This application claims priority of Taiwanese Patent Application Number 105208199, filed on Jun. 1, 2016.
The disclosure relates to a cutter head, more particularly to a cutter head assembly for a wood planing machine.
A conventional cutter head assembly for a wood planing machine includes a drive shaft, a blade carrier and a plurality of cutting blades. The drive shaft has a longitudinal axis. The blade carrier surrounds the drive shaft, extends parallel to the longitudinal axis, and is retained on the drive shaft. The cutting blades are spacedly disposed on the blade carrier and surround the longitudinal axis. Each of the drive shaft and the blade carrier is made of iron, so that the weight of the conventional cutter head assembly is heavy. Further, after using the conventional cutter head assembly for a long period of time, the blade carrier may rust, and the cutting blades disposed on the blade carrier may loosen. Moreover, the cost of the iron blade carrier is expensive.
Therefore, an object of the present disclosure is to provide a cutter head assembly that is lightweight, that will not easily rust and that has a low cost.
According to this disclosure, a cutter head assembly comprises a drive shaft, a blade carrier and a blade unit. The drive shaft has a longitudinal axis and is made of steel. The blade carrier is sleeved and retained on the drive shaft. The blade carrier has a length extending parallel to the longitudinal axis and is made of aluminum alloy. The blade unit is disposed on the blade carrier and surrounds the longitudinal axis.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present disclosure is described in greater detail with reference to the accompanying embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The drive shaft 1 is made of steel, and has a longitudinal axis (L), and a plurality of first positioning sections 11 each of which is configured as a threaded groove extending inwardly from an outer surface thereof.
The blade carrier 2 is made of aluminum alloy, is sleeved and retained on the drive shaft 1, and has a length extending parallel to the longitudinal axis (L). The blade carrier 2 includes a plurality of spaced-apart fastening holes 21 surrounding the longitudinal axis (L), and a plurality of second positioning sections 22 each of which is configured as a threaded hole communicating with a respective one of the first positioning sections 11.
Each of the positioning members 3 is fixed between one of the first positioning sections 11 and a corresponding one the second positioning sections 22. In this embodiment, each positioning member 3 is configured as a threaded bolt, and the number thereof is four, each two of which are disposed on the same sectional surface (see
The blade unit includes a plurality of cutting blades 4 surrounding the longitudinal axis (L) and spacedly disposed on the blade carrier 2. Each of the cutting blades 4 includes a blade body 41, at least one cutting edge 43 formed on a longitudinal side of the blade body 41, and a through hole 44 communicating with a respective one of the fastening holes 21. A distance (S) (see
Each of the fastening members 5 is configured as a threaded bolt that extends through the through hole 44 of a respective one of the cutting blades 4 and that engages threadedly and detachably a corresponding one of the fastening holes 21 so as to fasten each cutting blade 4 to the blade carrier 2.
Referring to
The blade body 41′ of each cutting blade 4′ of this embodiment is elongated, and extends parallel to the longitudinal axis (L). Each cutting blade 4′ includes four cutting edges 43 formed on one longitudinal side of the blade body 41′ and spaced apart from each other along the length thereof, and three spacer sections 411 each of which is disposed between two adjacent ones of the cutting edges 43. A distance (S) (see
Referring to
During assembly of the third embodiment, the positioning member 3 extends through the fastening hole 21 and the large-diameter portion 111, and is threaded through the small-diameter portion 112 to fixedly engage with the second positioning section 22″, so that the blade carrier 2″ cannot rotate relative to the drive shaft 1″. Next, the fastening member 5 is inserted through the through hole 44 in the blade body 41, and is threaded through the fastening hole 21 to fixedly engage with the large-diameter portion 111, thereby fixedly fastening the cutting blade 4 to the blade carrier 2″.
Because the positioning member 3 is threadedly engaged between the small-diameter portion 112 and the second positioning section 22″, the positioning member 3 is hidden within the drive shaft 1″. When the cutting edge 43 of the cutting blade 4 becomes blunt due to planing of the workpiece for a long period of time and needs to be replaced, a user will not mistakenly remove the positioning member 3 for the fastening member 5, so that separation of the drive shaft 1″ and the blade carrier 2″ can be prevented.
Referring to
The drive shaft (1a) is made of steel, and has a longitudinal axis (L), a circular cross section, and two rows of first positioning sections (11a) extending through the drive shaft (1a) and spaced apart from each other. Each of the first positioning sections (11a) is configured as a through hole having a large-diameter portion 111 and a small-diameter portion 112 opposite to and communicating with the large-diameter portion 111.
