1. Field of the Invention
The present invention relates to a cutter grinding device, and more particularly to a grinding device for a milling cutter.
2. Description of Related Art
To sharpen a cutter, such as a milling cutter, a grinding machine with grinding wheels is always used. However, using grinding wheels to sharpen cutters requires an experienced technician with great skill, otherwise the cutter is easily damaged or blunted. Therefore, to sharpen a cutter with a conventional grinding machine is costly, difficult and time-consuming.
To overcome the shortcomings, the present invention tends to provide a cutter grinding device to mitigate or obviate the aforementioned problems.
The main objective of the invention is to provide a cutter grinding device that is easy and convenient to use for grinding a cutter at different angles.
The cutter grinding device comprises a housing, a motor, a grinding wheel, a holding cap, multiple brackets and a cutter clamping assembly. The housing has a top surface. The motor is mounted in the housing and has a drive shaft protruding out from the top surface of the housing. The grinding wheel is mounted on and driven by the drive shaft and has a grinding disc and a front grinding portion. The grinding disc has a top, a bottom and an edge. The front grinding portion is formed on the bottom of the grinding wheel at an angle from the grinding disc.
The holding cap is mounted on the top surface of the housing, encloses the grinding wheel and has a top, a front, a front hole, a disc-edge hole and a disc-top hole. The front hole is laterally defined in the front of the holding cap on an axis coinciding with the front grinding portion of the grinding wheel. The disc-edge hole is defined in the top of the holding cap on an axis coinciding with the annular edge of the grinding disc. The disc-top hole is defined in the top of the holding cap on an axis coinciding with the top of the grinding disc.
The brackets are mounted in a corresponding hole and have a working hole and at least one pair of holding block. Each working hole is defined through the bracket and aligns with the corresponding axis of the holding cap. Each pair of holding blocks are formed on and protrude from the bracket adjacent to the working hole and have a height. The heights of the holding blocks of the brackets mounted in the disc-top and disc-edge holes are smaller than the heights of the holding blocks of the bracket mounted in the front hole. The clamping assembly is selectively inserted into one of the front, disc-edge and disc-top brackets to hold a milling cutter and is therefore pre-aligned at the correct angle required for grinding the milling cutter. Therefore the cutter grinding device of the present invention requires little training for use and may be used easily, quickly and conveniently, therefore reducing costs.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The housing (11) is hollow and has a top surface.
The motor (12) is mounted in the housing (11) and has a drive shaft (121) protruding out from the top surface of the housing (11).
The grinding wheel (13) is attached to and driven by the drive shaft (121) and has a grinding disc (131) and a front grinding portion (132). The grinding disc (131) has a top and an edge. The front grinding portion (132) is formed from the grinding wheel (13) at an angle from the edge of the grinding disc (131).
With further reference to
The front hole (151) is laterally defined in the front of the holding cap (15) on a front axis coinciding with the front grinding portion (132) of the grinding wheel (13). The disc-edge hole (152) is defined in the top of the holding cap (15) on a disc-edge axis coinciding with the edge of the grinding disc (131). The disc-top hole (153) is defined in the top of the holding cap (15) on a disc-top axis coinciding with the top of the grinding disc (131).
The brackets (16) are mounted respectively in the holes (151,152,153) in the holding cap (15).
With further reference to
The working hole (163) is defined axially through the bracket (16, 16A) and aligns with the corresponding hole (151, 152, 153) in the holding cap (15).
Each pair of holding blocks (164) are formed oppositely on and protrude in pairs from the outer surface of the bracket (16, 16A) and each has an engaging side (1641), a height and may comprise an engaging notch (1642). The engaging sides of each pair of holding blocks (164) face one another. Each engaging notch (1642) is formed in the engaging side (1641).
The curved through holes (161) are defined adjacent to the working hole (163) and preferably have an arc length of 30°.
The bolts (162) are mounted respectively through the curved through holes (161) in the corresponding bracket (16, 16A) and mounted in the holding cap (15) adjacent to the corresponding hole (151, 152, 153). Therefore, the bracket (16, 16A) may pivot 30° from the corresponding axis of the corresponding hole (151, 152, 153) of the holding cap (15).
