This application claims priority of Taiwanese patent Application No. 097204764, filed on Mar. 20, 2008.
1. Field of the Invention
This invention relates to a cutter head assembly for a wood planing machine, more particularly to a modular cutter head assembly which constitutes a cutting contour line winding around a shaft.
2. Description of the Related Art
Referring to
The object of the present invention is to provide a cutter head assembly for a wood planing machine, which is convenient and less costly to fabricate.
According to this invention, the cutter head assembly includes a shaft, a plurality of cutter-mounting sleeve modules, a plurality of cutter modules, and an angularly variable positioning mechanism. The shaft is elongated along an axis, and has two ends and a mount segment interposed therebetween. Each of the cutter-mounting sleeve modules has outer and inner wall surfaces opposite to each other in radial directions. The outer wall surface defines a slot which extends towards the inner wall surface to form a leading seat sidewall and a trailing opposing sidewall angularly spaced apart from each other by the slot. Each of the cutter modules has a cutting edge, and is secured to the leading seat sidewall such that the cutting edge extends beyond the outer wall surface. The angularly variable positioning mechanism includes a guiding member and a plurality of guided members. The guiding member is disposed on the mount segment, and extends along the axis. The guided members are disposed on the inner wall surface, and are angularly displaced from one another. Each of the guided members is configured to mate with the guiding member such that, when the cutter-mounting sleeve modules are sequentially brought to be sleeved onto the mount segment along the axis, with a selected one of the guided members in each of the cutter-mounting sleeve modules matingly engaging the guiding member, the cutting edges of the cutter-mounting sleeve modules thus sleeved on said mount segment together define a cutting contour line that winds around the mount segment angularly and axially.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail, it should be noted that same reference numerals have been used to denote like elements throughout the specification.
Referring to
The shaft 20 is elongated along an axis (I) in an axial direction, and has two ends 23 opposite to each other along the axis (I), and a mount segment 21 interposed between the ends 23.
Each of the cutter-mounting sleeve modules 40 (only one is shown in
Each of the cutter modules 50 has cutting and abutting edges 53 that are configured to be symmetric to each other with respect to a line (L) normal to the abutting plane (P). Specifically, each of the cutter modules 50 has four edges 53, two opposite ones of the edges 53 serving as the cutting and abutting edges 53. Each of the cutter modules 50 further has a central body 55 which is interposed among the edges 53, and which has inner and outer major surfaces 51,52 opposite to each other along the normal line (L). The central body 55 is formed with a through hole 54 which extends along the normal line (L) from the outer major surface 52 through the inner major surface 51. Each of the cutter modules 50 is secured to the leading seat sidewall 49 by a screw fastener 60 which passes through the through hole 54 and which is threadedly engaged with the screw hole 47 such that the inner major surface 51 is brought to abut against both the leading seat sidewall 49 and the rest wall surface 461, and such that the abutting edge 53 abuts against the abutment surface 451 so as to permit the cutting edge 53 to extend beyond the rest wall surface 461.
In this embodiment, as shown in
Alternatively, in the other embodiments, as shown in
The angularly-variable positioning mechanism includes a guiding member 30 and a plurality of guided members 43.
The guiding member 30 is a guiding rail 30, and is elongated in the axial direction. In particular, the mount segment 21 is formed with an insertion groove 22 extending in the axial direction to terminate at two insertion openings that border the ends 23, respectively. The guiding rail 30 has an insertion base 31 that is configured to be insertable into the insertion groove 22 through one of the insertion openings so as to be disposed on the mount segment 21.
The guided members 43 are in the form of a plurality of guided grooves 43 which are disposed in the inner wall surface 41 of each of the cutter-mounting sleeve modules 40, which extend toward the outer wall surface 42, and which are angularly displaced from one another. Each of the guided grooves 43 is configured to mate with the guiding rail 30. The cutter-mounting sleeve modules 40 are sequentially brought to be sleeved onto the mount segment 21 along the axis (I), with a selected one of the guided grooves 43 in each of the cutter-mounting sleeve modules 40 matingly engaging the axially guiding rail 30, such that each of the cutter-mounting sleeve modules 40 is non-rotatably retained on the mount segment 21, and such that the cutting edges 53 on the cutter-mounting sleeve modules 40 thus fitted onto the mount segment 21 together define a cutting contour line that winds around the mount segment 21 angularly and axially, as shown in
The fasteners 70 are in the form of screw nuts 70, and are threadedly and respectively engaged with the ends 23 of the shaft 20 to guard against axial movement of the cutter-mounting sleeve modules 40 once the cutter-mounting sleeve modules 40 have been sequentially sleeved on the mount segment 21.
Preferably, the outer wall surface 42 of each of the cutter-mounting sleeve modules 40 further has a plurality of slits 48 which extend towards the inner wall surface 41 so as to reduce the weight of the sleeve modules 40. Further, in this embodiment, each of the cutter-mounting sleeve modules 40 is made by a powder metallurgy process.
Preferably, a counterweight 80 is matingly fitted in the corresponding guided groove 43 in each of the cutter-mounting sleeve modules 40 such that, once the cutter-mounting sleeve modules 40 have been sequentially sleeved on the mount segment 21, the counterweights 80 are disposed diametrically opposite to the guiding rail 30 with respect to the axis (I).
As illustrated, according to the present invention, since the components of the cutter head assembly, such as the cutter-mounting sleeve modules 40 and the cutter modules 50, have the same configurations, fabrication of the modules 40 and 50 is convenient and less costly.
Referring to
While the present invention has been described in connection with what are considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
097204764 | Mar 2008 | TW | national |