The present disclosure generally relates to cutting assemblies and, more particularly, to cutting assemblies that can be used, for example, in cutting tubing, etc., and to methods of using such cutting assemblies.
This section provides background information related to the present disclosure which is not necessarily prior art.
Pipe cutters are often used to cut pipes in connection with irrigation and water line installation. Such cutters typically have a pair of pivotal arms and a blade disposed at the end of one of the arms to effect the cutting operation.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Example embodiments of the present disclosure are generally directed toward cutting assemblies configured, for example, to cut tubing. In one example embodiment, a cutting assembly generally includes first and second arms pivotally coupled together such that the first arm can pivot relative to the second arm, and a blade releasably coupled to the first arm and/or the second arm and oriented such that a longitudinal axis of the blade is generally parallel to a longitudinal axis of the first arm. The blade is removable from the first arm and/or the second arm by sliding the blade longitudinally in a direction along the longitudinal axis of the first arm.
In another example embodiment, a cutting assembly generally includes first and second arms pivotally coupled together such that the first arm can pivot relative to the second arm, a blade releasably coupled to the first arm and/or the second arm and oriented such that a longitudinal axis of the blade is generally parallel to a longitudinal axis of the first arm, and a mounting unit configured to support the blade in the cutting assembly and inhibit rotational movement of the blade relative to the first and second arms.
In another example embodiment, a cutting assembly generally includes first and second arms pivotally coupled together such that the first arm can pivot relative to the second arm, a blade releasably coupled to the first arm and/or the second arm and oriented such that a longitudinal axis of the blade is generally parallel to a longitudinal axis of the first arm, and a release mechanism moveable between a first position in which the release mechanism couples the blade to the first arm and/or the second arm and a second position in which the release mechanisms allows the blade to be removed from the first arm and the second arm. The release mechanism includes a resilient member configured to bias the release mechanism from the second position toward the first position.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The present disclosure generally relates to cutting assemblies (and methods related thereto) that can be used to cut tubes, pipes, extrusions, etc. (broadly, tubing) often used, for example, in irrigation systems, water systems, etc. The cutting assemblies can cut tubing constructed from, for example, plastic, rubber, combinations thereof, or other suitable materials within the scope of the present disclosure. And, the cutting assemblies can be configured (e.g., sized, shaped, constructed, etc.) to cut desired sizes (e.g., diameters, etc.), thicknesses, shapes, etc. of such tubing.
In one aspect, the cutting assemblies include removable, replaceable, etc. blades. The blades are configured to be inserted and/or removed from the cutting assemblies by sliding the blades into and/or out of the cutting assemblies. For example, the cutting assemblies may include arms pivotally coupled together for operation to cut tubing. The blades are releasably coupled to the arms (e.g., to one of the arms of the cutting assemblies, etc.) and oriented such that longitudinal axes of the blades are generally parallel to longitudinal axes of one of the arms of the cutting assemblies. The blades are removable from the cutting assemblies by sliding the blades in a direction extending generally along the longitudinal axes of the said one of the arms.
In another aspect, the cutting assemblies include release mechanisms that are operable (e.g., manually, automatically, etc.) to selectively retain the blades in the cutting assemblies (e.g., for use during cutting operations, etc.) and release the blades from the cutting assemblies (e.g., to allow the blades to be removed from the cutting assemblies, to allow different blades to be inserted into the cutting assemblies, etc.). In some instances, the release mechanisms are predisposed (e.g., automatically, etc.) to retain the blades in the cutting assemblies so that, when the blades are positioned in the cutting assemblies, the cutting assemblies are automatically ready for use. When desired, users can manipulate the release mechanisms to release the blades and insert different blades into the cutting assemblies and, upon completion, the release mechanisms will again predispose to retain the different blades in the cutting assemblies. The release mechanisms may be predisposed to retain the blades in the cutting assemblies by suitable means including, for example, resilient members (e.g., springs, coil springs, rubber members, etc.), pistons, spring latches, other suitable devices, etc.
