Not applicable.
This invention relates to a tool assembly for use in cutting and forming various material. More specifically, the invention relates to a toy cutting tool and underlying board assembly for cutting or forming different types of material.
Safety scissors are commonly used by children for cutting different types of material. Safety scissors, however, are difficult for children to effectively cut designs. Thus they may be frustrating for a child to use, especially a young child.
Accordingly, the present invention provides a cutting and forming tool assembly that cuts and forms many types of material while remaining easy to use. The tool assembly may include a cutting tool, a forming tool and an underlying board. The cutting and forming tool has a drive assembly and a shaft assembly contained within a housing. The housing may be of various shapes and configurations, such as for example egg-shaped, computer mouse-shaped, or pen-shaped. The drive shaft contains a tip that protrudes from an opening in a lower portion of the housing. In use, the drive assembly drives the shaft assembly to cut or form various types of material. The underlying board may be used to facilitate the cutting or forming of various designs.
Additional advantages, and novel features of the invention will be set forth in part in a description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
In the accompanying drawings which form a part of the specification and which are to be read in conjunction therewith, and in which like reference numerals are used to indicate like parts in the various views:
Referring to the drawings in greater detail and initially to
The housing 12 may be of various shapes and sizes as will be discussed hereinafter, but in a first exemplary embodiment is egg-shaped as shown in
The shaft assembly 22 includes a reciprocating shaft 30 and a shaft guide 32 disposed longitudinally within housing 12. The reciprocating shaft 30 is generally cylindrical and has a circumscribing groove 34 along an upper portion of the shaft. This groove 34 is formed to be received within the shaft attachment portion 28, as shown in
Alternatively, as shown in
It will be understood that other tips, such as forming tips, may be included with this embodiment as will be described in greater detail hereinafter.
The shaft guide 32 likewise is generally cylindrically shaped and defines an aperture therethrough that receives reciprocating shaft 30. The shaft guide 32 is disposed proximate the tip 19 of the housing and is formed with a pair of opposed guide grooves 44 operably configured to receive guide members 36 of the reciprocating shaft 30. Guide grooves 44 extend downwardly from an upper edge 45 of shaft guide 32 in a generally arcuate path. The opposing grooves 44 both curve in either a clockwise or counterclockwise direction. The shaft guide further includes an enlarged tip end 16 operably configured to abut the tip portion 19 of the housing 12. Tip end may be formed of a weighted material, such as copper, to provide a weighted feel for the assembly and help in preventing the apparatus from bouncing or jolting while in use.
The shaft assembly 22 may include a spring-biasing means for biasing the cutting tip 38 of the shaft 30 inwardly of the housing. As shown in
The shaft assembly may further include a force limitation means for the apparatus for limiting the force of the cutting tip 38 as it exits the housing 12. The force limitation means may comprise a spring or rubber bushing mounted on the shaft assembly or between the shaft assembly and the drive assembly to limit the force. As shown, the shaft 30 comprises a first end and a second end and a spring is mounted therebetween. The force of the drive assembly is limited by the spring and thus the cutting tip has a reduced force as it exits the housing 12.
The attachment assembly 24 of the tool assembly couples the drive assembly 20 to the shaft assembly 22 while not inhibiting the rotation of the reciprocating shaft 30. The drive attachment portion 26 of the attachment assembly 24 has an aperture 27 that couples the attachment assembly 24 to offset rod 58 of the disc gear 48. The shaft attachment portion is operably configured to receive the groove of the shaft 30. The shaft attachment portion 28 is operably configured to rotatably receive and secure the shaft 30.
The drive assembly 20 of the tool hand may be battery or electrically powered and includes a motor 46, a disc gear 48, and a drive shaft 50. In a battery powered embodiment, the batteries may be housed in housing 12 to provide a non-tethered portable apparatus, or, alternatively, may be housed in an underlying board, which is discussed hereinafter, or a separate power base (not shown). Motor 46 includes an output axle 52 with a drive gear 54 coupled thereto. The drive gear 54 engages a disc gear 48 at a gear path 56 along its circumferential edge. The disc gear 54 further includes an offset rod 58 projecting from a side surface. Drive shaft 50 contains a pair of apertures 60 located at each end thereof with one of the apertures being operably configured to receive the offset rod 58 on the disc gear-54 and the other aperture being operably configured to be received in the drive attachment portion 26 of the attachment assembly 24. It should be appreciated that any other attachment method may be used without departing from the scope of the invention.
