratio.
A convenient and accurate way to specify the desired aspect ratio of the overall free standing PCD body is to consider a dimensional edge ratio of a rectangular parallelepiped which circumscribes and completely encloses the 3-dimensional PCD body shape.
With reference to
In patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, which are herein incorporated by reference, it was disclosed that the practical dimensions of 3-dimensional shaped free standing PCD bodies are limited by the dimensions and design characteristics of the high pressure high temperature apparatus used to manufacture them. It was established by reference to the size of various high pressure high temperature systems known in the art that the maximum dimension of any free standing PCD body can be up to 150 mm and that a preferred and appropriate system design for such purposes was the so-called belt type apparatus. A convenient way of relating this maximum dimension to any of the PCD free standing bodies of the present invention is to specify that the longest edge of the circumscribing rectangular parallelepiped of the overall PCD body, ae, in
In summary, the derived general geometrical aspects of some embodiments of cutter elements disclosed herein are that the free standing PCD body comprises a functional working volume distal to the overall PCD body, a functional support volume proximal to the overall PCD body, the functional working volume has an increase in cross sectional area along the line extending from the distal extremity of the functional working volume, into the functional support volume, through the centroid to a proximal extremity of the functional support volume, the functional support volume is larger in magnitude than the functional working volume and always contains the centroid of the overall PCD body and that the aspect ratio is sufficiently large as defined above.
As explained above, the overall free standing PCD rock removal body or element is made up of two functional volumes with different and distinct primary functions and purposes. This implies that the materials associated with the two functional volumes should preferably be different in composition and structure and, hence, properties. The functional working volume by definition is the portion of the PCD body which progressively bears upon the rock surface, causes the rock to fracture and itself is progressively worn away. A dominant desired property for the material associated with the functional working volume is, therefore, a high wear resistance. This material, therefore, is best chosen to be made of diamond and metal network compositional ratios, metal element compositions, and diamond grain size distributions known to provide high wear resistance behaviors for rock removal. Conversely, the dominant desired properties for the material associated with the functional support volume are rigidity for mechanical support and high thermal conductivity for efficient heat removal. Wear resistance is of secondary consideration. The material best chosen for the functional support volume is, therefore, made of diamond and metal network compositional ratios, metal element compositions, and diamond grain size distributions known to provide high rigidity and thermal conductivity. The PCD material associated with the functional working volume and adjacent to the distal surface or free surfaces of the functional working volume are preferentially chosen to be different in diamond grain size distribution to that of the PCD material associated with the functional support volume and adjacent to the proximal surface or surfaces of the functional support volume. Some embodiments have a difference in PCD material composition associated with the functional working volume as compared to the functional support volume, so that the properties of the materials associated with each of the functional volumes are best suited to their different purposes in use during each application.
To summarize, the free standing PCD body may be made of two or more physical volumes within the boundary of the PCD body, where the PCD materials for the whole body are invariant in terms of the diamond and metal network compositional ratio and the metal element composition ratio such that each adjacent physical volume differs in diamond grain size distribution. The differing PCD materials may or may not be directly associated and adjacent to the distal free surface or free surfaces of the working volume and the proximal surface or surfaces of the support volume. Some embodiments have this character of being made of two or more physical volumes.
Other embodiments may be made solely of one physical volume of PCD material of one composition.
A subset of embodiments are where the overall PCD body has two or more physical volumes and the whole peripheral region or “skin” of the overall PCD body differs in composition and/or structure from the PCD material or materials in the central region or regions. However in the case of this group of embodiments, the PCD material adjacent to the distal free surface or surfaces of the functional working volume and the proximal surface or surfaces of the functional support volume is the same and does not differ. Such free standing PCD bodies have a continuous skin of chosen PCD material adjacent to the entire free surface of the overall PCD body, which differs in diamond and metal network compositional ratio, metal elemental composition and diamond grain size distribution to the material or materials of the internal physical volume or volumes. The latter volume or volumes do not have a free surface before use. In use, the functional working volume is progressively worn away and the resultant wear surface may expose the internal physical volumes of material.
An important subset of embodiments of the latter group are where the overall PCD body has been subjected to means of partial or complete removal of metal to a chosen limited depth from its free surface and, thereby, creating a “skin” of modified and therefore different PCD material. Means of creating such a metal depleted “skin” are well known in the art and include acid bath treatments of the PCD bodies.
Generally, in applications, rock is removed and displaced by rock removal elements or bodies made to dynamically bear upon the rock, causing the rock to fracture by a combination of shearing and crushing actions or modes. The rock fracture can be considered in terms of a “continuum” of the relative degree of crushing to shearing. This conceptual model is illustrated in
a to f schematically depict the range of rock removal modes from pure shear at
In drag bit designs, the rock removal elements or bodies are dragged in a circular manner in contact with the rock base with a limited downward force and a dominant tangential force as depicted by the arrows in
e illustrates rock removal by predominantly crushing where the vertical loading is significantly greater than the lateral tangential loading. This rock removal mode is historically exploited in so-called roller cone bit designs shown in
In principle it is possible to cause rock fracture by an intermediate situation between
The efficiency of the rock removal body or element for any particular combination of crushing and shearing is dependent upon the shape of the part of the rock removal body or element made to bear on the rock, i.e., the distal extremity of the functional working volume of the rock removal body. The distal extremity of the functional working volume in particular may be chosen in this regard.
The above conceptual model for rock removal which indicates a continuum between shearing and crushing modes of rock removal is a novel approach which has been developed for facilitating the choices of preferred and optimized 3-dimensional shapes for the functional working volume, and its distal extremity, of the free standing PCD rock removal elements or bodies of the present disclosure.
The teachings of patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, in regard to free standing PCD bodies of wide ranging regular and irregular 3-dimensional shapes offer the opportunity to choose and optimize the shape of the functional working volume to engender efficient rock removal and choosing and varying any relative degree of crushing and shearing of the rock. This is done by choosing different edges and corners of the vast range of 3-D solid shapes possible, and the angle of the rock removal body used to bear on the rock. Each shape requires an appropriate choice of reference face of the rock removal body by which the body is angled with respect to the rock face. In the case where the rock removal body is a right circular cylinder, an appropriate face is the leading flat circular surface, the distal extremity of the functional working volume being one part of the circumferential edge of that face.
In
To exemplify this,
The applied forces determine a mirror plane from the point of contact with the rock. In this case, the distal extremity of the working volume is part of a curved edge. Therefore, a general group of embodiments may be characterized by free standing PCD bodies where the working volume has a mirror plane of symmetry extending from the distal extremity of the working volume.
Common features of some embodiments are suitable and preferred for modes of rock removal that are predominantly shearing, is that the distal extremity of the working volume before use, that is the part which initially bears on the rock at the commencement of use, is made up of an edge or edges. An edge in this context is defined as a boundary between adjacent free surfaces. Such an edge or edges may be curved or straight or any combination of such. The distal extremity may also be one or more vertex where more than one edge joins to another. The functional working volume of the PCD body has a mirror plane of symmetry extending from these edge or vertex distal extremities. At any given instant when the PCD rock removal elements are applied to a rock surface, the mirror plane of symmetry extending from the distal extremity of the functional working volume corresponds to the plane determined by the vertical and tangential components of the applied force. Examples of such mirror planes extending from distal extremities of the functional working volumes are illustrated in
An embodiment of a free standing PCD body for predominantly shearing rock removal is a right circular cylinder, 1101, where the distal extremity, 1103, of the functional working volume is a part of one circumferential edge, and is thus a curved edge,
All of the embodiments in
When the dominant mode of rock removal is crushing as in
Both of these embodiments exhibit an n-fold axis of rotational symmetry through the distal extremities of the functional working volumes, 1206. More generally, any shape with rotational symmetry about an axis extending from the distal extremity of the working volume to the proximal free surface of the support volume, wherein the cross-sectional area significantly increases in the direction of the axis is desired, so that massive support can be engendered to the working volume. Even more generally the rotational symmetry can be n-fold as in the case of the dome ended right circular cylinder,
These general embodiments may be modified by the addition of flat surfaces or facets introduced at the general 3-dimensional curved surface of the functional working volume. By so doing, the boundaries between such flat surfaces or facets being apices, curved edges or straight edges can be formed and exploited as the distal extremity of the working volume. These shapes are generally referred to as “chisels” in this context. This allows increasing degrees of shearing action in rock removal by choice of the rake angle in relation to the rock face as illustrated in
a,b and c illustrate a further example where one flat surface, 1301, 1302, 1303, truncates a conical working volume, 1304, where the distal extremity of the working volume may be chosen to be a position on the curved edge which bounds the flat truncation facet, 1301, 1302, 1303, and the curved surface of the cone, 1305. Depending on the angle of the truncating facet to the axis of the cone, such a curved edge may be circular, 1306, elliptical, 1307, or parabolic, 1308, as illustrated in
Some further embodiments may include distal extremities of the working volume being apices or straight edges chosen from the boundaries between flat surfaces only. Examples of such an embodiment would be where one end of a PCD right cylindrical shaped body is modified at one end by multiple flat surfaces to form general chisel shaped working volumes. The support volume shape of such embodiments is formed by the unmodified part of the right cylinder, the cross section of which may be a circle or an ellipse.