In a first embodiment the bracket (16) comprises one pair of holding blocks (164) and is preferably mounted over the front hole (151).
In a second embodiment the bracket (16A) comprises two pairs of holding blocks (164) formed perpendicular to each other and the height of the holding blocks is less than the first embodiment and is mounted over the disc-edge and disc-top holes (152, 153).
With further reference to
The outer sleeve (21, 21A) comprises an inserting end, a clamping end (212), an inserting tube (211), a shoulder (213, 213A) and multiple holding surfaces (2131, 2131A, 2131B, 2132, 2132A, 2132B).
The clamping end (212) has an inner thread formed therein.
The inserting tube (211) is formed on the inserting end, is selectively inserted into the brackets (16, 16A) and has a through hole formed through the inserting tube (211). The through hole of the outer sleeve (21, 21A) may be conical. The shoulder (213, 213A) is formed adjacent to the inserting end at the clamping end (212) and has an annular edge.
The holding surfaces (2131, 2131A, 2131B, 2132, 2132A, 2132B) are defined around the annular edge of the shoulder (213, 213A) and correspond respectively to fins of the milling cutter (A). Each holding surface (2131, 2131A, 2131B, 2132, 2132A, 2132B) has a side wall (2141) and a depth. The depth may be less than the height of the holding blocks (164) of the first embodiment of the bracket (16) and larger than the height of the holding blocks (164) of the second embodiment of the bracket (16A).
In a first embodiment of the outer sleeve (21), as shown in
In second embodiment of the outer sleeve (21A), as shown in
The four rhombic deep holding surfaces (2131A) comprise two pairs of parallel deep surfaces that intersect at an apex on a diameter of the shoulder (213A). The apex has an included angle of 120°.
The two parallel shallow holding surfaces (2132A) intersect the parallel deep surfaces at an inflexion having an included angle of 120°, thereby forming a regular hexagon.
The triangular holding surfaces (2131B, 2132B) form an equilateral triangle. The deep triangular holding surface (2131A) intersects two different parallel deep surfaces adjacent to the apex. The two shallow triangular holding surfaces intersect one shallow parallel surface (2132A) and one deep parallel surface adjacent to the inflection.
The second embodiment of the outer sleeve (21A) can be implemented with a milling cutter having three or six flutes.
The inner clamping core (23) is mounted inside the outer sleeve (21) and is conical, may correspond to the conical through hole in the inserting tube (211), is resilient and compressible to clamp the milling cutter (A). The inner clamping core (23) has a clamping hole defined longitudinally through the inner clamping core (23) and multiple slits defined longitudinally in the inner clamping core (23) and communicating with the clamping hole to make the core (23) resilient and compressible.
The clamping base (22) is attached rotatably to the clamping end (212) of the outer sleeve (21) and engages the inner clamping core (23) and presses the inner clamping core (23) against the outer sleeve (21) when the clamping base (22) is rotated. The clamping base (22) has an outer thread that engages the inner thread of the outer sleeve (21).
The bearing is mounted in the clamping base (22) and around one end of the inner clamping core (23), abuts and allows the inner clamping core (23) to freely rotate relative to the clamping base (22).
With further reference to
The base (31) is U-shaped, is attached securely to the top surface of the housing (11) and comprises a bottom plate (312), an adjusting rail (32) and a positioning mount (33). The bottom plate (312) has a top, a positioning edge, a positioning ridge (316) and an adjustment edge.
The adjusting rail (32) is formed on and protrudes from the top at the adjustment edge of the bottom plate (312) and has a slot (314) and a spacer (322). The slot (314) is defined in the rail perpendicular to the adjusting rail (32). The spacer (322) is formed adjacent to the slot (314) and has an inner surface, a threaded hole (326) and a rim (328). The threaded hole (326) is formed in the inner side of the spacer (322). The rim (328) is formed concentrically with, defined around and communicates with the threaded hole (326).
