The present invention pertains to angioplasty and angioplasty balloon catheters. More particularly, the present invention pertains to angioplasty balloon catheters that include one or more cutting edges coupled to an angioplasty balloon having increased flexibility.
Heart and vascular disease are major problems in the United States and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in a lack of oxygenation to the heart, which has significant consequences since the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic, or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter may be advanced through a vasculature over a guidewire so that the balloon is positioned at a target location. The balloon may then be inflated in a manner such that the restriction in the vessel is opened.
One of the major obstacles in treating coronary artery disease and/or treating blocked blood vessels is re-stenosis. Evidence has shown that cutting the stenosis, for example with an angioplasty balloon equipped with a cutting edge, during treatment can reduce incidence of re-stenosis. Additionally, cutting the stenosis may reduce trauma at the treatment site and/or reduce the trauma to adjacent healthy tissue. Cutting blades may also be beneficial additions to angioplasty procedures when the targeted occlusion is hardened or calcified. It is believed typical angioplasty balloons, alone, may not be able to sufficiently expand at least a portion of these hardened lesions. Thus, angioplasty balloons equipped with cutting edges have been developed in an attempt to enhance angioplasty treatments. There is an ongoing need for improved angioplasty devices, including cutting angioplasty balloons, and improved methods of treating intravascular stenoses and occlusions.
The invention generally relates to improved angioplasty devices for treating vascular abnormalities, such as a stenosis. In at least some embodiments, an exemplary angioplasty device may include a catheter shaft having a balloon coupled thereto. One or more cutting members or blades may be coupled to the balloon. The balloon may include one or more discrete points or areas of flexibility to improve the flexibility of the balloon during delivery, deployment, and/or withdrawal of an angioplasty device. Such discrete points or areas of flexibility may include one or more creases, folds, reduced diameter portions, less expandable portions, regions of reduced wall thickness, and the like, formed in a portion of the balloon.
Accordingly, one exemplary embodiment of the invention is a cutting balloon catheter including a balloon having one or more generally circumferentially extending creases formed in the balloon wall. One or more cutting members may be coupled to the balloon such that breaks in the cutting members, or segments thereof, are aligned with the one or more creases to impart greater flexibility to the balloon portion.
Another embodiment of the invention includes an atherotomy device for the treatment of coronary artery disease. The atherotomy device includes a plurality of cutting edges or atherotomes coupled to an inflatable balloon. The atherotomes may be segmented to provide flexibility. The balloon may also include at least one circumferential crease to improve the flexibility of the balloon during an atherotomy procedure. The flexibility provided by the at least one circumferential crease and/or the segmented atherotomes allows the cutting balloon to more readily conform to the curvature of a vascular passageway. Balloons not having such flexibility may tend to straighten as they are inflated in a curved vascular pathway, thereby placing uneven pressure on the wall of the vessel and subjecting unnecessary trauma to the vessel.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. Unless indicated otherwise, the term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5). As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
Cutting members 20 may vary in number, position, and arrangement about balloon 16. For example, catheter 10 may include one, two, three, four, five, six, or more cutting members 20 that are disposed at any position along balloon 16 and in a regular, irregular, or any other suitable pattern. The pattern can include a generally helical orientation of the cutting members 20. Catheter 10 may include a plurality of cutting members 20 placed equidistantly about balloon 16 extending generally longitudinally. In general, cutting members 20 may be configured to provide variable flexibility or otherwise vary the flexibility of catheter 10. Increasing the flexibility of cutting members 20, balloon 16, and/or catheter 10 may be desirable, for example, because it may improve the tracking ability and general deliverability of catheter 10 through the often tortuous anatomy. Additionally, increasing the flexibility may allow catheter 10 to be navigable to a larger number of intravascular locations, including some that may not be readily reachable by other, less flexible, cutting balloon catheters. In general, the enhanced flexibility may be the result of a structural feature of cutting members 20, a structural modification to cutting members 20, and/or a structural feature of the cutting balloon 16. For example, cutting members 20 may include a first section 44a, a second section 44b, and a gap or break 46 disposed between first section 44a and second section 44b. Break 46 may be configured to provide a region of flexibility such as a space between first section 44a and second section 44b. In some embodiments, break 46 may be defined by a downward deflection or slot that is formed in the cutting surface of cutting member 20. Alternatively, break 46 may not be a physical gap between first section 44a and second section 44b, but rather break 46 may be a region of cutting member 20 having a reduced wall thickness or may comprise a material having an increased flexibility relative to the material of first and second sections 44a, 44b. Break 46 also may comprise an exogenous connector that is connected to both first section 44a and second section 44b in order to bridge sections 44a, 44b. Separation of sections 44a, 44b can increase the flexibility of cutting member 20 and/or the overall flexibility of catheter 10.