Support volumes which have a right circular cylindrical shape comprise some embodiments of the present disclosure with any of the different types of functional working volume shapes described and disclosed above. An advantage of such embodiments is ease of attachment to housing bodies or drill bit bodies where the dominant historical custom and practice of brazing of such bodies into cylindrical placement holes or slots can be exploited.
Right cylindrical shapes with elliptical cross sections may be used. However, for ease of manufacture and attachment, right circular cylindrical shapes with circular cross sections may be preferred.
Further embodiments may be derived from those with cylindrical shaped support volumes by introducing one or more flat surfaces or facets along the barrel of the cylinder for indexing and location purposes in the housing or bit body.
Embodiments where the support volume is bounded solely by flat surfaces along its flank or long axis may also be used where the cross section of such support volumes is polygonal with three or more sides forming a column.
These embodiments with cylindrical or columnar support volume shapes are appropriate for attachment to housing bodies or drill bit bodies using brazing or elastic interference attachments by push fitting.
A common aspect of these embodiments is that the support volume shape is straight sided with a constant perpendicular cross sectional area. The most common historical means of attachment of rock removing elements or bodies to housing bodies or drill bits is brazing. A clear disadvantage of this latter approach is that the elevated temperatures necessary for the brazing may thermally damage a PCD material. Mechanical means of attachment do not suffer from this as increased temperatures are not involved.
Mechanical means of attachment may employ arrangements such as those shown in
EP0573135, reference 8, discloses that a deformable locking insert may be used to improve the mechanical attachment of appropriately shaped abrasive tool bodies to housing bodies. The teachings of this patent are incorporated into the present disclosure by reference. This is illustrated in
Yet another means of mechanical attachment to housing bodies may be to employ threaded functional support volumes, of the free standing PCD body itself, which then mate with a thread in the housing body.
A number of embodiments of this disclosure exploit only two physical volumes of PCD material differing in composition and/or structure. The PCD material of one physical volume may at least include the region adjacent to the distal surface or free surfaces of the functional working volume with a different PCD material of the other physical volume at least including the region adjacent to the proximal surface or surfaces of the functional support volume. The boundary between the two physical volumes of differing PCD materials may not coincide with the notional boundary between the functional volumes, namely, the working and support volumes. This latter boundary may only be finally determined by the extent of the wear flat or wear scar generated at end of life of the PCD body in a rock removal application.
To illustrate the relationship between the two physical volumes of different PCD materials and the functional working and functional support volumes,
a is a particular embodiment where one physical volume of PCD material (PCD1) is a layer of substantial thickness, 1603, which extends across one end of the overall right circular PCD body and the second volume of PCD material (PCD2) is larger and occupies the remaining part, 1604, of the overall PCD body. The physical volume of material PCD1, 1603, is associated with the functional working volume in that the material PCD1 occupies the region adjacent to the distal surface or free surfaces of the functional working volume, 1602, the distal extremity of which is the part of the circumferential edge, 1601. This distal extremity of the working volume is the first part of the PCD body to make contact with the rock face, 1605. During rock removal, the working volume of the PCD body is progressively worn and forms a wear flat or wear scar, shown as the dotted line, 1606, nominally parallel to the rock face. In the particular case of 1606, the wear flat may denote the chosen end of life of the PCD rock removal body and thus, by definition, will indicate the boundary between the functional working volume and support volume. In the particular case of
As already indicated in the above text, the PCD material which is dominant in regard to the desired behavior of the working volume should be chosen and optimized in regard to wear resistance in the context of rock removal mechanisms. In contrast, the material dominating the functional support volume should be chosen to be high in both stiffness and thermal conductivity. The most important compositional aspect of PCD materials which determines properties such as wear resistance, stiffness and thermal conductivity is the diamond grain size distribution. Accordingly, in some embodiments the diamond grain size distribution differs for the material which dominates each of the two functional volumes. Some of the embodiments are free standing PCD bodies comprising two or more physical volumes of PCD material where at least one of which differs in diamond grain size distribution from any or all of the others.
A general observation in the context of PCD in rock removal applications is that the wear resistance tends to increase as the diamond average grain size decreases. Since, as already pointed out, the working volume is progressively worn away during rock removal applications and the support volume is extant, a set of embodiments are such that the PCD material of the functional working volume is made of a finer average grain size than that of the functional support volume.
The functional support volume by definition is extant, and survives application and provides both mechanical and thermal support to the working volume. For good mechanical support over and above that provided by the shape and geometry of the body, the material which should dominate the support volume should be designed to be rigid with high stiffness and modulus of elasticity. Stiffness and modulus of elasticity increase as the diamond grain size increases. For good thermal support, the material which dominates the support volume may be designed to be of high thermal conductivity. Due to the thermal scattering behavior of grain boundaries limiting the heat conduction the thermal conductivity of a PCD material increases as the diamond grain size increases as this leads to lowering of the area per unit volume of grain boundaries. Therefore, the desired properties for the function of the support volume is engendered by a coarse diamond grain size distribution, whereas the desired high wear resistance of the working volume is engendered by a fine diamond grain size distribution.
Some embodiments of free standing PCD bodies may be designed to have two or more physical volumes of differing PCD materials, such that the PCD material adjacent to the distal surface or the free surfaces of the working volume is smaller in average grain size to the PCD material adjacent to the proximal surface or surfaces of the support volume.
It is well known in the art that PCD materials with average diamond grain sizes less than ten (10) micro meters have superior wear properties in the context of rock removal, i.e., a lower wear rate, than coarser PCD materials. Embodiments where the PCD materials which dominate the functional working volume and are adjacent to the distal extremity of the functional working volume have an average diamond grain size less than ten (10) micro meters may therefore be selected.
It was disclosed by Adia and Davies in patent application numbers U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, that using the disclosed method key material characteristics or degrees of freedom such as diamond grain size and distribution, diamond and metal network compositional ratio and metal elemental composition could be chosen and specified independently of one another. This is in contrast to the dominant, conventional prior art where these degrees of freedom are significantly dependent on one another. For example, in the predominant, conventional prior art, choice of grain size distribution largely restricts the scope of metal content possible, where also the metal content invariably increases as the average grain size decreases. The material degree of freedom independence of applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, are exploited in their pertinence to free standing PCD bodies for rock removal purposes in the present disclosure. This allows the diamond grain size and size distribution to be changed independently of the metal content and the metal elemental composition. As explained above, where two physical volumes are used, it may be desirable to have differing diamond grain sizes which dominate the two functional volumes to suit their different functions. This may now be done while the metal content and metal elemental composition is chosen to be invariant and constant throughout the overall PCD body. Such embodiments have the desired effect of the absence of macroscopic residual stress above a particular scale dependent upon the coarsest diamond grain size present in the overall PCD body. Such absence of residual stress at and above a macroscopic scale was taught and disclosed by Adia and Davies in patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively. It is taught that where adjacent physical volumes are made from different PCD materials such that there are differences in thermal expansion coefficients, a physical volume spanning residual stress distribution arises due to differential contraction of the adjacent physical volumes on return to room temperature at the end of the high temperature manufacturing process. The differences in thermal expansion coefficient are brought about where the adjacent physical volumes differ in diamond and metal network compositional ratio and/or metal elemental composition. The physical volume spanning the macroscopic scale was defined to be at a scale greater than ten times the average grain size, where the coarsest component of grain size is no greater than three times the average grain size.
Where the adjacent physical volumes are invariant in diamond and metal network compositional ratio and metal elemental composition no differences in coefficient of thermal expansion will be present above this scale and the free standing PCD body will be macroscopically residual stress free above this scale. Adjacent physical volumes may differ in diamond grain size distribution and still remain macroscopically residual stress free. The desirability of such embodiments resides in absence of PCD body spanning residual stress distributions which, when present, guide and promote macroscopic crack propagation, which, in turn, may lead to fracture events such as chipping and spalling which compromise the life and performance of the rock removal body. As a consequence of the free standing PCD bodies having no or low macroscopic residual stress, in actual applications it would be expected that normal wear behaviour rather than fracture of the PCD bodies would be observed and determine the end of life of the PCD body. These embodiments therefore are expected to have improved performance and useful life.
There are several means of determining the presence or absence of macroscopic residual stress in free standing PCD bodies known in the art including x-ray diffraction. A convenient method to determine the absence of macroscopic residual stress involves the secure attachment of a strain gage rosette to any convenient flat surface of the PCD body followed by removal of a significant proportion of the PCD body. Where macroscopic residual stresses are absent, the strain related signals from the strain gage will not change. Conversely, if significant macroscopic residual stresses are present, the strain related signals from the strain gage will change significantly.
Some embodiments comprising free standing PCD bodies where the metal is constant and invariant throughout the overall PCD body at a scale above 0.1 mm (100 micro meters) are described herein where the coarsest component of grain size is 30 micro meters.