The positioning mount (33) is formed on and protrudes from the top near the positioning edge of the bottom plate (312) to define the positioning ridge (316) between the positioning mount (33) and the positioning edge of the bottom plate (312). The positioning mount (33) has a positioning hole (332) defined through the positioning mount (33) and corresponding to the slot (314) of the rail (32).
The slider (34) is mounted slidably in the slot (314) in the base (31) and comprises a top, a positioning side, an adjusting side, a front positioning rib (342), a rear positioning rib (343) and an adjusting hole (346).
The front positioning rib (342) is formed on and protrudes from the top at the adjusting side of the slider (34) and has an outer side being flush with the adjusting side of the slider (34).
The rear positioning rib (343) is formed on the positioning side of the slider (34) and has an inner side being flush with the corresponding side of the slider (34) and an outer side protruding from the slider (34) to define an abutting bottom (344).
The adjusting hole (346), facing the base (31), is defined through the slider (34) and has a rim (347) defined around the adjusting hole (346).
The adjusting bolt (35) extends through the adjusting hole (346) in the slider (34) and has a threaded shank (352) and a head (356) and is. The threaded shank (352) is mounted in the threaded hole (326) in the spacer (322) of the rail (32). The head (356) is formed on the shank (352).
The spring (36) is mounted around the shank (352) of the adjusting bolt (35) in the rims (328, 347) of the rail (32) and the slider (34).
With further reference to
The clamping assembly (20) with the cutter (A) is removed from the positioning device (30) and inserted into one of the holes (151,152,153) in the holding cap (15) through the corresponding bracket (16, 16A). Different parts of the fins or flutes of the cutter (A) are ground by the top or annular edge of the grinding disc (131) or the front grinding portion (132) of the grinding wheel (13) at different desired angles. When the cutter clamping assembly (20) is inserted into the corresponding hole (151,152,153), the bottoms of the holding surfaces (2131,2132, 2131A, 2132A, 2132B, 2132B) abut with the holding blocks (164) of the corresponding holding bracket (16, 16A) thereby holding the fins of the cutter (A) at desired positions and ground by the corresponding grinding portions (131,132) on the grinding wheel (13) and sharpen the cutter (A) is easily and conveniently.
Additionally, different heights of the holding blocks (164) and depths of the holding surfaces (2131, 2132, 2131A, 2132A, 2131B, 2132B), allow the fins of the cutter (A) to be held at different positions relative the grinding wheel (13). Consequently, the tips of the cutter (A) can be ground at different depths.
When the clamping assembly (20) with the cutter (A) is inserted into the bracket (16) on the front hole (151) and deep holding surfaces (2131, 2131A, 2131B) in the outer sleeve (21, 21A) engage the holding blocks (164) on the bracket (16), the engaging blocks (2142) on the outer sleeve (21) engage respectively with the engaging notches (1642) in the holding blocks (164). When the cutter clamping assembly (20) is removed from the hole (151), rotated and reinserted into the front hole (151), the shallow holding surfaces (2132, 2132A, 2132B) engage the holding blocks (164) on the front holding bracket (16). Because the deep holding surfaces (2131) are deeper than the shallow holding surfaces (2132), the fins on the cutter (A) can be ground at different angles.
Furthermore, because the brackets (16, 16A) mounted on the front and the disc-top holes (151, 152) are adjustably mounted on the holding cap (15), the brackets (16,16A) can pivot relative to the holding cap (15) along the curved through holes (161) thereby changing an angle of grounding to allow the miller cutter to be used for heavy load cutting/milling processes.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3126679 | Abadjieff | Mar 1964 | A |
5400546 | Christian et al. | Mar 1995 | A |
5735732 | Bernard | Apr 1998 | A |
6626745 | Bernard | Sep 2003 | B1 |
6676494 | Ching | Jan 2004 | B1 |
6824449 | Regna et al. | Nov 2004 | B2 |
7121932 | Liao | Oct 2006 | B2 |
7147546 | Dovel | Dec 2006 | B1 |
7172498 | Bernard et al. | Feb 2007 | B2 |