Cutting members 20 may be made from any suitable material such as a metal, metal alloy, polymer, metal-polymer composite, and the like, or any other suitable material. For example, cutting members 20 may be made from stainless steel such as 304V, 304L, or 316L stainless steel. In other embodiments, cutting member 20 can be made from a glass/KEVLAR® complex material such as ARAMAT®, which is commercially available. Some examples of other suitable materials are listed below in relation to balloon 16 and shaft 18.
Balloon 16 may be made from typical angioplasty balloon materials including polymers such as polyethylene terephthalate (PET), polyetherimide (PEI), polyethylene (PE), etc. Some other examples of suitable polymers, including lubricious polymers, may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM), polybutylene terephthalate (PBT), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, a polyether-ester elastomer such as ARNITEL® available from DSM Engineering Plastics), polyester (for example, a polyester elastomer such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example, available under the trade name PEBAX®), silicones, Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example, REXELL®), polyetheretherketone (PEEK), polyimide (PI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly(ethylene naphthalenedicarboxylate) (PEN), polysulfone, nylon, perfluoro(propyl vinyl ether) (PFA), other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments, it may be desirable to use a relatively non-compliant balloon or a balloon including high modulus or generally stiffer materials so as to reduce balloon elongation. The above list of materials includes some examples of higher modulus materials. Some other examples of stiffer materials include polymers blended with liquid crystal polymer (LCP) as well as the materials listed above. For example, the mixture can contain up to about 5% LCP. Balloon 16 may include fiber, particulate material, or other reinforcing filaments. For example, balloon 16 may comprise a nanocomposite polymer material.
Balloon 16 may be configured so that it includes one or more “wings” or wing-shaped regions when balloon 16 is deflated. These wings may appear as a plurality of alternating inward and outward radial deflections in balloon 16 when balloon 16 is deflated. These wings may be desirable for a number of reasons. For example, by including balloon 16 with wings, balloon 16 may have more predictable and consistent re-folding characteristics. Additionally, the wings may be configured so that cutting members 20 can be positioned at the inward-most positions of the deflated balloon 16. This arrangement allows cutting members 20 to be positioned more closely to shaft 18 when balloon 16 is deflated. Accordingly, cutting members 20 can be moved away from the vessel walls where they might otherwise result in contact and, possibly, damage to healthy tissue during movement of catheter 10 within a body lumen. Additionally, alternating the wings and cutting members 20 as well as positioning cutting members 20 relatively close to shaft 18 may allow the wings to fold over and cover cutting members 20 when balloon 16 is deflated. Again, this feature may reduce the exposure of cutting members 20 to the blood vessel.
Balloon 16 additionally may include one or more discrete points or areas of flexibility such as generally circumferentially extending crease 70 formed in the wall of balloon 16. A single crease 70 is shown in
Crease 70 may be a circumferential crease, a helical crease, or the like. For example, crease 70 may be disposed substantially orthogonal to cutting member 20 or at an angle thereto. For instance, crease 70 may be formed at a 45-, 60-, 75-, 80- or 90-degree angle relative to cutting member 20. Preferably, crease 70 corresponds with break 46 in cutting member 20. For example, cutting member 20 may be positioned on balloon 16 such that break 46 of cutting member 20 is aligned with crease 70. As shown in
Crease 70 may be formed in balloon 16 during a molding process, such as a blow molding process, prior to placing cutting members 20 on balloon 16. Alternatively, crease 70 may be formed in balloon 16 during a balloon folding operation subsequent to placing cutting members 20 on balloon 16. A balloon folding fixture may include means for creasing balloon 16, such as notches, ridges, and the like. The balloon 16 may be positioned in a folding fixture such that break 46 of cutting member 20 is aligned with the means for creasing balloon 16. In this process, crease 70 may be fashioned in the balloon 16 during a final folding operation. Alternatively or additionally, crease 70 may be formed by grinding, laser ablating, chemical etching, or ablation and subsequent back fill with a more compliant material, for example.