It is well known in the art that the properties and related behavior in application of PCD materials are highly dependent upon the diamond and metal content. In particular, the wear resistance, stiffness and thermal conductivity are all generally improved when the diamond content is increased (i.e., when the metal content is reduced). Improvements in these properties and behaviors are desired both for the functional working volume and the functional support volume of free standing bodies intended for rock removal applications. As explained above the teachings of Adia and Davies in patent application numbers U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively, provide for PCD materials to be made with independent choice of diamond grain size distribution, diamond and metal network compositional ratio and metal elemental composition. The diamond and metal network compositional ratio can thus be selected to be high, i.e., the metal content low, regardless of chosen diamond grain size and metal type or alloy. Further, it is taught, when conventional fine grain PCD of about 1 micron average grain size is made by infiltration of metal from a hard metal substrate, as in the prior art, the metal content is restricted to about 12 to 14 volume percent. In contrast, the methods disclosed herein provide for the metal content to be chosen independently to the metal type and be anywhere in the range from about 1 to 20 percent. Similarly, where a multimodal grain size is chosen and the average grain size is about ten micro meters with the maximum grain size about 30 micro meters, again the metal content may be chosen anywhere in the range from about 1 to about 20 percent. The metal content for such a conventional PCD material being restricted to around and close to 9 volume percent no longer applies.
Metal contents lower than that defined by the formula y=−0.25x+10 where y is the metal content in volume percent and x is the average grain size of the PCD material in micro meters, may be exploited using the methods described in U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively. The embodiments of the present disclosure involve one or more physical volumes occupied by pre-selected PCD materials of chosen average diamond grain size. The average diamond grain size in the physical volumes associated with and dominating both of the functional working and support volumes may be deliberately chosen to engender desired behavior in application for these functional volumes. A free standing PCD body where the PCD material in any physical volume has a metal content which is independently pre-selected to be lower than a value y volume percent, where y=−0.25x+10, x being the average grain size of the PCD material in micro meter units is a feature of some embodiments.
The custom and practice of the conventional prior art concerning layers of PCD material on hard metal substrates are such that the PCD layer thicknesses are restricted practically to about 2.5 mm. Since steep and significant gradients in the residual stress distributions occur close to and in relation to the physical boundaries between the dissimilar materials and the typical functional working volume dimensions are similar to the thickness dimensions, the working volume and adjacent regions necessarily experience high residual stress gradients invariably involving tensile stress maxima.
In some embodiments, the undesirable macroscopic residual stresses described above for the prior art where PCD material layers are attached and bonded in PCD material manufacture are absent by virtue of the metal invariance across the scale of the free standing PCD body. The absence of macroscopic residual stress is desirable in that it lowers the probability of macroscopic crack propagation and associated chipping and spalling problems when such cracks reach the free surfaces of the PCD body.
When chipping and spalling are significantly lowered, insignificant or absent, functional working volume is progressively removed by normal wear behaviour. In this situation, the increasing wear scar area can reach a large magnitude such that the required weight on bit generated by the drill rig becomes so large that the efficiency of the drill rig can become compromised.
End of life of the rock removing elements may thus be characterized by such maximum area magnitudes of the wear scar. Using this custom and practice, the typical maximum volume for the functional working volume can be estimated from the typically observed maximum wear scar areas with regard to the 3-dimensional shape and overall volume of the rock removal elements or free standing PCD bodies being used. For prior art right cylindrical rock removal elements used in drag bits, the working volume extends from one position on the circumferential edge of the right cylinder and is finally determined in use at the end of life, resulting in a maximum sized wear flat or scar. Typical observed maximum volumes for this functional working volume is 3% of the overall rock removal body. This maximum volume for the functional working volume is expected to also be the case for the embodiments of the present invention. To ensure that the physical volume of the PCD material associated with the functional working volume comprises a material with chosen high wear resistance properties, one physical volume of PCD material which completely encompasses the functional working volume may be selected. Such a physical volume may be significantly greater in volume magnitude than the typical maximum volume situation of the functional working volume, namely around 3%. This aspect may provide an important design criterion for efficient rock removal elements of some embodiments. In each case of chosen and desired shapes and geometry, the minimum proportional volume of the physical volume encompassing the functional working volume is thus around 3% of the overall volume of the free standing PCD body.
As described above, the material of the functional working volume may be chosen to have high wear resistant properties whereas in contrast the material dominating the functional support volume may be chosen to be of high stiffness and thermal conductivity. This leads to different choices of PCD material for the physical volume encompassing the functional working volume and the materials of the remaining extant support volume. Thus as the magnitude of volume of the physical volume encompassing the functional working volume exceeds 50% of the overall volume of the PCD body, its material type being optimized for high wear resistant properties, it may well compromise the desired behavior of the functional support volume. In particular, there will be a high probability that this will be the case, if the physical volume encompassing the functional working volume exceeds 50% of the volume of the overall PCD body. This leads to yet another preference, whereby the physical volume of PCD material which encompasses the functional working volume should not exceed 50% of the overall volume of the free standing PCD body. This is a feature of the invention.
Due to the absence of macroscopic residual stress, crack related performance issues in rock removal applications are expected to be of secondary importance in regard to life and efficiency of the free standing PCD rock removal bodies. As disclosed above, some embodiments may allow free standing bodies up to 150 mm in maximum dimension to be made. This then may allow, due to the absence of residual stress and the diminished probability of crack related issues, the high strength and high toughness typical of PCD materials to be exploited. In turn, this may lead to beneficial high impact resistance. In addition, the very high rigidity of PCD materials can be brought to bear. The benefits that can accrue from using large free standing bodies in general rock removal applications include aggressive presentation of the free standing PCD rock removal bodies to the rock face resulting in high rates of penetration. The high rate of penetration may come about by the large exposure resulting from the use of large PCD bodies with large functional working volumes which stand proud of the general housing body surface. High depths of penetration of the rock surface then occur and large volumes of rock can be removed for each pass or revolution of the housing body. Such large exposure of the PCD rock removal bodies is only viable due to the high strength, toughness, impact resistance and rigidity inherent in PCD material bodies with the absence of residual stress. The exposed height of the PCD body above the free surface of the housing body from the distal extremity of the functional working volume may be up to one-third of the overall dimension of the overall PCD such that the other two-thirds of this dimension may be inserted into and provide the means of attachment to the housing body.
The free standing PCD body of some embodiments may be made up of any number of physical volumes of distinct and different PCD materials, with their attendant different properties, arranged geometrically in a plethora of ways. Functionally, as already explained and described, the free standing PCD body of the embodiments is considered to comprise two volumes based upon general behavior in use, during applications of rock removal, namely the functional working volume and functional support volume. It makes sense therefore, in terms of striving to optimize the performance of the free standing body, to design the PCD body such that one physical volume of chosen PCD material is adjacent to the distal surface or free surfaces of the functional working volume and another differing physical volume of PCD material is adjacent to the proximal surface or surfaces of the functional support volume, with any number of physical volumes of PCD material separating and/or adjoining them. Due to the greater simplicity of substantially associating one physical volume of PCD material with the functional working volume and one physical volume of differing PCD material with the functional support volume, it may be beneficial to exploit only two adjoining physical volumes of differing PCD material with separating physical volume. Also, such an arrangement may have the advantage of relative ease and practicality of manufacture of only two physical volumes as opposed to multiple physical volumes. An example of such embodiments is given in
A further example of embodiments exploiting two physical volumes of different PCD materials, where one physical volume is made to be significantly larger than the functional working volume, and to completely encompass the extent of the functional working volume is presented in
These embodiments, represented by
Yet another example of embodiments exploiting two physical volumes of different PCD materials, where one physical volume is made to be significantly larger than the functional working volume, and to completely encompass the extent of the functional working volume is presented in
The use of two or more physical volumes of different PCD materials with different and relative wear properties which are chosen to occupy the functional working volume may have a number of advantages. At least one boundary between the physical volumes will then extend into the functional working volume. As the functional working volume progressively wears away, the regions or volumes with the lower wear resistant material will wear faster than the region or volumes of the higher wear resistant materials thus resulting in the higher wear resistant PCD materials forming protrusions, ridges and shear lips at the wear scar surface. In this way, the applied load is concentrated at the protrusions, ridges and lips thereby maintaining a degree of sharpness and limiting the general load requirement for efficient rock removal. The progressive geometric increase in bluntness can then be offset, providing a mitigation of the perceived potential disadvantage of possible excessive load requirement towards the end of life of the rock removal element. A convenient, efficient and preferred means of creating one or more protruding shear lips is to employ three or more alternating layers of PCD material differing in wear resistance, which occupy the functional working volume so that the boundary or boundaries between the layers will intersect the wear flat as it progressively develops during the life of the rock removing element. A preferred means of creating wear resistance differences between physical volumes or layers of PCD material is to use diamond grain size differences for the different PCD materials, finer diamond grain sizes being typically more wear resistant than coarser diamond grain sizes. The increased scope of PCD material compositions and types over the conventional prior art, leads to a larger choice of different PCD materials over the conventional prior art, with their different wear resistance properties exploitable using these concepts. For example, in the present invention, there is a very wide independent choice of diamond grain size, metal content and metal type or elemental composition. In this way the perceived potential disadvantage of very large area wear scar surfaces can be mitigated by exploiting the increased scope and range of differentiated PCD materials which be organized to form the functional working volume. The differential wear behavior of the PCD materials in the functional working volume can lead to efficient rock removal behavior at the advanced final of life of the element.
