The present disclosure relates generally to bolt-on cutting edges for dozing blade assemblies, and more particularly to a cutter for a dozing blade assembly having varied orientations among digging faces of the cutter.
Dozing blades are used in tractor implement systems in many different applications. The capability of pushing loose material about a worksite in construction, waste handling, and all manner of natural resource and mining applications is indispensable. Tractors equipped with dozing blades are also used to dig material from a substrate. In many instances, small- to medium-size tractors are used more for moving loose material, while larger and more powerful machines may be used for digging material from a substrate, also known as “production dozing.” The basic structure of a dozing blade includes a frame structured for mounting to actuators and supports in the tractor's implement system, a moldboard supported by the frame that interacts with loose material that may be cut or scraped from an underlying substrate by way of a replaceable cutting edge or cutter. Dozing blades and their components are typically configured at least in part on the basis of the anticipated application. Such purpose-building has led to numerous different commercially available dozing blade and cutting edge geometries.
Engineers are continually seeking ways to expand the capabilities of tractors of all sizes, and for this and other reasons there continues to be significant research and development in relation to the design of dozing blades, the control of dozing blades and the related implement system, as well as materials and construction of the replaceable cutting edges or cutters commonly mounted upon a lower edge of a dozing blade. Those skilled in the art will be familiar with the variety of designs for dozing blades themselves, as well as the cutting edges mounted on dozing blades that actually cut, fracture, and/or dig the substrate material. Commonly owned U.S. Pat. No. 8,602,122 to Congdon et al. is directed to a track-type tractor, dozing blade assembly, and dozing blade with a steep center segment. In Congdon et al., a cutter for a dozing blade has a compound digging face with a steeply oriented center segment, and shallowly oriented outer segments, for optimizing the manner in which the dozing blade assembly moves through a material of a substrate.
In one aspect, a dozing blade assembly includes a dozing blade having a plurality of rearward positioned mounts for coupling the dozing blade with an implement system in a tractor, and a moldboard facing a forward direction. The moldboard has an upper edge and a lower edge each extending in a horizontal direction, a first outboard edge, and a second outboard edge, and the moldboard forming a concave vertical profile. The dozing blade further includes a substantially planar mounting surface extending along the lower edge and oriented at a uniform angle relative to a horizontal plane. A cutter is supported upon the mounting surface and includes an elongate body having a middle body piece, a first outer body piece and a second outer body piece positioned on opposite outboard sides, respectively, of the middle body piece. The first outer body piece and the second outer body piece are mirror images of one another, and each includes an inboard stem having a linear leading edge profile, and an outboard end bit having a curvilinear leading edge profile that transitions with the linear leading edge profile of a corresponding inboard stem. The middle piece includes a middle digging face oriented at a steeper angle relative to a horizontal plane, and the first outer body piece and the second outer body piece including, respectively, a first outer digging face and a second outer digging face positioned upon the corresponding inboard stem and each oriented at a shallower angle relative to the horizontal plane.
In another aspect, a cutter for a dozing blade in an implement system includes an elongate body having a middle body piece, a first outer body piece, and a second outer body piece. The middle body piece includes a middle digging face, a middle mounting face opposite the middle digging face, a leading edge, and a trailing edge. The first outer body piece and the second outer body piece include, respectively, a first outer digging face and a second outer digging face, and a first outer mounting face and a second outer mounting face positioned opposite to the first outer digging face and the second outer digging face. The first outer body piece and the second outer body piece are mirror images of one another, and each includes an inboard stem having a linear leading edge profile, and an outboard end bit having a curvilinear leading edge profile that transitions with the linear leading edge profile of the corresponding inboard stem. The middle digging face is oriented at a smaller angle relative to the middle mounting face, and each of the first outer digging face and the second outer digging face are oriented at a larger angle relative to the corresponding first outer mounting face and second outer mounting face, such that the middle digging face is more steeply inclined to a horizontal plane than the first outer digging face and the second outer digging face when the cutter is mounted in a service configuration upon a substantially planar mounting surface of the dozing blade.
In still another aspect, a body section for a cutter in a dozing blade assembly of an implement system includes an elongate inboard stem including a digging face extending between a leading edge and a trailing edge, an inboard mounting face positioned opposite to the digging face, and a plurality of mounting apertures extending between the digging face and the mounting face to receive a plurality of mounting elements for mounting the body section upon a mounting surface of a dozing blade. The body section further includes an outboard end bit including a forward face adjoining the digging face of the elongate stem and extending between a leading edge and a trailing edge, and an outboard mounting face positioned opposite to the forward face and coplanar with the inboard mounting face. The elongate stem further has a linear leading edge profile, and the outboard end bit is formed integrally with the elongate stem and has a curvilinear leading edge profile that transitions with the linear leading edge profile.