In another aspect, the cutting assemblies include mounting units configured to support the blades in the cutting assemblies (and/or help align the blades, retain the blades, protect the blades (e.g., against bending, against undesired movement during use, etc.), etc. in the cutting assemblies). In accordance with this aspect, the mounting units may include separate structures (e.g., frames, inserts, etc.) coupled to the cutting assemblies. Or, the mounting units may be integrally formed and coupled to other components (e.g., arms, etc.) of the cutting assemblies. Or further, the mounting units may be integrally formed directly with the other components (e.g., the arms, etc.) of the cutting assemblies.
It should be appreciated that the cutting assemblies of the present disclosure can include one or more of the above described aspects in any desired combination, and can further include any of the other features described herein as desired. With that said, example embodiments of the cutting assemblies will now be described more fully with reference to the accompanying drawings.
The arms 102, 104 of the illustrated cutting assembly 100 include respective handle portions 114, 116 contoured to allow a user to grasp the arms 102, 104 during use and, for example, move the cutting assembly 100 between the open and closed positions. As such, the handle portions 114, 116 can help facilitate grasping both arms 102, 104 of the cutting assembly 100 with one hand during cutting operation. However, the handle portions 114, 116 also provide a unique ornamental look to the cutting assembly 100 that can help distinguish it from other cutting assemblies. With that said, the handle portions 114, 116 could be shaped differently within the scope of the present disclosure (see, e.g., U.S. Pat. No. 6,658,738, which is incorporated herein by reference in its entirety; etc.).
With continued reference to
With additional reference now to
The illustrated mounting unit 124 generally includes a frame 146 and an insert 148 configured to help align, support, retain, protect, etc. the blade 106 in the cutting assembly 100. The insert 148 is configured to fit within the frame 146. The frame 146 includes two opposing side walls 150, 152 and a bottom wall 154 that define a channel in the frame 146 for receiving the insert 148. A tab 156 of the insert 148 is received in a recessed opening 158 (
In the illustrated embodiment, the frame 146 is die cast from aluminum and the insert 148 is formed from steel. As such, the frame 146 provides support to the insert 148 and the blade 106 against, for example, sharp impacts (e.g., drops, etc.), stresses, etc. And, the insert 148, via its sidewalls 172, 174, provides resistance to repeated movement of the blade 106 during cutting operation (e.g., prying and rotating stresses imparted on the blade 106 during the cutting operation, etc.). It should be appreciated, however, that the frame 146 and insert 148 may be constructed from other suitable materials within the scope of the present disclosure (e.g., steel, aluminum, combinations thereof, alloys thereof, other suitable materials, etc.). In addition, in other example embodiments, mounting units may include single structures such as, for example, frames and inserts formed together as single, unitary components and coupled to arms of cutting assemblies. In still other example embodiments, mounting units may be formed as integral, unitary structures directly with other components of cutting assemblies (e.g., arms, etc.).
With continued reference to
The illustrated release mechanism 180 is automatically disposed toward the locking position. This feature operates to automatically secure the blade 106 in the cutting assembly 100, ready for use. When desired to remove the blade 106 from the cutting assembly 100 and insert 148 a different blade into the cutting assembly 100, the release mechanism 180 can be operated (e.g., manually, automatically, etc.) from the locking position to the releasing position (an example of such an operation will be described in more detail hereinafter). Upon completion of such operation (e.g., after the blade 106 is removed and a different blade is inserted, etc.), the release mechanism 180 automatically transitions back to the locking position such that the cutting assembly 100 is ready for use (with the different blade installed).