As stated before, the free standing PCD body of the invention may be made up of any number of physical volumes of distinct and different PCD materials, with their attendant different properties, arranged geometrically in a plethora of ways. The free standing PCD body being made up of two or more physical volumes of PCD material may have the functional working volume completely encompassed by one physical volume as already discussed, or may have the functional working volume comprising two or more physical volumes such that at least one boundary between different physical volumes extends into the functional working volume.
Embodiments where three or more physical volumes occupy the functional working volume such a layered arrangement of physical volumes, where the different materials of the physical volumes give rise to differential wear and self-sharpening effects may be of particular value. In the specific case of the overall shape of the free standing PCD body being a right cylinder, appropriate structures may be formed by flat parallel layers which may or may not be parallel to the major axes of the cylinder. Alternatively, appropriate layered structures may be formed by concentric adjacent cylinders. Further, spirally rolled layers forming a classical “Swiss Roll” structure may be exploited. The layers of different PCD materials which comprise the functional working volume may be of differing or of equal thickness. However, the functional working volume may be made up of at least two physical volumes. Due to the expected practical and typical size of functional working volumes having dimensions not greater than approximately 5 mm across, this implies that in order that at least one boundary between the physical volumes extends into the functional working volume, the maximum thickness of any layer may be less than 5 mm. In order to benefit from this general set of embodiments the thickness of the layers may be such that several or more physical volumes or layers extend into the functional working volume. However, to produce a layer of material exhibiting macroscopic properties, the thickness of the layer should be greater than ten times the average grain size of the PCD material. This implies a minimum practical thickness for the PCD material layers of approximately ten times the average grain size of the PCD material.
Free standing PCD bodies where the functional working volume comprises alternating layers of differing wear resistant PCD materials providing more than one protruding ridges or lips to engender self-sharpening effects, are comprise some embodiments of the present disclosure.
As discussed above and in references 1 and 2, PCD bodies made solely of PCD material where the required metal component of the material is provided associated with the diamond starting particulate powders at the scale of the diamond powders, have an extended scope of compositions and structures as compared to the conventional prior art where the metal is provided by long range infiltration from hard metal substrate bodies. In particular the diamond grain size of such present invention PCD bodies may be chosen independently from both the metal content and elemental composition of the metal without compromising the wear resistance of the PCD material. To exploit this in the present disclosure, multiple physical volumes which alternate in dissimilar PCD material may make up the functional working volume. In this way, the progressively developing wear scar may be intersected by the boundaries between the alternating layers of dissimilar PCD materials. Alternating layers of different PCD materials is taught in patent Smallman, Adia and Lai Sang, reference 9, albeit in the prior art context of PCD bonded to hard metal substrates. The thicknesses of the alternating layers of dissimilar PCD materials may be chosen so that many boundaries intersect the developing wear scar but avoiding very thin layers where the stresses between the layers become too high. The thicknesses of the alternating layers may exceed ten times the average grain size of the PCD material. The boundaries between the alternating layers may intersect the developing wear scar surface at any chosen angle.
A particular group of valuable embodiments are based upon an overall PCD body shape of a right circular cylinder. The distal extremity of the functional working volume of these embodiments is often one part of one circumferential edge of the cylinder. A sub-group of these embodiments may be such that the functional working volume is composed of multiple alternating layered physical volumes. These layers may be diametric and parallel to the flat circular end of the cylindrical PCD body or may be arranged axially. Some axial arrangements include alternating concentric rings, and an axial spiral (e.g., “Swiss Roll”). The layered arrangements may occupy the full volume of the free standing PCD body and thereby include the functional support volume.
The prior art applied to conventional rock removal elements involving PCD material layers attached to hard metal substrates contains many patents and teachings concerned with the benefits of chamfer arrangements modifying the geometry of the PCD first applied to the rock face. Of particular note are the teachings of patent applications WO 2008/102324 and WO 2011/041693, references 5 and 6 where the benefits of the use of combinations of four types of chamfer are explained and disclosed. In the language of the present disclosure, these chamfer arrangements are modifications to the distal extremity and the free surface of the functional working volume, where the distal extremity comprises an edge. The edge forming the distal extremity may be straight or curved.
Examples of different types of chamfer as applied to embodiments of the present disclosure are defined and illustrated in
With reference to
The other chamfers, namely, leading, landing and trailing chamfers are defined with the break-in chamfer as a reference and may be used mostly in combination with a break-in chamfer. The various chamfers defined herein each play a different role during the lifetime of a rock removal element, at the various stages of the progressive wearing away of the functional working volume during the life of the free standing PCD rock removal element.
When the only chamfer present is a break-in chamfer, at the wear scar it is quickly worn away during the break-in stage of wear whence the edge between the wear scar and the top circular flat face of the rock removal element again becomes sharp. The new sharp edge again suffers the risk of chipping. Thus, a break-in chamfer only serves a limited function during the break-in stage of wear because it is worn away quickly as the wear scar progresses. The leading chamfer is designed to mitigate this problem. The leading chamfer, 2003, is formed along the top face of the rock removal element starting from the top corner of the break-in chamfer, 2004, and forms a shallow angle, b, with the flat circular face of the cylinder in
Another problem occurs when the break-in chamfer alone is used as sharp corners are formed at the lateral ends of the wear scar when observing the wear scar face on. These sharp corners have a tendency to initiate cracks which are likely to propagate and cause spalling of the PCD body. A so-called landing chamfer mitigates the stress concentrations at the wear scar corners. A landing chamfer, 2005, is formed at the bottom edge of the break-in chamfer, 2004, and is chosen such that the angle it makes with the horizontal, which is the same as the rock face, 2009, in
When the wear scar becomes large its position of intersection with the trailing cylindrical surface or barrel of the overall PCD body forms a sharp edge which is also the site of high axial tensile stress due to frictional forces and the opposite relative motion of the rock removing body and the rock face. This situation may lead to local chipping at the trailing edge of the wear scar. This problem is mitigated by providing a trailing chamfer. The trailing chamfer, 2006, is formed at the trailing edge of the landing chamfer, 2005, (or the break-in chamfer, 2004, if the landing chamfer, 2005, is not used) at a shallow angle and extends to a relatively large distance along the barrel of the cylindrical PCD body. The angle, d, the trailing chamfer, 2006, makes with the barrel of the cylinder is typically 10 to 20°.
Any one of the leading, landing and trailing chamfers described and defined above may be used individually with the break-in chamfer or any two or three of them may be combined with the break-in chamfer, depending on the need. A free standing PCD body where the free surface of the functional working volume includes a break-in chamfer and any combination of a leading chamfer, a landing chamfer and a trailing chamfer is a feature of some embodiments. A particularly useful set of embodiments exploits all four types of chamfer.
A free standing right circular cylinder is used above to define and exemplify the use of multiple chamfer arrangements and their benefit. By analogy, the chamfer types defined may be adapted and applied to more general embodiments, where the distal extremity of the functional working volume comprises an edge, said edge being straight or curved.
As indicated, chamfer arrangements at the free surface of the functional working volume can provide mitigation of undesirable chipping and spalling during break-in and steady state wear stages of the functional working volume. Another way of mitigating chipping and spalling also associated with a “chamfering effect”, found experientially, is to substantially remove or deplete the metal component to a limited depth from the free surface of the functional working volume. This may be done by leaching procedures involving acid combinations capable of dissolving the metal as is well established in the art. The metal depleted layer generated by such leaching procedures may extend from the free surface of the entire functional working volume or part thereof. In the prior art which is predominantly concerned with bodies comprising a layer of PCD material asymmetrically attached to large hard metal substrates, it is necessary to mask or otherwise prevent chemical leaching agents from attacking the free surface of the hard metal substrates. Since the embodiments concern free standing PCD bodies made solely of PCD material, masking may not be necessary as conveniently the depletion or removal of the metal at the free surface of the functional working volume can be achieved by exposing the entire free surface of the free standing PCD body to the leaching agents.
The need for “masking” materials and/or devices, for protecting portions of the free standing PCD body from the leaching acids and chemical agents, although possible, may not be required. Leaching of chosen parts of the free surface of the free standing PCD body is however an option. In practice, it is technically impossible to totally remove all of the metal of the metal content in the chosen layer as small metal pools or inclusions can be completely surrounded by re-crystallized diamond and isolated from the continuous metallic network. Some residual metal is always detectable in the metal depleted layer. However, it is preferred and advantageous to cause the leaching procedures to remove as much metal as possible from the chosen layer depth so that the metal depletion approaches totality in that depth.