Referring to
Referring also now to
Dozing blade 18 further includes a substantially planar mounting surface 32 extending along lower edge 26 and oriented at a uniform angle relative to a horizontal plane 100. In an implementation, mounting surface 32 may be slightly inset or recessed relative to the concave vertical profile of moldboard 22, to provide a relatively smooth transition from digging faces of a cutter 34 supported upon mounting surface 32 and a material molding surface of moldboard 22. In the embodiment shown in
Referring also now to
Middle body piece 40 further includes a middle digging face 54 oriented at a steeper angle relative to a horizontal plane, and first outer body piece 42 and second outer body piece 44 include, respectively, a first outer digging face 56 and a second outer digging face 58, positioned upon the corresponding inboard stem 50, and each oriented at a shallower angle relative to the horizontal plane. The different steepnesses of digging face 54 in comparison with digging faces 56 and 58 enable balancing of forward pushability and downward penetration of cutter 34 and thus dozing blade 18 through material. As further discussed herein, variations to the relative difference in steepness, relative lengths of the various body pieces of cutter 34, and potentially other factors can enable one to tune cutter 34 for different applications. For instance, a relatively steeper middle section and/or a relatively longer middle section could bias the balance toward downward penetration, whereas a relatively shallower and/or relatively shorter middle section could bias the balance more toward forward pushability. In
Referring also now to
It can also be seen from
In a practical implementation strategy, lower forward face 61 may itself be compound and formed by an inboard section 66 and an outboard section 68. Inboard section 66 and outboard section 68 may be structured to blend forward face 60, or at least lower forward face 61, with outer digging face 56. Lower forward face 61 adjoins leading edge 48, with inboard section 66 being curved to impart a first concave radius of curvature 70 to leading edge 48 at an inboard location, whereas outboard section 68 is curved according to a smaller radius of curvature 72 at an outboard location. The inboard location is adjacent to digging face 56 and the outboard location is adjacent to a terminal outboard end (not numbered) of first outer body piece 42. Radius of curvature 70 and radius of curvature 72 may be the radiuses of curvature formed in an inboard to outboard direction. Inboard section 66 and outboard section 68 may also define concave radiuses of curvature that are different from radiuses of curvature 70 and 72, respectively, in a direction from leading edge 48 to trailing edge 49. It should be understood that the blending of lower forward face 61, more particularly, inboard section 66, with digging face 56 by forming inboard section 66 according to multiple different radiuses, and the blending of outboard section 68 with inboard section 66, can enable the smooth flow of material across and past outboard end bit 52.
Referring to
Referring also now to
With continued reference to
As dozing blade assembly 16 is moved through material the shape of cutter 34 will produce a reactive force from the material being displaced that tends to urge cutter 34 and thus dozing blade 18 downwardly. As noted above, the relative steepness of different digging faces on cutter 34 can affect the extent to which forces exerted by material being displaced are directed downwardly, versus horizontally in opposition to the forward motion of dozing blade assembly 16. It will be appreciated by those skilled in the art, however, that rather than deciding on one single orientation for a dozing blade cutter, differently oriented sections within the same cutter can provide a superior strategy. It can still further be understood from the foregoing description and attached drawings that cutter 34 is capable of being mounted upon a uniformly planar mounting surface, that accordingly integrates digging, cutting, and pushability advantages into a cutting system suitable for use with relatively smaller dozing blades commonly having a single uniformly planar cutter mounting surface, such as are commonly used with small- to mid-size tractors.
The present description is for illustrative purposes only, and should not be construed to narrow the breadth of the present disclosure in any way. Thus, those skilled in the art will appreciate that various modifications might be made to the presently disclosed embodiments without departing from the full and fair scope and spirit of the present disclosure. Other aspects, features and advantages will be apparent upon an examination of the attached drawings and appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2732639 | Lillengreen | Jan 1956 | A |
3029534 | Rakisits | Apr 1962 | A |
4086967 | Eftefield | May 1978 | A |
6470606 | Nagahiro et al. | Oct 2002 | B1 |
D534929 | Matsumoto | Jan 2007 | S |
7874085 | Winter et al. | Jan 2011 | B1 |
8272451 | Ditzler | Sep 2012 | B2 |
8602122 | Congdon et al. | Dec 2013 | B2 |
8783376 | Congdon et al. | Jul 2014 | B2 |
9290898 | Abramczyk et al. | Mar 2016 | B2 |
20050098332 | Matsumoto | May 2005 | A1 |
20110024142 | Ditzler | Feb 2011 | A1 |
20140041886 | Congdon | Feb 2014 | A1 |
20150060097 | Biggs et al. | Mar 2015 | A1 |
20160040399 | Congdon et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
203716202 | Jul 2014 | CN |
Number | Date | Country | |
---|---|---|---|
20180179730 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62438242 | Dec 2016 | US |