Crease 70 may be located on the outer surface 40 of balloon 16 or on the inner surface (not shown) of balloon 16. Crease 70 may be a fold created in balloon 16. Alternatively, crease 70 may be defined as a portion of balloon 16 having a reduced wall thickness, a groove, a reduced diameter portion, or recessed area defined in the wall of balloon 16, for example. Crease 70 may also be a portion of balloon 16 comprising a material relatively resistant to expansion. Additionally, crease 70 may be formed by a band of relatively non-expandable material disposed about a portion of balloon 16 or incorporated in a portion of balloon 16. The band of relatively non-expandable material may constrain a portion of balloon 16 from readily expanding to the extent of adjacent regions.
It is also contemplated that balloon 16 may additionally and/or alternatively include at least one crease 70 not aligned with a break 46 in cutting members 20. Such a crease 70 may provide enhanced flexibility along at least a portion of balloon 16. Some further discussion of crease 70 and other examples, features, and modifications are described in more detail below.
Shaft 18 may be a catheter shaft, similar to typical catheter shafts. For example, shaft 18 may include an inner tubular member 24 and outer tubular member 26. Tubular members 24/26 may be manufactured from a number of different materials. For example, tubular members 24/26 may be made of metals, metal alloys, polymers, metal-polymer composites or any other suitable materials. Some examples of suitable metals and metal alloys include stainless steel, such as 300 series stainless steel (including 304V, 304L, and 316L); 400 series martensitic stainless steel; tool steel; nickel-titanium alloy such as linear-elastic or super-elastic Nitinol, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, tungsten or tungsten alloys, MP35-N (having a composition of about 35% Ni, 35% Co, 20% Cr, 9.75% Mo, a maximum 1% Fe, a maximum 1% Ti, a maximum 0.25% C, a maximum 0.15% Mn, and a maximum 0.15% Si), hastelloy, monel 400, inconel 825, or the like; or other suitable material. Some examples of suitable polymers include those described above in relation to balloon 16. For example, tubular members 24/26 may comprise a reinforced polymer material such as a nanocomposite polymer material. Of course, any other polymer or other suitable material including ceramics may be used without departing from the spirit of the invention. The materials used to manufacture inner tubular member 24 may be the same as or be different from the materials used to manufacture outer tubular member 26. Those materials listed herein may also be used for manufacturing other components of catheter 10 including cutting members 20.
Tubular members 24/26 may be arranged in any appropriate way. For example, in some embodiments, inner tubular member 24 can be disposed coaxially within outer tubular member 26. According to these embodiments, inner and outer tubular members 24/26 may or may not be secured to one another along the general longitudinal axis of shaft 18. Alternatively, inner tubular member 24 may follow the inner wall or otherwise be disposed adjacent the inner wall of outer tubular member 26. Again, inner and outer tubular members 24/26 may or may not be secured to one another. For example, inner and outer tubular members 24/26 may be bonded, welded (including tack welding or any other welding technique), or otherwise secured at a bond point. In some embodiments, the bond point may be generally disposed near the distal end of shaft 18. However, one or more bond points may be disposed at any position along shaft 18. The bond may desirably impact, for example, the stability and the ability of tubular members 24/26 to maintain their position relative to one another. In still other embodiments, inner and outer tubular member 24/26 may be adjacent to and substantially parallel to one another so that they are non-overlapping. In these embodiments, shaft 18 may include an outer sheath that is disposed over tubular members 24/26.