When the metal is substantially removed from a PCD material by processes such as chemical leaching, the material properties are significantly altered. It is believed that the wear behavior now typically takes place dominated by a grain by grain removal process in contrast to a small scale crack propagation and coalescence mechanism typical of unleached PCD material. This former mechanism is referred to as “smooth wear” and typically is a lowering of the wear resistance of the leached PCD material as compared the starting unleached PCD material. A consequence of this is that, in use, when the boundary between the leached and unleached layer intersects the wear scar free surface as the functional working volume progressively wears away, the leading edge of the rock removal element becomes “rounded” forming a chamfer like land. Since the leached layer extends from the general free surface of the functional working volume, this rounding or chamfering of the leading edge will progressively continue in concert with the progressive wearing away of the functional working volume, i.e., in concert with the progressively increasing wear scar surface. An advantageous benefit of this effect is that the leading edge is sufficiently “blunted” so that local stress concentrations are spread over slightly larger areas resulting in the inhibition of early chipping of the PCD edge. This desirable continuous “self-chamfering” effect has been observed to occur in an efficient manner for leached depths of less than ninety (90) micro meters. In particular, the use of such a limited depth of depleted metal is advantageous when PCD materials of very high wear resistance are used. PCD materials of high wear resistance by their very nature have a slow rate of development of the wear scar but are particularly susceptible to chipping as they are typically relatively hard PCD materials. When very high wear resistance PCD materials are used, the leading edge of the wear scar tends to remain very sharp. This often leads to a local very high concentration of stresses at the very sharp leading edge which may consequently easily chip. The smooth wear behavior of a leached layer of PCD material can prevent this by continuously forming a rounded leading edge. High wear resistant PCD materials are associated with fine diamond grain sizes such as when the average diamond grain size is less than ten (10) micro meters. Leached layers of PCD material, where the metal in the PCD material has been depleted approaching totality or in part, at least adjacent to the free surface of the functional working volume, which can provide a continuous rounded leading edge of the wear scar, as the functional working volume progressively wears away, is a feature of some embodiments.
This continuous self-chamfering effect will occur for all leached layers of any chosen depth which extend from the free surface of the functional working volume. However, leached layers above a certain depth, typically above ninety (90) micro meters, have been observed to engender the formation of a protruding “shear lip” in the wear scar.
Temperature modeling of wear scar formation in PCD materials engaged in rock removal indicates that the temperature immediately behind the wear scar surface passes through a maximum as a function of distance along the wear scar perpendicular to the leading free surface of the PCD body (V Prakash, reference 13). Typically, this temperature maximum occurs at a depth of about two hundred to five hundred (200 to 500) micro meters. Preferred embodiments would therefore be such that the boundary between leached and unleached PCD materials would be close to the position along the wear scar of this temperature maximum. The implication from this is that for particular PCD materials and particular conditions of application of a rock removal element that there exists an optimum leach depth required to best exploit shear lip formation.
When the wear resistance of the PCD material in the functional working volume is high such as the case when the average diamond grain size is less than ten (10) micron meters, the optimal leach depth for shear lip formation has been found to be in the range greater than ninety (90) micro meters and less than two hundred and fifty (250) micro meters. With a leach depth in this range, the shear lip forms early in the life of the free standing PCD rock removing element when the wear scar is still small. When the average diamond grain size of the PCD material in the functional working volume is greater than ten (10) micron meters, the wear resistance is typically such that the functional working volume can wear faster than the above case. In such cases, the optimal leach depth for shear lip formation is typically found to be in the range greater than ninety (90) micro meters and less than one thousand (1000) micro meters. This extended range of leach depth allows for lip formation for a larger wear scar area which often forms more rapidly in these cases. In all cases of leach depths where shear lip formation takes place, the leached material immediately above the shear lip between the shear lip and the free surface of the functional working volume does not experience high enough local stress and temperature conditions to be modified and thus retains the initial lower wear resistance typical of unmodified leached PCD material. The self-chamfering behaviour of this material is, therefore, always present.
It has been practically observed and taught in patent application WO 2011/041693, reference 6, that chamfer arrangements can encourage shear lip formation resulting from layers of different PCD material having different wear resistance character. This is due to the chamfer arrangement engendering appropriate applied stress at the leading edge which facilitates the shear lip formation. In particular, a combination of leading and trailing edge chamfers encourage lip formation.
There are in general, therefore, three situations which can lead to desired shear lip formation. These are layers of different PCD materials with wear resistance differential properties, a layer of metal depleted, leached PCD material adjacent to the free surface of the functional working volume and initial chamfer arrangements, respectively. These situations may be exploited independently or in any combination in order to benefit from shear lip formation.
In general, shear lips form due to local regions of enhanced and higher wear resistance relative to flanking and adjacent local regions. The general mechanism of wear involves crack initiation, propagation and coalescence related to the scale of the diamond grain size. Diamond is removed at the wear scar as single grains and/or groupings or clusters of small numbers of grains. This results in the typical protrusion height of a shear lip above the general surface of the wear scar of typically two to five times of the average grain size of the PCD material which locally has the enhanced wear resistance forming the shear lip. A free standing PCD body where a protruding shear lip forms at a wear scar during a progressive wearing away of the functional volume and stands proud of the wear scar surface to a height in the range of two to five times the average grain size of the PCD material of the local high wear resistant layer, is a feature of some embodiments.
A selection from the diverse embodiments of the present disclosure may be made to be collectively attached to or inserted into a housing body intended for applications where “natural rock” needs to be removed. The term “natural rock” includes all terrestrial rock formations and types such as limestone, sandstone, igneous rock, alluvial deposits and the like. The free standing PCD bodies of the various sizes, shapes and intended mix of rock removal mode behavior may be assembled and attached to housing bodies so that their relative positions and means of presentation to the rock accommodate cooperative and supportive behavior to engender efficient overall rock removal performance of the housing body. As described previously, a housing body type intended for subterranean rock drilling where the dominant rock removal mode is rock shearing is a so-called drag bit an example of which is illustrated in
As described above, a housing body type intended for subterranean rock drilling where the dominant rock removal mode is rock crushing is a so-called roller cone bit, an example of which is illustrated in
In contrast to subterranean rock drilling, mining applications are concerned with rock removal where the rock removed contains specific minerals from which desirable elements can be extracted. The mineral containing natural rock removed is therefore retained and transported to sites of extraction. The housing bodies in these applications are designed so that the particular mineral containing rock is efficiently removed and retained. Typically, PCD rock removing bodies or elements are attached to so-called pick bodies which are extensions of the housing body organized in regard to the specific mineral deposit geometry or strata. Examples of minerals which may be mined using free standing PCD bodies as rock removal elements are coal, gold containing rock and, in general, minerals containing extractable metals.
In general construction applications, it is necessary to drill, shape, machine or surface natural and synthetic rock materials. These latter materials include concrete and brick in the building and construction industry and concrete, tarmacadam and general road surface materials in the road construction and maintenance industries. Free standing PCD bodies or elements for rock removal can be exploited attached and or inserted in the diverse housing bodies used for such purposes.
Any or all of the applications above where free standing PCD bodies are cooperatively and supportively arranged in the various housing body designs may exploit the feature where a high exposure of the free standing PCD rock removing element of up to a third of the maximum dimension stands proud of the free surface of the housing body.
A general method for producing free standing PCD bodies not attached to dissimilar material bodies or substrates during manufacture is taught in patent application U.S. Ser. No. 61/578,734, reference 2. The PCD bodies comprise one or more physical volumes, each a pre-selected combination of intergrown diamond grains of specific average grain size and size distribution with an independently pre-selected inter penetrating metallic network of specific atomic composition with an independently pre-selected specific overall diamond to metal ratio. Some key aspects of this general method include:
The mass or masses of combined diamond particles and metallic materials may be conveniently formed by milling and mixing diamond powders with solid metallic powders to produce a homogeneous combination. One or more elemental metallic powders may be used. Metal powders which have been pre alloyed may also be used. It is usually necessary to follow the milling and mixing procedures with appropriate heat treatment in a vacuum or gaseous reductive environment in order to purify the mass. In particular, it is important to purify the mass in regard to oxides and oxygen based chemical species which typically terminate the diamond particle surfaces. Heat treatments in hydrogen, inert gas environments may be particularly useful in this regard.
Alternatively, a means of producing the mass or masses of combined diamond particles and metallic material is to use precursor chemical compounds for the metal(s). A general advantage of using such precursor compounds is that many of them are easily thermally dissociated or reduced to form finely divided and pure metals. Using precursor compounds for the metals in this way enables a superior homogeneity of combination of diamond and metal particles, particularly in cases where very fine, less than ten micron average particle size diamond powders are required. The mass or masses of combined diamond powders and metallic materials may be formed by mechanically milling and mixing the diamond particles with one or more precursor compound solid powder for the metal(s) followed by appropriate conversion or dissociation of the precursor compound or compounds to the metallic state by appropriate heat treatment. Again, heat treatment in a vacuum or gaseous reductive environment may be used.
