This invention relates generally to cutting apparatus suitable for but not limited to cutting flexible sheet material such as for example paper, cardboard, fabric, plastics and the like.
One form of cutting device is described in international patent specification WO 2008/014546. The contents of that document are incorporated herein by way of cross-reference. The device is a manually operable cutter device for cutting flexible sheet material and comprises a cutter body which is movable over a work surface on which the flexible sheet being cut can rest. The device includes a cutting blade assembly operatively mounted to the cutter body and including a first rotatable cutter blade having a peripheral edge portion and a second cutter blade which is mounted in a substantially fixed position relative to the rotatable blade, the blade being adapted to cooperate together to provide a cutting zone in which sheet material can be cut. The rotatable cutting blade is mounted for rotation about an axis which extends generally laterally with respect to a normal feed direction of the sheet material to the cutting zone and the direction of rotation of the peripheral edge portion through the cutting zone is in the normal feed direction. The tangential peripheral speed of the rotating cutter blade in the cutting zone is not less than the speed of the feed of sheet material to the cutting zone.
Whilst this device provides significant advantages over conventional cutters it can encounter problems in particular when the sheet material is relatively thick because the second blade has a relatively small and substantially stationary contact zone which tends to get hot if speed and force are high. The heating can cause local welding or galling resulting in a gritty feel and deterioration of the cutting edge. Conventional scissors can also encounter problems where they are required to cut sheeting of different thicknesses. The thicker material increases the operating force during opening and closing of the blades.
In a first aspect there is disclosed cutting apparatus for cutting material, the apparatus comprising first and second blades arranged so that in use together they can effect a cutting operation in a cutting region therebetween. The blades are mounted relative to one another so that they are at least in part urged together in the cutting region as a result of a cutting or shearing force generated by the cutting operation.
In certain embodiments one of the blades is mounted for pivotal or flexing movement about an axis so that during the cutting operation the cutting or shearing force generated produces a force which urges the blades together. In another arrangement the blades may be urged together by utilising transmission torque. The cutting apparatus may, in certain embodiments include two arms pivotally connected together to form a scissor-like configuration, the first of the cutting blades being secured to or integral with an edge of a first one of the arms and the second cutting blade being pivotally mounted to a second of the arms so that during a cutting operation the cutting or shearing force generated produces a force which urges the first blade and the second blade together.
In certain embodiments the second arm includes a groove therein for receiving a section of the second blade so as to form a pivot region for the second blade. The groove may for example be elongate in the general axial direction of the second arm and may be adapted to receive therein an edge of the second blade opposite the cutting edge. In certain embodiments the second cutting blade may be operatively mounted to the second arm by means of a cooperating lug and slot which retains the edge within the groove. In certain embodiments the second blade is mounted to the second arm so as to provide a pre-load force thereto to urge it into engagement with the first blade.
In certain embodiments the cutting apparatus the first blade may be in the form of a rotatable cutter blade, the first and second blades being adapted to cooperate together to perform the cutting operation in a cutting region. The second cutting blade may be mounted so as to urge it towards the rotatable blade as a result of the cutting or shearing forces generated during the cutting operation. The second blade may, in certain embodiments include a cutting edge in the cutting region and a mounting arm which is operatively mounted in spaced relation to the cutting edge at a pivot region so that the cutting force generated produces a force on the mounting arm about the pivot region so as to urge the second blade cutting edge and the rotating blade together.
In certain embodiments the cutting apparatus may comprise a cutter body which is movable over a work surface the rotatable cutter blade having a peripheral edge portion and the second cutter blade adapted to cooperate together to provide the cutting region in which sheet material can be cut, the rotatable cutting blade being mounted for rotation about an axis which extends generally laterally with respect to a normal feed direction of the sheet material to the cutting region and the direction of rotation of the peripheral edge portion through the cutting region is in the normal feed direction. The tangential peripheral speed of the rotating cutter blade in the cutting region in certain embodiments is not less than the speed of the feed of sheet material to the cutting region. It is to be understood however, that this latter mentioned feature is not to be considered a limitation. The arrangement by which the blades are urged together is applicable to other cutter assemblies.
A drive may be provided for causing rotation of the rotatable cutter blade. In certain embodiments the drive includes a drive wheel which is operatively mounted to the cutter body and adapted to rotate as the cutter body travels over the work surface in a direction opposite to the feed direction. The drive wheel may be operatively coupled to the rotatable cutter blade via a transmission which causes the wheel and the rotatable cutter blade to rotate in the same direction as the cutter body travels over the work surface. The transmission may for example, include a gear train.
In certain embodiments the cutter body may include a housing having support wheels operatively mounted thereto at least one of the ground engaging wheels providing for the drive wheel. At least one of the support wheels may be disposed forwardly of the rotatable cutter blade with respect to the normal direction of travel of the device when cutting.