The blade carrier (2a) is made of aluminum alloy, has a length extending parallel to the longitudinal axis (L), and is sleeved and retained on the drive shaft (1a). The blade carrier (2a) includes two rows of fastening holes 21 each row of which communicates with a respective one of the rows of the first positioning sections (11a), two rows of second positioning sections (22a) each row of which is opposite to a respective one of the rows of the fastening holes 21, and a plurality of main fixing holes 23 spaced apart from each other along the length of the blade carrier (2a). Specifically, each of the fastening holes 21 communicates with the large-diameter portion 111 of a respective one of the first positioning sections (11a), each of the second positioning sections (22a) is configured as a threaded blind hole formed in an inner surface of the blade carrier (2a) and communicating with the small-diameter portion 112 of the respective first positioning section (11a), and each of the main fixing holes 23 is disposed between two adjacent ones of the fastening holes 21.
Each of the positioning members 3 of this embodiment is configured as a threaded bolt. As shown in
The blade unit of this embodiment includes two cutting blades (4a) respectively disposed on the two rows of the fastening holes 21. Each cutting blade (4a) includes an elongated blade body (41a) extending parallel to the longitudinal axis (L), a cutting edge (43a) formed on a longitudinal side of the blade body (41a), and three through holes 44 extending through the blade body (41a) and spaced apart from each other along the length thereof. The number of the through hole 44 may vary depending on the requirement, and is not limited to the aforesaid disclosure.
The pressing members 6 are respectively disposed on the rows of the fastening holes 21 and are fastened to the blade carrier (2a). Each of the pressing members 6 includes a plurality of threaded holes 61 corresponding to the fastening holes 21, and a plurality of auxiliary fixing holes 62 corresponding to the main fixing holes 23.
Each of the fastening members 5 is threaded through one of the threaded holes 61, and is detachably fastened to a corresponding one of the fastening holes 21. When the fastening members 5 are fastened to the respective fastening holes 21, each pressing member 6 is fastened to and is pressed against the blade carrier (2a), thereby clamping each cutting blade (4a) between the blade carrier (2a) and the corresponding pressing member 6.
The fixing members 7 are disposed between one of the cutting blades (4a) and a corresponding one of the pressing members 6. Each of the fixing members 7 has one end extending through one of the through holes 44 and press-fitted into a corresponding one of the main fixing holes 23, and an opposite end press-fitted into a corresponding one of the auxiliary fixing holes 62. Apart from being pressed between the blade carrier (2a) and the corresponding pressing member 6, each cutting blade (4a) can be positioned more stably on the blade carrier (2a) through the press-fitting configuration of the fixing members 7, so that the accurate disposition of each cutting blade (4a) can be enhanced. During planing, with each cutting blade (4a) being clamped between the blade carrier (2a) and the corresponding pressing member 6, each cutting blade (4a) can achieve a stable effect.
It should be noted herein that, in this embodiment, the blade carrier (2a) has a four-sided shape, and the number of each of the cutting blade (4a) and the pressing member 6 is two, which are disposed on two opposite sides of the blade carrier (2a). However, the number of each of the cutting blade (4a) and the pressing member 6 may be four, which may then be disposed on each side of the blade carrier (2a), and is not limited to the aforesaid disclosure.
Further, in this embodiment, each positioning member 3 is also hidden within the drive shaft (1a) just like the first embodiment, so that removal of the positioning members 3 by mistake during replacement of the cutting blades (4a) can be prevented.
Referring to
The advantages of the cutter head assembly of this disclosure can be summarized as follows:
Therefore, the object of this disclosure can be realized.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.
While the disclosure has been described in connection with what are considered the most practical embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
105208199 | Jun 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
987479 | Mitchell | Mar 1911 | A |
4280542 | Alessio | Jul 1981 | A |
4347882 | Bachmann | Sep 1982 | A |
4557305 | Berger | Dec 1985 | A |
4572259 | Bergler | Feb 1986 | A |
4700481 | Barrett | Oct 1987 | A |
5904193 | Kellner | May 1999 | A |
7708038 | Stewart | May 2010 | B1 |
7954523 | Liu | Jun 2011 | B2 |
9375718 | Habib | Jun 2016 | B2 |
10259136 | Liu | Apr 2019 | B2 |
20100282365 | Liu | Nov 2010 | A1 |
20150375417 | Liu | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
405511 | Jul 1988 | TW |
Entry |
---|
Preliminary Search Report of Utility Model Technical Opinion on 105208199e01 and 105208199e02, dated Apr. 27, 2020, ssued by the Taiwan Intellectual Property Office, 35 pages in Chinese, 1 page English abstract. |
Number | Date | Country | |
---|---|---|---|
Parent | 15596347 | May 2017 | US |
Child | 16989524 | US |