A particular method for combining diamond particles with precursor compounds taught in the refs 1 and 2 involves suspending the diamond powder in a liquid medium and crystallizing the precursor compound or compounds in the suspension medium. The most convenient and generally useful liquid media are pure water and/or pure alcohols. This method may be done by the controlled addition of solutions of reactant compounds to the diamond particle suspension. Generally, at least one of the reactant compound solutions involves a soluble chemical compound containing the desired metal or metals. An example set of such water and/or alcohol soluble compounds are metal nitrate salts. In these cases, useful reactant solutions are of soluble alkali metal salts such as sodium carbonate, Na2CO3, and the like which are able to cause the crystallization and precipitation of metal salts as insoluble precursor compounds for those metals such as metal carbonates. Many diverse chemical reactive protocols to generate a host of useful precursor compounds for the desired metals are taught and disclosed in patent application U.S. Ser. No. 61/578,734, reference 2. These chemical protocols are included in the present disclosure by reference and all the teachings of reference 2 included for all it contains. A further aspect is where the precursor compounds nucleate and grow attached to the diamond particle surfaces so that the diamond particles become decorated in said precursor compound. On reduction or dissociation of the precursor compounds by appropriate heat treatment, the diamond particle surfaces become decorated with the specific amount of the specifically chosen metallic material. The metal particles attached to the diamond surfaces are smaller than the size of the diamond particles. This may provide a substantial advantage in that an almost perfectly uniform distribution in the combined mass of diamond particles and metallic material can be so generated, which in turn leads to a high degree of spatial compositional homogeneity in the final PCD material.
The dry purified masses of combined diamond particles and metallic material require consolidation into a cohesive, semi-dense so-called “green body” of pre-selected size and 3-dimensional shape. The size and 3-dimensional shape may be chosen to suit and to lead to the size and shape of the overall free standing PCD bodies of the embodiments. Any appropriate powder consolidation technique known in the art to form cohesive semi-dense green bodies may be used. These include uniaxial compaction into designed appropriate size and shape moulds or preferably the use of cold or hot isostatic compaction technologies. The isostatic compaction technologies are preferable due to significantly improved spatial homogeneity of density as compared to uniaxial compaction which, in turn, leads to good spatial homogeneity in the subsequently generated free standing PCD body. When two or more physical volumes are required in any of the described embodiments, the PCD materials may be organized to differ in composition and structure so that differences in properties of the PCD materials may be exploited in different geometric positions of the overall PCD body. Many of the embodiments concern associating the different physical volumes of differing PCD materials with the two functional volumes, the working volume and the support volume. The methods for forming the chosen masses of combined diamond particles and metallic material from the patent application U.S. Ser. No. 61/578,734, reference 2, described above are possible methods for forming each of the physical volumes of the embodiments. For example, the chosen masses of combined diamond particles and metallic material for each of the physical volumes are consolidated to form cohesive green body structures. The green body structure for each of the physical volumes may be consolidated independently of one another and then assembled in the chosen geometric relation to one another to form an overall green body for each desired embodiment.
The overall green body is then subjected to high pressure and high temperature conditions such that the metal material wholly or in part becomes molten and facilitates diamond particle to particle bonding via partial recrystallization of the diamond. The high pressure and high temperature conditions taught and claimed in patent application U.S. Ser. No. 61/578,734, reference 2, are incorporated into the present disclosure by reference and generally fall in the ranges of 5 to 10 GPa pressure and 1100 to 2500° C. temperature, respectively.
Practically any free standing PCD body produced by such high pressure, high temperature processes requires final shaping, sizing and surface finishing. Any of the technologies for such purposes well known in the art may be applied to the embodiments to achieve these. These include grinding and polishing with diamond tools and abrasives, electro-discharge machining and laser ablation. Where it is necessary to use such techniques to remove significant amounts of PCD material to attain the desired shape, size and surface condition, significant and undesirable cost may be introduced. This can be mitigated if after the high pressure, high temperature processes, the resulting free standing PCD body is close in near net size and shape to what is desired. The possibility of near net size and shape for free standing PCD bodies was disclosed in patent applications U.S. Ser. No. 61/578,726 and U.S. Ser. No. 61/578,734, references 1 and 2, respectively. The basis of the near net size and shape attribute is the high degree of homogeneity of the diamond and metal masses, together with consolidation techniques capable of producing green body structures with consistency and homogeneity of density and high pressure high temperature reaction chamber designs which can provide uniform spatial shrinkage. The embodiments using the methods of manufacture disclosed may exploit these approaches and attributes to advantageously produce free standing PCD bodies with near net size and shape. In particular, combining the suspension method of combining diamond particles with precursor compounds for the metals, leading to particulate masses of homogeneous combinations of diamond particles and metals with isostatic compaction techniques for making homogeneous green body structures, leads to near net size and shape opportunities.
The generally preferred metallic materials for such diamond recrystallization is one or a combination or any permutation or alloyed combination of iron, nickel, cobalt, manganese. In particular, cobalt may often be used to form PCD materials of superior properties.
Amongst the extensive and diverse precursor compounds for the metallic composition of free standing PCD bodies are ionic salts. This grouping of precursor compounds used as milled and mixed solid powders with the diamond particles or as insoluble compounds generated in liquid media diamond particle suspensions may be particularly useful and convenient to use.
For example, metal carbonates may be used as the precursor compound or compounds as these ionic salts very readily are dissociated and reduced to pure finely divided metals.
Some embodiments are now described in more detail with reference to the following examples which are not intended to be limiting. The following examples provide further detail in connection with the embodiments described above.
Free standing bodies made solely of PCD material were produced.
The overall shape of each body was a right circular cylinder of finished diameter and height of 16 mm and 24 mm respectively. Using the defined method of expressing the aspect ratio of bodies as provided in the text above, the aspect ratio of these bodies was 1.5.
One circumferential edge of each cylindrical body was modified to form four chamfers, as shown in
The distal extremity of the functional working volume of these bodies, 2206, was chosen to be one part of the circular circumferential edge which formed the intersection and boundary between the break-in chamfer, 2203, and landing chamfer, 2204. Thus, the first part of the bodies chosen to initially bear upon a rock surface in applications for rock removal is indicated by 2206. The functional working volume, 2207, which is the part of each PCD body which is progressively worn away in use, forming a wear flat surface, indicated by the broken line, 2208, occupies the region immediately adjacent to the position 2206, and is thus initially bounded by the chamfered free surfaces. Thus in this embodiment, the PCD bodies have one mirror plane of symmetry extending from the distal extremity position, 2206, of the functional working volume, 2207, and the distal extremity comprises a curved edge.
The functional support volume, 2209, of the PCD bodies, is that part of the bodies which is extant after use and thus forms a right circular cylindrical shape with a wear flat surface, 2208, determined at end of life or finish of use of the bodies, when the functional working volume, 2207, has been worn away.
The free standing bodies each comprised two physical volumes made of different PCD materials. One physical volume, 2210, made of PCD 1 material, extended as an 8 mm disc across one end of the right cylindrical body, 2201, with a flat boundary with the second physical body, 2211, made of PCD 2 material. The second physical volume, 2211, formed a right cylinder, 16 mm long and 16 mm in diameter. The first physical volume occupied about one third (33.3%) of the total volume of the PCD free standing body and thus occupied between 30% and no more than 50% of the overall body volume. The first physical volume, 2210, being of this size, completely encompasses the functional working volume, 2207, which is expected to have occupied no more than about 3% of the overall volume of the starting total free standing PCD body volume at chosen end of life in application. The boundary between the two physical volumes, in this way, was remote from, and did not interact with the final wear flat or boundary between the two functional volumes, indicated by the dotted line, 2208.
The two physical volumes made from different PCD materials, PCD1 and PCD2, differed in average diamond grain size and size distribution with the metal content and elemental composition being the same for each physical volume. The metal used for both physical volumes was cobalt. The elemental composition was thus invariant throughout the whole PCD body i.e., the same amount and type of metal was present everywhere in each of the bodies. The diamond grain size of the first physical volume was smaller than that of the second physical volume. The material of the first physical volume, PCD1, in each body, was uniform across the extent of the physical volume and had an average grain size of about ten (10) micro-meters formed from a multimodal combination of five separate monomodal components of diamond powder, with a cobalt content of about 9% by volume (20% by mass). The uniform material of the second physical volume, PCD2, in each body, had an average grain size of about fifteen (15) micro-meters formed from a multimodal combination of four separate monomodal components of diamond powder, with a cobalt content also of about 9% by volume (20% by mass).
The cobalt metal at the free surface of the first physical volume, 2210, including the expected free surface adjacent to the functional working volume, 2207, was removed by chemical leaching, leaving only trace amounts metal, to a depth of about three hundred (300) micrometers. This metal depleted layer is indicated in the expanded view as 2212 in
The following steps and procedures were carried out in order to manufacture these PCD free standing bodies.
Two stock batches of particulate masses of diamond particles combined with cobalt metal were produced, one for each of the two intended physical volumes, volume 1, with PCD material 1, 2210, and volume 2, with PCD material 2, 2211.
The stock mass for volume 1, PCD material 1 was made using the following sequential steps.
100 g of diamond powder was suspended in 2.5 litres of de-ionised water. The diamond powder comprised 5 separate so-called monomodal diamond fractions each differing in average particle size. The diamond powder was thus considered to be multimodal. The 100 g of diamond powder was made up as follows: 5 g of average particle size 1.8 micro meters, 16 g of average particle size 3.5 micro meters, 7 g of average particle size 5 micro meters, 44 g of average particle size 10 micro meters and 28 g of average particle size 20 micro meters. This multimodal particle size distribution extended from about 1 micro meter to about 30 micro meters.