Inner tubular member 24 may include an inner lumen 28. In at least some embodiments, inner lumen 28 is a guidewire lumen. Accordingly, catheter 10 can be advanced over guidewire 22 to the desired location. The guidewire lumen may extend along essentially the entire length of catheter shaft 18 so that catheter 10 resembles a traditional “over-the-wire” catheter. Alternatively, the guidewire lumen may extend along only a portion of shaft 18 so that catheter 10 resembles a “single-operator-exchange” or “rapid-exchange” catheter. Regardless of which type of catheter is contemplated, catheter 10 may be configured so that balloon 16 is disposed over at least a region of inner lumen 28. In at least some of these embodiments, inner lumen 28 (i.e., the portion of inner lumen 28 that balloon 16 is disposed over) may be substantially coaxial with balloon 16.
Shaft 18 may also include an inflation lumen 30 that may be used, for example, to transport inflation media to and from balloon 16. The location and position of inflation lumen 30 may vary, depending on the configuration of tubular members 24/26. For example, when outer tubular member 26 is disposed over inner tubular member 24, inflation lumen 30 may be defined within the space between tubular members 24/26. Moreover, depending on the position of inner tubular member 24 within outer tubular member 26, the shape of lumen 30 (i.e., the shape adjacent shaft 18) may vary. For example, if inner tubular member 24 is attached to or disposed adjacent to the inside surface of outer tubular member 26, then inflation lumen 30 may be generally half-moon in shape; whereas, if inner tubular member 24 is generally coaxial with outer tubular member 26, then inflation lumen 30 may be generally ring-shaped or annular in shape. It can be appreciated that if outer tubular member 26 is disposed alongside inner tubular member 24, then lumen 30 may be the lumen of outer tubular member 26 or it may be the space defined between the outer surface of tubular members 24/26 and the outer sheath disposed thereover.
Balloon 16 may be coupled to catheter shaft 18 in any of a number of suitable ways. For example, balloon 16 may be adhesively or thermally bonded to shaft 18. Such bonding techniques may include laser welding, heat shrinking, adhesive, and tie layers, for example. In some embodiments, a proximal waist 32 of balloon 16 may be bonded to shaft 18, for example, at outer tubular member 26, and a distal waist 34 may be bonded to shaft 18, for example, at inner tubular member 24. The exact bonding positions, however, may vary. It can be appreciated that a section of proximal waist 32 may not have sections 36 extending therefrom in order for suitable bonding between balloon 16 and outer tubular member 30.
In addition to some of the structures described above, shaft 18 may also include a number of other structural elements, including those typically associated with catheter shafts. For example, shaft 18 may include a radiopaque marker coupled thereto that may aid a user in determining the location of catheter 10 within the vasculature. In addition, catheter 10 may include a folding spring (not shown) coupled to balloon 16, for example, adjacent proximal waist 32, which may further help in balloon folding and refolding. A description of a suitable folding spring can be found in U.S. Pat. No. 6,425,882, the disclosure of which is incorporated herein by reference.
An exploded view illustrating the attachment of cutting member 20 to balloon 16 is shown in
In at least some embodiments, joining member 38 may be attached to and disposed between cutting member 20 and balloon 16. For example, joining member 38 may be attached to an outer surface 40 of balloon 16 and to a base 50 of the cutting member 20. The attachment of joining member 38 with cutting member 20 and balloon 16 may be achieved in any appropriate manner, such as by adhesive bonding, casting, thermal bonding, mechanically connecting, welding, brazing, and the like, or in any other suitable way. The attachment means need not be the same for the attachment between cutting member 20 and joining member 38 as the means used to attach balloon 16 and joining member 38.
Balloon 16 may include a discrete region of flexibility such as crease 70 formed in the outer surface 40 of balloon 16. Break 46 of cutting member 20 may be aligned with crease 70 such that the increased flexibility of balloon 16 provided by crease 70 may be combined with the increased flexibility of cutting member 20 provided by break 46. The enhanced flexibility of balloon 16 may improve the deliverability of the catheter, as well as the conformity of balloon 16 to a vessel lumen curvature during inflation of balloon 16.