Notwithstanding any other forms which may fall within the scope of the apparatus as set forth in the Summary, specific embodiments will now be described by way of example and with reference to the accompanying drawings in which:
Referring to
A first rotatable cutter disc or blade 430 is supported on axle 445 connected to the housing 412 at axle mounts 446 and 447 so that its axis of rotation is parallel to, or within approximately 15° of being parallel to the drive wheel axis, with its lower edge close to but not touching the work table. As best illustrated in
The second blade 436 includes a mounting section 462 which comprises a first part 463 and a second part 464 which are secured together or integral with one another. The second part 464 comprises two connecting limbs 465 and 466 which are secured to the first part 463 at junction regions 467 and 468. The junction regions are spring loaded so that the blade 436 is urged by a preload biasing force towards blade 430. Each part 463 and 464 has a mounting zone 471 and 472 associated therewith. The mounting zones 471 and 472 include apertures through which the axle 445 passes. The apertures have cross-sectional dimension which is larger than that of the axle 445 thereby permitting limited movement of the second blade 436 about pivot point 456. As best seen in
Another arrangement is shown in
In operation the cutter body 412 is presented to the edge of the material being cut and the material lifted so that the second blade 436 passes under it. A lifter blade (not shown) may be provided to assist positioning of the paper and blade. The cutter body is then pushed further with a slight downward force to provide traction for the drive wheels. The gears 440, 441 and 442 drive the cutter disc 430 at a peripheral speed equal to or greater than the forward speed of the cutter body but in the opposite direction (the same rotational direction as the drive wheel). The cutting disc 430 thus slides backwards against the material, tending to draw the material into the cutting blades at the point of shear. During the cutting operation the cutting or shear force generated at the cutting zone 460 causes the second blade 436 to pivot about point 456 so as to urge it towards the rotating blade 430.
In one example embodiment the cutting performance of the apparatus is effective because the sum of the paper driving forces exceeds the sheet material stalling forces. The sheet material driving forces are the sum of the cutter disc traction force and the sheet material compression force. The sheet material stalling force is the sum of the second blade sliding friction (with respect to the sheet material) and the component of the shearing force parallel to the travel direction of the sheet material. Preferably, operation is achieved by maximising the driving and minimising the stalling forces as follows. Minimising the cutter disc slip velocity maximises the coefficient of friction (which is lower at higher sliding velocities in most cases—hence the need for antilock braking systems in motor vehicles). The cutter disc friction can be maximised through material selection of the substantially cylindrical surface next to the cutting edge. The drive wheel to sheet material friction can be maximised through material selection and placement of non-driving wheels and skid pads as far as possible from the point of application of the user's drive force. The sheet material entry slot gap is minimised, to substantially prevent sheet material buckling under compression to ensure transmission to feed force and reduce friction. The static and dynamic coefficients of friction of the fixed blade material surface may be minimised as is the angle between the cutter disc and second blade at the region of shear, thereby minimising the component of the shearing force parallel to the sheet material travel direction. The friction coefficient of the lower surface of the sheet material with respect to the upper surface can be minimised by inverting the sheet material if necessary.
The second blade is configured so that the shearing force generates a moment about the pivot axis which is balanced by a contact force between the blades which holds them together. The introduction of the material being cut into the cutting region produces a downwards force on the second blade thereby causing it to be urged towards the other blade. The thicker the material the greater the force produced. The tilt angle X as shown in
The forces required to shear the paper or other sheet material are used to pull the blades together, so that only a small blade preload is required. This means that the friction is very low running the cutter backwards, slightly higher when cutting light paper, and only increases significantly when cutting heavier paper/card.
Referring to
The second arm 513 includes a groove 520 therein for receiving a section of the second blade therein so as to form a pivot region 521 for the second blade. The groove is elongate in the general axial direction of the second arm and is adapted to receive therein an edge of the second blade opposite the cutting edge. The second cutting blade is operatively mounted to the second arm by means of a cooperating lug 522 and slot 524 which retains the edge within the groove. The second blade is mounted to the second arm so as to provide a pre-cutting force thereto to urge it into engagement with the first blade.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
Finally, it is to be understood that various alterations, modifications and/or additions may be incorporated into the various constructions and arrangements of parts without departing from the spirit or ambit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2009904101 | Aug 2009 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2010/001101 | 8/26/2010 | WO | 00 | 2/27/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/022775 | 3/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
576610 | Pohlsen | Feb 1897 | A |
1649957 | Holtzman | Nov 1927 | A |
1756362 | Junkers | Apr 1930 | A |
1796463 | Voigt et al. | Mar 1931 | A |
1876075 | Reichert, Jr. et al. | Sep 1932 | A |
2042097 | Havanas | May 1936 | A |
2701911 | Maescher | Feb 1955 | A |
3189997 | Mount | Jun 1965 | A |
3325896 | D'Angelo et al. | Jun 1967 | A |
3460251 | Somervell et al. | Aug 1969 | A |
3815231 | Greenberg | Jun 1974 | A |
3906629 | Fuchs, Jr. | Sep 1975 | A |
4275500 | Speer et al. | Jun 1981 | A |
4381605 | Holm | May 1983 | A |
4574480 | Dunn | Mar 1986 | A |
4669190 | Innami et al. | Jun 1987 | A |
4693004 | Plana | Sep 1987 | A |
8220162 | Rayner | Jul 2012 | B2 |
8316548 | Dreher | Nov 2012 | B2 |
Number | Date | Country |
---|---|---|
1-65896 | Apr 1989 | JP |
2004-42191 | Feb 2004 | JP |
WO 2008014546 | Feb 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20120151780 A1 | Jun 2012 | US |