The diamond powder had been rendered hydrophilic by prior acid cleaning and washing in de-ionised water. To the suspension an aqueous solution of cobalt nitrate and a separate aqueous solution of sodium carbonate were simultaneously slowly added while the suspension was vigorously stirred. The cobalt nitrate solution was made by dissolving 125 grams of cobalt nitrate hexahydrate crystals, Co(NO3)2.6H2O, in 200 ml of de-ionised water. The sodium carbonate solution is made by dissolving 45.5 g of pure anhydrous sodium carbonate, Na2CO3 in 200 ml of de-ionised water. The cobalt nitrate and sodium carbonate reacted in solution precipitating cobalt carbonate CoCO3, as per the following equation,
In the presence of the suspended diamond powder particles, with their hydrophilic surface chemistry, the cobalt carbonate crystals nucleated and grew on the diamond particle surfaces. The cobalt carbonate precursor compound for cobalt, took the form of whisker shaped crystals decorating the diamond particle surfaces. The sodium nitrate product of reaction was removed by a few cycles of decantation and washing in de-ionised water. The powder was finally washed in pure ethyl alcohol, removed from the alcohol by decantation and dried under vacuum at 60° C.
The dried powder was then placed in an alumina ceramic boat with a loose powder depth of about 5 mm and heated in a flowing stream of argon gas containing 5% hydrogen. The top temperature of the furnace was 750° C. which was maintained for 2 hours before cooling to room temperature. This furnace treatment dissociated and reduced the cobalt carbonate precursor to form pure cobalt particles, with some carbon in solid solution decorating the surfaces of the diamond particles. In this way it was ensured that the cobalt particles were always smaller than the diamond particles with the cobalt being homogeneously distributed. The conditions of the heat treatment were chosen with reference to the standard cobalt carbon phase diagram of the literature. At 750° C. it may be seen that the solid solubility of carbon in cobalt is low. At these conditions the formation of amorphous non-diamond carbon at this temperature is low and traces of non-diamond carbon could be detected in the final diamond-metal particulate mass. The resultant powder mass of multimodal diamond particles with an overall 20 weight % of cobalt metal decorating the diamond particle surfaces, had a pale light grey appearance. The powder mass was stored under dry nitrogen in an air-tight container to prevent oxidation of the fine cobalt decorating the diamond surfaces.
The stock mass for volume 2, PCD material 2, was made using the following sequential steps.
100 g of diamond powder was suspended in 2.5 litres of de-ionised water. The diamond powder comprised 4 separate so-called monomodal diamond fractions each differing in average particle size. The diamond powder was thus considered to be multimodal. The 100 g of diamond powder was made up as follows: 5 g of average particle size 3.5 micro meters, 10 g of average particle size 10 micro meters, 20 g of average particle size 16 micro meters and 65 g of average particle size 23 micro meters. This multimodal particle size distribution extended from about 1 micro meter to about 40 micro meters.
The diamond powder had been rendered hydrophilic by prior acid cleaning and washing in de-ionised water. To the suspension an aqueous solution of cobalt nitrate and a separate aqueous solution of sodium carbonate were simultaneously slowly added while the suspension was vigorously stirred. The cobalt nitrate solution was made by dissolving 125 grams of cobalt nitrate hexahydrate crystals, Co(NO3)2.6H2O, in 200 ml of de-ionised water. The sodium carbonate solution was made by dissolving 45.5 g of pure anhydrous sodium carbonate, Na2CO3 in 200 ml of de-ionised water. The cobalt nitrate and sodium carbonate reacted in solution precipitating cobalt carbonate CoCO3, as per equation (1). In the presence of the suspended diamond powder particles, with their hydrophilic surface chemistry, the cobalt carbonate crystals nucleated and grew on the diamond particle surfaces. The cobalt carbonate precursor compound for cobalt, took the form of whisker shaped crystals decorating the diamond particle surfaces. The sodium nitrate product of reaction was removed by a few cycles of decantation and washing in de-ionised water. The powder was finally washed in pure ethyl alcohol, removed from the alcohol by decantation and dried under vacuum at 60° C.
The dried powder was then heat treated in a flowing argon, 5% hydrogen gas mixture at 750° C. in the identical manner to that of the powder for the stock mass of PCD 1 material. The resultant powder mass of multimodal diamond particles with an overall 20 weight % of cobalt metal decorating the diamond particle surfaces had a pale light grey appearance. The powder mass was stored under dry nitrogen in an air-tight container to prevent oxidation of the fine cobalt decorating the diamond surfaces.
6.8 g of the particulate mass for volume 1, PCD 1, was then pre-compacted in a uni-axial hard metal compaction die to form a semi-dense right cylindrical disc.
13.6 g of the particulate mass for volume 2, PCD 2, was then pre-compacted in a uni-axial hard metal compaction die to form a semi-dense right cylinder.
The two semi-dense bodies were then placed together and further uni-axially compacted together into a niobium metal, thin walled canister in another hard metal die-set. A second niobium cylindrical canister of slightly larger diameter was then slid over the first canister in order to surround and contain the pre-compacted powder masses. The free air in the porosities of the semi-dense compacted bodies was evacuated and the canisters sealed under vacuum using an electron beam welding system known in the art. To consolidate further, to a higher green density and to eliminate or radically reduce spatial density variations, the canister assembly was then subjected to a cold isostatic compaction procedure at a pressure of 200 MPa. Several green body assembles were produced in this manner.
Each encapsulated cylindrical green body with two physical volumes, volume 1 and volume 2, of dissimilar composition was then placed in an assembly of compactable ceramic, salt components suitable for high pressure high temperature treatment as well established in the art. The material immediately surrounding the encapsulated green body was made from very low shear strength material such as sodium chloride. This provides for the green bodies being subjected to pressures which approach a hydrostatic condition. In this way pressure gradient induced distortions of the green body may be mitigated.
The green bodies were subjected to a pressure of 6 GPa and a temperature of approximately 1560° C. for 1 hour using a belt type high pressure apparatus as well established in the art. During the end phase of the high pressure high temperature procedure the temperature was slowly reduced over several minutes to approximately 750° C., maintained at this value and then the pressure was reduced to ambient conditions. The high pressure assembly was then allowed to cool to ambient conditions before extraction from the high pressure apparatus. This procedure during the end phase of the high pressure high temperature treatment was thought to allow the surrounding salt media to remain in a plastic state during the removal of pressure and so prevent or inhibit shear forces bearing upon the now sintered PCD body. The final dimensions of the free standing PCD cylindrical body were then measured and the shrinkage was calculated to be approximately 15%.
The fully dense, right cylindrical free standing cylindrical bodies were then brought to dimensions of 16 mm diameter and 24 mm long by finishing procedure such as fine diamond grinding and polishing as well established in the art. Typical amounts of PCD material removed to attain the desired dimensions were about 0.1 to 0.3 mm.
Fine diamond grinding was then employed to form the four chamfers as specified in
The free surface of the top of the first physical volume, including the top flat surface and the circumferential side chamfered regions of each free standing PCD body, was then subjected to an acid leaching procedure to obtain a leached depth of about 300 micro-meters, where the cobalt metal was substantially removed. The free surface of the base and cylindrical barrel up to the beginning of the trailing edge chamfer of each PCD body was masked and prevented from being exposed to the leaching acids and thus these free surfaces remained unleached.
Due to the diamond and metal network compositional ratio and the metal elemental composition (cobalt), being invariant and the same in both the physical volumes, the elastic modulus and linear coefficient of thermal expansion coefficient of both physical volumes was deemed to be the same. Consequently, the differential elastic expansion and thermal contraction mechanisms for generating macroscopic residual stress on return to room temperature and pressure during the manufacturing process were absent.
The embodiment of Example 1 was thus deemed to be macro stress free over the dimensional span of the free standing PCD bodies. It is expected that the absence of residual stress would be evident at a scale greater than ten times the average grain size, where the coarsest component of grain size is no greater than three times the average grain size.
To confirm the absence of macro residual stress over the dimensional span of the PCD bodies, the following strain gage based procedure was carried out on an unleached sample of the free standing PCD body.
Free standing bodies made solely of PCD material were produced with the same dimensions, and overall shape as the embodiments of Example 1.
The PCD1 material had an average grain size of about ten (10) micro-meters formed from a multimodal combination of five separate monomodal components of diamond powder and had a diamond and metal network compositional ratio of 91 to 9 volume percent (80 to 20 weight percent). The metal chosen for the single physical volume was cobalt.
The chemical protocol and manufacturing steps and procedures described in Example 1 for the PCD1 material were used. 20.4 grams of the particulate diamond/cobalt metal mass was then compacted to form each cylindrical semi-dense green body using the sequential uniaxial compaction and cold isostatic compaction procedures described in Example 1. These green bodies were then subjected to a pressure of 6 GPa and a temperature of approximately 1560° C. for 1 hour using a belt type high pressure apparatus as described in Example 1. The fully dense right cylindrical free standing PCD bodies made only of PCD1 were then brought to dimensions of 16 mm diameter and 24 mm long by finishing procedures such as fine diamond grinding and polishing as established in the prior art. The four chamfer arrangement as specified in Example 1 and indicated in
Due to the PCD free standing bodies of this embodiment comprising only one physical volume of homogeneous PCD material, it was expected that there would be an absence of macroscopic residual stress across the dimensional span of the PCD body. This was confirmed by using the strain gage based procedure as described in Example 1 as indicated in
Free standing bodies made solely of PCD material were produced as per
The overall shape of each body was a right circular cylinder, one end of which was formed by a hemisphere, of finished diameter and height of 16 mm and 28 mm respectively. Using the defined method of expressing the aspect ratio of bodies as provided in the text above, the aspect ratio of these bodies was 1.75.