It can also be seen in
One or more cutting members 520 may be coupled to balloon 516. As shown in
A plurality of cutting members 620 may be coupled to balloons 616a, 616b. Preferably, each balloon 616a, 616b may include three cutting members 620 disposed equidistantly about balloon 616a, 616b. However, each balloon 616a, 616b may include one, two, three, four, five, six or more cutting members 620.
Intermediate waist 615 may define a reduced cross-sectioned region 670 of distal portion 630 of catheter 610 while balloons 616a, 616b are expanded. Therefore, reduced cross-sectioned region 670 may provide a discrete point of flexibility in the distal region 630 of catheter 610. In an expanded state, the distal region 630 of catheter 610 may readily conform to the curvature of a vessel due to a discrete point of flexibility 670 provided by intermediate waist 615. The enhanced flexibility of distal portion 630 may allow expansion of balloons 616a, 616b within a vessel without surrendering compliance to a curvature of a vessel. Therefore, catheter 610 may be designed to sufficiently treat a stenosis located in a sharply curved portion of a vessel.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. It is contemplated that one may combine, substitute, or modify specific elements of the various embodiments described herein without departing from the scope and spirit of the invention. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
This application is a continuation of U.S. application Ser. No. 11/057,300, filed Feb. 11, 2005, now abandoned, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2330399 | Winder | Sep 1943 | A |
2486056 | Oclassen | Oct 1949 | A |
2816552 | Hoffman | Dec 1957 | A |
3050066 | Koehn | Aug 1962 | A |
3174851 | Buehler et al. | Mar 1965 | A |
3351463 | Rozner et al. | Nov 1967 | A |
3409016 | Foley | Nov 1968 | A |
3557794 | VanPatten | Jan 1971 | A |
3635223 | Klieman | Jan 1972 | A |
3749085 | Willson et al. | Jul 1973 | A |
3753700 | Harrison et al. | Aug 1973 | A |
3822593 | Oudewaal | Jul 1974 | A |
3990453 | Douvas et al. | Nov 1976 | A |
4018231 | Wallace | Apr 1977 | A |
4140126 | Choudhury | Feb 1979 | A |
4141364 | Schultze | Feb 1979 | A |
4178939 | Stephens | Dec 1979 | A |
4248246 | Ikeda | Feb 1981 | A |
4263236 | Briggs et al. | Apr 1981 | A |
4273128 | Lary | Jun 1981 | A |
4275591 | Wand | Jun 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4292974 | Fogarty et al. | Oct 1981 | A |
4346698 | Hanson et al. | Aug 1982 | A |
4406656 | Hattler et al. | Sep 1983 | A |
4416267 | Garren et al. | Nov 1983 | A |
4444186 | Wolvek et al. | Apr 1984 | A |
4449532 | Storz | May 1984 | A |
4465072 | Taheri | Aug 1984 | A |
4490421 | Levy | Dec 1984 | A |
4572186 | Gould et al. | Feb 1986 | A |
4573470 | Samson et al. | Mar 1986 | A |
4574781 | Chin | Mar 1986 | A |
4576142 | Schiff | Mar 1986 | A |
4592744 | Jagger et al. | Jun 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4608984 | Fogarty | Sep 1986 | A |
4627436 | Leckrone | Dec 1986 | A |
4636201 | Ambrose et al. | Jan 1987 | A |
4669469 | Gifford, III et al. | Jun 1987 | A |
4681092 | Cho et al. | Jul 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4686982 | Nash | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4705517 | DiPisa, Jr. | Nov 1987 | A |
4710181 | Fuqua | Dec 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4728319 | Masch | Mar 1988 | A |
4738666 | Fuqua | Apr 1988 | A |
4743258 | Ikada et al. | May 1988 | A |
4747405 | Leckrone | May 1988 | A |
4748982 | Horzewski et al. | Jun 1988 | A |