In the illustrated embodiment, the fastener 108 and sleeve 110 form part of the release mechanism 180 (where the fastener 108 is configured to thread partially into the sleeve 110). In addition, the release mechanism 180 includes a spring 182 (broadly, a resilient member) positioned between an outer portion of the side wall 170 of the arm 102 and a head portion 184 of the fastener 108 (e.g., to automatically transition the release mechanism 180 from the releasing position to the locking position, etc.). The side wall 170 of the arm 102 is thus positioned generally between the spring 182 and the sleeve 110. The fastener 108 and the sleeve 110 are sized to allow sliding movement of the fastener 108 and sleeve 110 in a longitudinal direction relative to the arms 102, 104, the blade 106, the frame 146, and the insert 148 (generally within the openings 134). However, the spring 182 is configured to resist such movement and hold the fastener 108 and sleeve 110 generally tight in the cutting assembly 100 (under normal operation). When the release mechanism 180 is in the locking position, the spring 182 automatically urges the head portion 184 of the fastener 108 away from the side wall 170 of the arm 102 which pulls the sleeve 110 into the opening 142 of the blade 106. The channel 140 of the blade 106 has a width dimension that is smaller than a diameter of the sleeve 110 (and smaller than a diameter of the opening 142). As such, the sleeve 110 cannot fit into the channel 140 of the blade 106 and thus operates to hold, retain, etc. the blade 106 in the mounting unit 124 on the cutting assembly 100. To release the blade 106 from the cutting assembly 100, the head portion 184 of the fastener 108 is pushed toward the side wall 170 of the arm 102, against the resistance of the spring 182 (thereby compressing the spring 182). This pushes the sleeve 110 out of the opening 142 of the blade 106 and moves the fastener 108 (which is smaller in diameter than the sleeve 110) into the opening 142 (this also may push a portion of the sleeve 110 out of the opening 134 of the arm 104). The diameter of the fastener 108 is smaller than the width dimension of the channel 140 of the blade 106 such that, in this releasing position, the blade 106 can now be removed from the cutting assembly 100 by sliding the blade 106 out of the mounting unit 124 longitudinally in a direction along the longitudinal axis of the arm 102 (with the fastener 108 sliding through the channel 140 of the blade 106). With the release mechanism 180 held in the releasing position, a different blade can then similarly be inserted into the mounting unit 124 of the cutting assembly 100 as desired. Once the different blade is inserted, the head portion 184 of the fastener 108 is released and the spring 182 automatically moves the fastener 108 out of the blade's opening 142 and pulls the sleeve 110 back there in (automatically moving the release mechanism 180 back to the locking position).
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/555,343, filed Nov. 3, 2011, and titled Cutting Assemblies for Use in Cutting Tubing. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
601506 | Eames | Mar 1898 | A |
1344629 | Fowler | Jun 1920 | A |
1885895 | Carey | Nov 1932 | A |
1988847 | Kiefner | Jan 1935 | A |
2939213 | Daniel | Jun 1960 | A |
D201832 | Fuller | Aug 1965 | S |
3422532 | Ballard | Jan 1969 | A |
3949474 | Sandbrook et al. | Apr 1976 | A |
4193189 | Marin | Mar 1980 | A |
4269089 | Hastings | May 1981 | A |
4296655 | Tesoro | Oct 1981 | A |
4336652 | Robertson | Jun 1982 | A |
D266736 | Robertson | Nov 1982 | S |
4429460 | Hill et al. | Feb 1984 | A |
4438669 | Hastings et al. | Mar 1984 | A |
4581960 | Putsch et al. | Apr 1986 | A |
4612708 | Hattori | Sep 1986 | A |
4773288 | Jang et al. | Sep 1988 | A |
4890388 | Rose | Jan 1990 | A |
5461951 | Putsch | Oct 1995 | A |
5621974 | Rose et al. | Apr 1997 | A |
5676029 | Putsch | Oct 1997 | A |
5845551 | Putsch | Dec 1998 | A |
5904078 | Gustafson et al. | May 1999 | A |
D412095 | Tally | Jul 1999 | S |
6357120 | Khachatoorian | Mar 2002 | B1 |
6370780 | Robertson et al. | Apr 2002 | B1 |
6658738 | King | Dec 2003 | B1 |
7080455 | Ronan et al. | Jul 2006 | B1 |
7204021 | Houseman et al. | Apr 2007 | B2 |
7346986 | Feith | Mar 2008 | B2 |
D588427 | Manak | Mar 2009 | S |
7549226 | Mortensen | Jun 2009 | B2 |
7637017 | Retterer et al. | Dec 2009 | B2 |
D612221 | Groten et al. | Mar 2010 | S |
D612697 | Huang | Mar 2010 | S |
8024864 | Mortensen | Sep 2011 | B2 |
8113096 | Retterer et al. | Feb 2012 | B2 |
8327548 | Ronan | Dec 2012 | B2 |
D679564 | Hong | Apr 2013 | S |
8621754 | Adachi | Jan 2014 | B2 |
20110214292 | Heh | Sep 2011 | A1 |
20130118015 | Smith et al. | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130118015 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61555343 | Nov 2011 | US |