In operation, the drive gear 54 drives the disc gear 48, which rotates about its center to propel drive shaft 50, which is coupled to the offset shaft 58. Drive shaft 50 drives shaft 30 in a reciprocating manner. As the reciprocating shaft 30 moves downwardly, the guide members 36 are constrained within the guide grooves 44, which in turn cause the reciprocating shaft 30 to rotate along its longitudinal axis in a clockwise manner when viewed from the tip for the embodiment shown in
The adjustable shaft assembly 72 includes an adjustment assembly, generally indicated at 90, for selectively adjusting the degree of axial rotation of the tip. The adjustment assembly 90 includes a collar 92 received on shaft guide 76 and a knob assembly 94. The collar 92 is cylindrical and contains an inner track 96, a gear rack 98, and a pair of opposed guide grooves 100. The inner track 96 receives the projecting tab 88 of the shaft guide 76 as the collar 92 is received thereon. The opposed guide grooves 100 receive guide members 80 of the reciprocating shaft 74 and guide the drive shaft 74 when in use. Both guide grooves 100 are slightly arcuate in either a clockwise or counterclockwise direction as the grooves extend downwardly from the top edge of the collar 92. Thus, as the reciprocating shaft 74 moves downwardly, the guide members 80 move downwardly within the guide grooves 100 and cause the reciprocating shaft 74 to rotate in a clockwise manner as viewed from the tip for the embodiment shown in
The knob assembly 94 includes a knob 102, a shaft 104, and a gear 106. The gear 106 is received on the shaft 104 and is located at approximately the midpoint thereof. The gear 106 mates with rack 98 of the collar 92. The shaft 104 extends through the housing, not shown, and is rotatably coupled within a pair of apertures. The shaft 104 further includes an end portion that projects outwardly from the housing with the knob 102 coupled thereto. The knob 102 provides for adjustment of the rotation of the cutting tip 82 of the reciprocating shaft 74. Thus, as the knob 102 is turned, the gear 106 contacts the rack 98 to selectively move the collar 92 upwardly or downwardly with respect to the stroke of the reciprocating shaft 76. The movement of the collar 92 serves to limit the rotation of the guide members 80 within the guide grooves 100 and, thus, limits the rotation of the cutting tip 82. The rotation is limited because when the collar 92 is rotated downwardly with respect to the stroke of the reciprocating shaft 76, the guide members 80 only travel within a substantially vertical portion of the guide grooves 100 and thus tip 82 does not rotate. If the collar 92 is rotated upwardly, the guide members 80 travel within a more arcuately shaped portion of the guide grooves 100 thereby causing the degree of rotation of tip 82 to increase while the tip moves back and forth along the longitudinal axis. Thus, the assembly is adjustable from approximately 0 degrees of rotation to approximately 45 degrees of rotation. It will be understood that greater degrees of rotation may be realized without departing from the scope of the present invention. This embodiment may be used for either cutting or forming. In the forming mode, it is preferred to have zero rotation of the tip. Thus a cutting tip may be replaced with a forming tip, as described in greater detail hereinafter.
The drive assembly 150 may be battery or electrically powered and includes a motor 156, a drive shaft 158, and a drive coupler 160. In a battery powered embodiment, the batteries may be housed in housing 142 to provide a non-tethered, self-powered portable apparatus, or, alternatively, the batteries may be housed in an underlying board, which is discussed hereinafter, or a separate power base (not shown). The motor 156 includes an output axle 162 that is coupled to the drive shaft 158, which is coupled with the drive coupler 160. The drive coupler 160, in turn, is coupled with the shaft assembly 152.
The shaft assembly 152 includes a reciprocating shaft 164 and a shaft guide 166. Both the reciprocating shaft 164 and shaft guide 166 may disposed vertically within the housing 142. The reciprocating shaft 164 is cylindrical and contains upper and lower portions. The upper portion comprises a socket 168 that receives the drive coupler 160 and a pair of guide members 170. The guide members 170 are opposed and project outwardly from the upper portion of the reciprocating shaft 164. The lower portion of the reciprocating shaft 164 comprises a cutting tip 172 that protrudes downwardly therefrom. The cutting tip 172 preferably has a concave bottom surface 174. As previously discussed. in an alternative embodiment, the shaft may be tubular and function as previously described and shown in
The shaft guide 166 is cylindrical and defines an aperture 176 therethrough that is sized and configured to receive the reciprocating shaft 164. The shaft guide 166 may be disposed proximate the tip 146 of the housing 142 and contains a stop 178 that serves to limit to movement of the collar 154 when in use. The stop 178 projects radially outwardly from the outer surface along the circumference of the shaft guide 166.
The shaft guide 166 further includes an upper surface 167 that is configured to have at least one raised portion 169 relative to the remainder of the upper surface. In the embodiment shown in
The collar 154 is cylindrical and is formed with a guide groove 180 on its inner surface that receives guide members 170 of the reciprocating shaft 164. The guide groove 180 are formed with a slight oscillation that follow the undulating upper surface 169 of the guide. As such, in use, the motor 156 causes the drive assembly 150 and, thus, the reciprocating shaft 164 to rotate. When the reciprocating shaft 164 rotates the guide members 170 follow the path of the upper surface 169 and guide groove 180 which causes the tip both to rotate axially and reciprocate longitudinally.