4762125 | Leiman et al. | Aug 1988 | A |
4762130 | Fogarty et al. | Aug 1988 | A |
4771776 | Powell et al. | Sep 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784636 | Rydell | Nov 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4799479 | Spears | Jan 1989 | A |
4820349 | Saab | Apr 1989 | A |
RE32983 | Levy | Jul 1989 | E |
4846174 | Willard et al. | Jul 1989 | A |
4846344 | Bala | Jul 1989 | A |
4846801 | Okuda et al. | Jul 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4881547 | Danforth | Nov 1989 | A |
4886061 | Fischell et al. | Dec 1989 | A |
4887613 | Farr et al. | Dec 1989 | A |
4896669 | Bhate et al. | Jan 1990 | A |
4906244 | Pinchuk et al. | Mar 1990 | A |
4909781 | Husted | Mar 1990 | A |
4921483 | Wijay et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4930341 | Euteneuer | Jun 1990 | A |
4935190 | Tennerstedt | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
4938676 | Jackowski et al. | Jul 1990 | A |
4941877 | Montano, Jr. | Jul 1990 | A |
4952357 | Euteneuer | Aug 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4963313 | Noddin et al. | Oct 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979951 | Simpson | Dec 1990 | A |
4983167 | Sahota | Jan 1991 | A |
4986807 | Farr | Jan 1991 | A |
4994018 | Saper | Feb 1991 | A |
4994072 | Bhate et al. | Feb 1991 | A |
RE33561 | Levy | Mar 1991 | E |
5009659 | Hamlin et al. | Apr 1991 | A |
5015230 | Martin et al. | May 1991 | A |
5015231 | Keith et al. | May 1991 | A |
5017325 | Jackowski et al. | May 1991 | A |
5019042 | Sahota | May 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5041125 | Montano, Jr. | Aug 1991 | A |
5042985 | Elliott et al. | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5049132 | Shaffer et al. | Sep 1991 | A |
5053007 | Euteneuer | Oct 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5071424 | Reger | Dec 1991 | A |
5074841 | Ademovic et al. | Dec 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078725 | Enderle et al. | Jan 1992 | A |
5084010 | Plaia et al. | Jan 1992 | A |
5085662 | Willard | Feb 1992 | A |
5087246 | Smith | Feb 1992 | A |
5087265 | Summers | Feb 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5102390 | Crittenden et al. | Apr 1992 | A |
5102403 | Alt | Apr 1992 | A |
5116318 | Hillstead | May 1992 | A |
5135482 | Neracher | Aug 1992 | A |
5147302 | Euteneuer et al. | Sep 1992 | A |
5152773 | Redha | Oct 1992 | A |
5156594 | Keith | Oct 1992 | A |
5156610 | Reger | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5176693 | Pannek, Jr. | Jan 1993 | A |
5178625 | Groshong | Jan 1993 | A |
5180368 | Garrison | Jan 1993 | A |
5181920 | Mueller et al. | Jan 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5192296 | Bhate et al. | Mar 1993 | A |
5195970 | Gahara | Mar 1993 | A |
5196024 | Barath | Mar 1993 | A |
5196025 | Ranalletta et al. | Mar 1993 | A |
5209749 | Buelna | May 1993 | A |
5209799 | Vigil | May 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5226430 | Spears et al. | Jul 1993 | A |
5226887 | Farr et al. | Jul 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5234450 | Segalowitz | Aug 1993 | A |
5242396 | Evard | Sep 1993 | A |
5248311 | Black et al. | Sep 1993 | A |
5250070 | Parodi | Oct 1993 | A |
5254091 | Aliahmad et al. | Oct 1993 | A |
5295959 | Gurbel et al. | Mar 1994 | A |
5295995 | Kleiman | Mar 1994 | A |
5300025 | Wantink | Apr 1994 | A |
5306246 | Sahatjian et al. | Apr 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5308356 | Blackshear, Jr. et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5318576 | Plassche, Jr. et al. | Jun 1994 | A |