The distal extremity, 2402, of the functional working volume, 2403, is the central position of the domed free surface. The proximal extremity, 2404, of the functional support volume, 2405, is a flat surface of diameter 25.5 mm, and the cylindrical portion, 2406, of the functional support volume, 2405, of diameter 16 mm, conically expands in cross sectional area from a height of 6.5 mm to the 25.5 mm diameter base, 2404. The conical expansion of the cross sectional area of the functional support volume, 2405, towards the proximal flat base, 2404, is intended to allow mechanical attachment to the housing body, specifically in this case the roller arrangement in the roller cone bit. The mechanical attachment may be provided by a conical mating collar arrangement such as schematically illustrated in
Each free standing PCD body comprised two physical volumes. The first physical volume, 2407, extending from the distal extremity, 2402, of the functional working volume, 2403, to a flat boundary, 2408, with the second physical volume, 2409, 12.4 mm along the centre line, 2410. The second physical volume, 2409, extends from said boundary, 2408, to the flat base 15.6 mm along the centre line, 2410.
In roller cone drill bits, the rock removing elements, such as 2401, the functional working volumes, 2403, are expected to wear away in use, due to cyclical dynamic contact to the rock surface being crushed. The volume worn away, 2403, is expected to be limited and completely encompassed by the first physical volume, 2407. The functional support volume, 2405, extends from the boundary of the functional working volume, 2403, to the flat based proximal extremity, 2404, and comprises most of the first physical volume, 2407, and all of the second physical volume, 2409. The functional support volume, 2409, exhibits increases in cross sectional area along the line of extension from the functional working volume, 2403, to the proximal flat base, 2404, by virtue of initially the hemispherical nature of the first part of the first physical volume, 2407, and subsequently by the conical expansion toward the proximal base, 2404. This expansion of cross sectional area engenders the principal of massive support for the functional working volume as explained above.
The intended mode of rock removal being predominantly by rock crushing requires that the rock removal element or body has a high compressive strength. This is provided in this embodiment by the free standing body being made solely of PCD material (as opposed to the conventional prior art involving layers of PCD material asymmetrically attached to hard metal substrates) and the chosen overall shape whereby the principle of massive support may be exploited.
The first physical volume, 2407, was chosen to be made of a material that exhibits a high wear resistance, in this case the same as that chosen for Example 1. The material of the first physical volume, 2407 (PCD1), in each body, was uniform across the extent of the physical volume and had an average grain size of about ten (10) micro-meters formed from a multimodal combination of five separate monomodal components of diamond powder, with a cobalt content of about 9% by volume (20% by mass).
The second physical volume, 2409, was chosen to be made of a material that exhibits a high thermal conductivity again the same as that used in Example 1. The uniform material of the second physical volume, 2409 (PCD2), in each body, had an average grain size of about fifteen (15) micro-meters formed from a multimodal combination of four separate monomodal components of diamond powder, with a cobalt content of about 9% by volume (20% by mass), the same metal content as the first physical volume. The two physical volumes, 2407 and 2409, were the same and invariant in terms of the diamond and metal network compositional ratio and metal elemental composition. Each of the two physical volumes comprised a cobalt metal composition of 9% by volume (20% by mass).
The step by step procedures described in Example 1 were carried out save that appropriately shaped and sized compaction dies were used to provide the specified shape. Again, master batches of diamond powder with diamond particles decorated in pure cobalt were produced for each of the physical volumes using the chemical protocol and cobalt carbonate precursor materials specified in Example 1.
Grinding and polishing finishing procedures well known in the art as in Example 1 were used to bring each body to final size and shape as specified in
Free standing bodies made solely of PCD material were produced as per
The overall shape of each body was a right circular cylinder with one end modified to be a chisel shape, made up of two symmetrical angled truncations of a cone, 2502, meeting at a straight edge, 2503. The flat truncations, 2502, extended from the edge, 2503, to the circumferential edge where the cone adjoined the cylindrical section. The straight edge, 2503, was parallel to the base of the cylinder, 2504. The distal extremity, 2505, of the working volume, 2506 may be chosen to be one of the apices, 2505, formed with the straight edge, 2503, and the conical curved surface, 2507, as shown in
The finished diameter and height of each body was 16 mm and 24 mm, respectively. The edge, 2503, was about 8 mm in vertical distance along the center line to the plane of the circumferential edge between the cone and the cylindrical section, as shown in
The free standing bodies each comprised two physical volumes made of different PCD materials. The first physical volume, 2510, made of PCD 1 material, included the truncated conical volume and extended into the cylindrical section of the body and completely encompassed any chosen functional working volumes chosen and determined in use, 2506 or 2508. The vertical distance along the center line from the edge, 2503, to the boundary, 2511, with the second physical volume, 2412, was 10 mm. The boundary, 2511, with the second physical volume, 2512, was parallel with the base, 2504. It was estimated that the first physical volume occupied about 25% of the total volume of the overall body. The first physical volume, 2510, being of this size, completely encompasses the functional working volume, 2506 or 2508, either of which is expected and was chosen to occupy no more than about 3% of the overall volume of the starting total free standing PCD body, at chosen end of life in application. The boundary between the two physical volumes, 2511, in this way, was remote from, and did not interact with the final wear flat or boundary between the two functional volumes, indicated by the dotted lines, in
The first physical volume, 2510 was chosen to be made of a material that exhibits a high wear resistance, in this case the same as that chosen for the first physical volumes of both Example 1 and 3. The material of the first physical volume, 2510 (PCD1), in each body, was uniform across the extent of the physical volume and had an average grain size of about ten (10) micro-meters formed from a multimodal combination of five separate monomodal components of diamond powder, with a cobalt content of about 9% by volume (20% by mass).
The second physical volume, 2512, was chosen to be made of a material that exhibits a high thermal conductivity, again the same as that used in both Example 1 and 3. The uniform material of the second physical volume, 2512 (PCD2), in each body, had an average grain size of about fifteen (15) micro-meters formed from a multimodal combination of four separate monomodal components of diamond powder, with a cobalt content of about 9% by volume (20% by mass).
The step by step procedures described in Example 1 were carried out save that appropriately shaped and sized compaction dies were used to provide a right cylinder extending at one end to a symmetrical cone as indicated in
Again, master batches of diamond powder with diamond particles decorated in pure cobalt were produced for each of the physical volumes using the chemical protocol and cobalt carbonate precursor materials specified in Example 1.
Grinding and polishing finishing procedures well known in the art were employed to form the symmetrical, part ellipse truncations, meeting at the edge, 2503, as specified in
The attachment function of the functional support volume, 2509, is provided by the right cylindrical section of each of the bodies. The options of attachment include interference fits with the housing body or bit. Low temperature brazing techniques employing special braze alloys for PCD materials known in the art may also be used.
Free standing bodies made solely of PCD material were produced.
In
The diamond grain size of the PCD1 layers (average grain size 10 micro meters) is significantly smaller than that of the PCD2 layers (average grain size 15 micro meters), with the cobalt metal content being the same for each type of layer. The material of the PCD1 layers from previous experience is known to have a higher wear resistance than that of the material of the PCD2 layers. During the progressive wear of the functional working volume, it therefore expected that the differential wear behaviour of this alternating wear layer structure will provide multiple protruding edges or protruding lips. In turn, this would provide a continuous self-sharpening effect and mitigate the requirement of excessive load on bit to maintain efficient rate of penetration into the rock strata.
The topmost layer, adjacent to the top free surface of the free standing PCD bodies was made from the lower wear resistance PCD2 material. An advantage to the top layer being made of PCD2 material may be associated with this material typically having a wear resistance less than PCD1 material. The lower wear resistance of the top layer engenders a progressive limited “rounding” and “blunting” of the leading edge of the functional working volume which may provide the advantage of a continuous self-chamfering effect. This in turn may provide for a lower probability of deleterious chipping in use by spreading the applied load over a larger area.
The embodiment of
Again it was expected that each layer which was composed of PCD1 material would have a higher wear resistance than each layer composed of PCD2 material. In use, the progressive wearing away of the functional working volume should expose multiple alternating layers the differential wear behaviour of which will result in protruding edges and protruding lips providing continuous and desirable self-sharpening behaviour.
In both the embodiments of
The master batches of the particulate masses for the materials of PCD1 and PCD2 were made using the same chemical protocols and step by step procedures as described in Example 1. Material from each of these master batches was then formed into semi-dense tapes of about 0.8 mm thickness using tape casting procedures and equipment well known in the art.
For the embodiment of
For the embodiment of
Number | Date | Country | Kind |
---|---|---|---|
1223530.5 | Dec 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/077932 | 12/23/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61747790 | Dec 2012 | US |