All of these embodiments of a tool assembly may be used with an underlying board 200. The board 200 may supply power to the cutting tool and further may be configured with grooves to facilitate the cutting certain shapes, such as, for example, circles, spirals anatomical features, wings and fuselage, and moon shapes. The underlying board 200 may be plastic and may include means to secure the paper or other material to the board to facilitate the cutting of the material. In one means of securing the material, the underlying board 200 may have a portion with increased frictional resistance to assist in securing the material. In an alternative method of practicing the invention, the material, such as paper, may be configured with a pressure sensitive adhesive around the periphery to retain the material on the underlying board or surface.
Additionally, the above-described tools can be used in a number of other types of applications. Specifically, the tools may be used for cutting or forming paper, wax paper, thin plastic, metal foil, and translucent or opaque sheets of Mylar or acetate. The dual-action mechanism also has the ability to cut through one page of a book, without damaging the underlying pages. Games may be created by objects being hidden under the top sheet of paper and found by cutting the top sheet in appropriate areas. There is an advantage for some applications to employ the mechanism with the adjustable tip protrusion, shown in
For example, the tool assembly having a forming tip may be used to form portions of metal foil, such as aluminum foil, together to produce thicker shapes to create three dimensional objects, such as, for example, jewelry, seasonal and thematic structures, parts for model kits, statues, and figures for a chess set. Further, cavities on the underlying board can have overlapping recessed areas to permit successive interlocking shapes that are attached to each other during the forming process, which may be useful for producing chains for jewelry.
In another application, a stack of differently colored paper sheets may be assembled. Sequential cutting of layers of paper at increasingly smaller cuts would provide a colorful three-dimensional structure.
Another application for the tool assembly 10 of the present invention is the creation of various electrical circuits. In this application, aluminum or metal foil may be cut using the tool assembly 10 of the present invention to create conductive connections. The metal foil replaces wires to create conductive paths between electrical components that are on pages of a book. These components may include radios, alarms, or other sound producing device. The components are connected through the aluminum foil connections to a power source on the board or book. Each booklet may contain the electrical components necessary to complete a project of the book. Each page of the booklet are an assembly of layers of metal foil, paper, and acetate. This assembly permits the tool assembly of the present invention to cut through the paper and foil, but not the acetate. A multi-point flap with connections for the components may be used to finalize the circuit. The cover of the book may be formed with switches, pressure points in the form of piano keys, a speaker, radio tuners, or other devices that pertain to a particular project for the booklet. Various projects in separate booklets may likewise be combined. As shown in
Providing the booklets with power through the housing provides for other features for the booklets as well. For example, the booklets may now have backlighting or audio capabilities. Further, a booklet may have a motor connected to a rotating disc. The cutting tool assembly may be used on material mounted to the rotating disc to create rings, discs and spirals.
As described, the tool assembly of the present invention uses a reciprocating shaft, with or without, twisting or spinning action, and the use of an adjustable twist mechanism for adapting the tool for cutting or forming. This tool assembly has a maximum cyclic rate of approximately 3500 cycles (impacts) per minute. This cycle rate is accomplished by using a motor speed of 7000 RPM and a 2-1 reduction gear ratio. However, by employing an ultrasonic piezo crystal tool, the cyclic rate can be increased from 3500 cycles per minute (58 cycles per second), up to 50kHz (50,000 cycles per second). The ultrasonic piezo crystal mechanism uses a high-frequency vibrating tip, in place of the motor, gears and connecting rod. The sound, feel and cutting action of the ultrasonic mechanism provides a high-tech product with high apparent value, at a price point similar to the previously described motor-driven mechanism. The ultrasonic tool can be used for welding of materials, as well as cutting and forming.
The ultrasonic tool does not require a dedicated cutting board, and may have the batteries located within the housing. The freedom of motion has many advantages. The ultrasonic tip only moves a few thousandths of an inch. The motion of the ultrasonic tip can employ orbital motion, in order to permit the ultrasonic tool to be functional at angles other than 90 degrees.
A significant feature of the ultrasonic tool is that it can be used for cutting pages that remain in books. The paper does not have to be laid on a resilient cutting surface, to be cut. Newspapers, magazines, and comic books, that are normally discarded after reading, provide excellent material for ultrasonic tool. Paper from these sources has a wide variety of graphics that can be used as cut-outs.
The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its scope.
It will be seen from the foregoing that this invention is one well adapted to attain the ends and objects set forth above, and to attain other advantages, which are obvious and inherent in the device. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated. It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not limiting.
This application claims the benefit of U.S. Provisional Application No. 60/753,325, filed on Dec. 22, 2005, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 60753325 | Dec 2005 | US |
Child | 11644628 | Dec 2006 | US |