5318587 | Davey | Jun 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5328472 | Steinke et al. | Jul 1994 | A |
5336178 | Kaplan et al. | Aug 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5342307 | Euteneuer et al. | Aug 1994 | A |
5346505 | Leopold | Sep 1994 | A |
5350361 | Tsukashima et al. | Sep 1994 | A |
5366472 | Hillstead | Nov 1994 | A |
5370614 | Amundson et al. | Dec 1994 | A |
5372601 | Lary | Dec 1994 | A |
5395361 | Fox et al. | Mar 1995 | A |
5399164 | Snoke et al. | Mar 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5409454 | Fischell et al. | Apr 1995 | A |
5411466 | Hess | May 1995 | A |
5411477 | Saab | May 1995 | A |
5411478 | Stillabower | May 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5417653 | Sahota et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5423745 | Todd et al. | Jun 1995 | A |
5425711 | Ressemann et al. | Jun 1995 | A |
5425712 | Goodin | Jun 1995 | A |
5437659 | Leckrone | Aug 1995 | A |
5441510 | Simpson et al. | Aug 1995 | A |
5449343 | Samson et al. | Sep 1995 | A |
5456666 | Campbell et al. | Oct 1995 | A |
5456681 | Hajjar | Oct 1995 | A |
5458572 | Campbell et al. | Oct 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5478319 | Campbell et al. | Dec 1995 | A |
5487730 | Marcadis et al. | Jan 1996 | A |
5490839 | Wang et al. | Feb 1996 | A |
5496308 | Brown et al. | Mar 1996 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507761 | Duer | Apr 1996 | A |
5522818 | Keith et al. | Jun 1996 | A |
5522825 | Kropf et al. | Jun 1996 | A |
5538510 | Fontirroche et al. | Jul 1996 | A |
5542924 | Snoke et al. | Aug 1996 | A |
5545132 | Fagan et al. | Aug 1996 | A |
5549556 | Ndondo-Lay et al. | Aug 1996 | A |
5554121 | Ainsworth et al. | Sep 1996 | A |
5556405 | Lary | Sep 1996 | A |
5556408 | Farhat | Sep 1996 | A |
5569195 | Saab | Oct 1996 | A |
5569277 | Evans et al. | Oct 1996 | A |
5571087 | Ressemann et al. | Nov 1996 | A |
5616149 | Barath | Apr 1997 | A |
5628761 | Rizik | May 1997 | A |
5643209 | Fugoso et al. | Jul 1997 | A |
5643278 | Wijay | Jul 1997 | A |
5643296 | Hundertmark et al. | Jul 1997 | A |
5645529 | Fagan et al. | Jul 1997 | A |
5649941 | Lary | Jul 1997 | A |
5658311 | Baden | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669920 | Conley et al. | Sep 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5697944 | Lary | Dec 1997 | A |
5713913 | Lary et al. | Feb 1998 | A |
5718684 | Gupta | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5728123 | Lemelson et al. | Mar 1998 | A |
5730698 | Fischell et al. | Mar 1998 | A |
5743875 | Sirhan et al. | Apr 1998 | A |
5759191 | Barbere | Jun 1998 | A |
5769819 | Schwab et al. | Jun 1998 | A |
5769865 | Kermode et al. | Jun 1998 | A |
5792105 | Lin et al. | Aug 1998 | A |
5792150 | Pratt et al. | Aug 1998 | A |
5792158 | Lary | Aug 1998 | A |
5797935 | Barath | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5824173 | Fontirroche et al. | Oct 1998 | A |
5827201 | Samson et al. | Oct 1998 | A |
5827225 | Ma Schwab | Oct 1998 | A |
5827310 | Mann et al. | Oct 1998 | A |
5860954 | Ropiak | Jan 1999 | A |
5895402 | Hundertmark et al. | Apr 1999 | A |
5921958 | Ressemann et al. | Jul 1999 | A |
5931819 | Fariabi | Aug 1999 | A |
5954740 | Ravenscroft et al. | Sep 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6010521 | Lee et al. | Jan 2000 | A |
6013055 | Bampos et al. | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6024722 | Rau et al. | Feb 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6039699 | Viera | Mar 2000 | A |
6048350 | Vrba | Apr 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6068623 | Zadno-Azizi et al. | May 2000 | A |
6110192 | Ravenscroft et al. | Aug 2000 | A |
6117153 | Lary et al. | Sep 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6142975 | Jalisi et al. | Nov 2000 | A |
6165140 | Ferrera | Dec 2000 | A |
6165167 | Delaloye | Dec 2000 | A |
6165292 | Abrams et al. | Dec 2000 | A |
6168571 | Solar et al. | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6190332 | Muni et al. | Feb 2001 | B1 |
6193686 | Estrada et al. | Feb 2001 | B1 |
6213957 | Milliman et al. | Apr 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6217567 | Zadno-Azizi et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6241690 | Burkett et al. | Jun 2001 | B1 |
6254550 | McNamara et al. | Jul 2001 | B1 |
6258108 | Lary | Jul 2001 | B1 |
6283743 | Traxler et al. | Sep 2001 | B1 |
6306105 | Rooney et al. | Oct 2001 | B1 |
6306151 | Lary | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6344029 | Estrada et al. | Feb 2002 | B1 |
6355016 | Bagaoisan et al. | Mar 2002 | B1 |
6383146 | Klint | May 2002 | B1 |
6387075 | Stivland et al. | May 2002 | B1 |
6394995 | Solar et al. | May 2002 | B1 |
6398798 | Selmon et al. | Jun 2002 | B2 |
6409863 | Williams et al. | Jun 2002 | B1 |
6425882 | Vigil | Jul 2002 | B1 |
6428552 | Sparks | Aug 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6471673 | Kasterhofer | Oct 2002 | B1 |
6471713 | Vargos et al. | Oct 2002 | B1 |
6533754 | Hisamatsu et al. | Mar 2003 | B1 |
6544224 | Steese-Bradley | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6562062 | Jenusaitis et al. | May 2003 | B2 |
6565527 | Jonkman et al. | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6602265 | Dubrul et al. | Aug 2003 | B2 |
6632231 | Radisch, Jr. | Oct 2003 | B2 |
6730105 | Shiber | May 2004 | B2 |
6746463 | Schwartz | Jun 2004 | B1 |
6776771 | van Moorlegem et al. | Aug 2004 | B2 |
7303572 | Melsheimer et al. | Dec 2007 | B2 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20020082592 | Lary | Jun 2002 | A1 |
20030032973 | Jenusaitis et al. | Feb 2003 | A1 |
20030040770 | Radisch, Jr. | Feb 2003 | A1 |
20030144677 | Lary | Jul 2003 | A1 |
20030153870 | Meyer et al. | Aug 2003 | A1 |
20030163148 | Wang et al. | Aug 2003 | A1 |
20040034384 | Fukaya | Feb 2004 | A1 |
20040098018 | Radisch, Jr. | May 2004 | A1 |
20040122457 | Weber | Jun 2004 | A1 |
20040127920 | Radisch, Jr. | Jul 2004 | A1 |
20040230178 | Wu | Nov 2004 | A1 |
20040243156 | Wu et al. | Dec 2004 | A1 |
20040243158 | Konstantino et al. | Dec 2004 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050240148 | Cheves et al. | Oct 2005 | A1 |
20050240212 | McAuley et al. | Oct 2005 | A1 |
20060106412 | Crow et al. | May 2006 | A1 |
20060106413 | Bence et al. | May 2006 | A1 |
20060149308 | Melsheimer et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
7413387 | Dec 1987 | AU |
1 170 586 | May 1964 | DE |
31 24 198 | Apr 1982 | DE |
34 00 416 | Jul 1985 | DE |
34 02 573 | Aug 1985 | DE |
35 19 626 | Dec 1986 | DE |
100 10 467 | Sep 2001 | DE |
0 291 170 | Nov 1988 | EP |
0 414 350 | Feb 1991 | EP |
0 784 966 | Jul 1997 | EP |
0 792 656 131 | Sep 1997 | EP |
1 270 040 | Feb 2003 | EP |
1 547 328 | Jun 1979 | GB |
2 078 114 | Jan 1982 | GB |
WO 9007909 | Jul 1990 | WO |
WO 9117714 | Nov 1991 | WO |
WO 9219306 | Nov 1992 | WO |
WO 9500198 | Jan 1995 | WO |
WO 9505860 | Mar 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20090192537 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11057300 | Feb 2005 | US |
Child | 12409680 | US |