The invention relates to a cutting device and a method for cutting paper.
Known cutting devices, in particular guillotine cutting devices for document finishing lines in the digital printing market, are provided with a cutting blade and a counter-blade that have to be calibrated extremely accurately to ensure consistent and complete cutting. For this purpose, the frame that holds the cutting blade and the counter-blade is designed to be as rigid as possible and the positions of both the cutting blade and the counter-blade can be adjusted relative to the frame by means of a plurality of spacers and corresponding fasteners.
A disadvantage of the known cutting devices is that each spacer has to be adjusted and fastened individually. This requires a lot of specialized knowledge, which is why the initial calibration is usually performed by a trained calibration technician. However, even for a trained calibration technician, calibration takes at least thirty minutes. However, after the initial calibration, any further calibrations are performed in the field by a technician with less experience. Such further calibrations may take considerably longer.
It is an object of the present invention to provide a cutting device and method for cutting paper, wherein the ease of calibration of the cutting device can be improved.
According to a first aspect, the invention provides a cutting device for cutting paper, wherein the cutting device comprises a cutting blade and a counter-member that cooperate to cut the paper along a cutting line, wherein the cutting device comprises a frame and wherein the cutting blade is movable relative to said frame towards and away from the counter-member in a driving direction, transverse or perpendicular to the cutting line, for cutting the paper, wherein the cutting device comprises a holder for holding the cutting blade relative to the counter-member, wherein the cutting device is further provided with a first guide and a second guide extending in or parallel to the driving direction for linearly guiding the holder, wherein the cutting device comprises one or more first fixation members for fixating at least the first guide relative to the frame, wherein the one or more first fixation members are arranged for releasing the fixation of the first guide relative to the frame, wherein the first guide, when released, is movable relative to the frame in an adjustment direction perpendicular to the cutting line and the driving direction, wherein each of the guides comprises a guide body, wherein the guide bodies of the first guide and the second guide, when released, are arranged to be rotatable relative to the frame about a first adjustment axis and a second adjustment axis, respectively, wherein each guide body comprises an eccentric section that moves eccentrically about the respective adjustment axis and that is arranged to convert the rotational movement of the guides about the respective adjustment axes into a linear movement of the holder in the adjustment direction.
Hence, a simple rotation of the guides about their respective adjustment axes can effectively cause a linear displacement of the holder in the adjustment direction, without the need of additional mechanical components.
By moving the first guide in the adjustment direction, the linear path along which the holder is guided can be adjusted. Consequently, the position of the cutting blade relative to the counter-member can be easily adjusted. Moreover, since the first guide is adjusted relative to the frame rather than the cutting blade relative to the holder, the cutting blade can be fixed securely to said holder, thereby significantly reducing the complexity of the calibration and/or reducing tolerances.
Preferably, the one or more first fixation members are arranged for releasing the fixation of the second guide relative to the frame, wherein the second guide, when released, is movable relative to the frame in the adjustment direction. By moving the first guide and the second guide in the adjustment direction, not only the position but also the orientation of the cutting blade relative to the counter-member in the adjustment direction can be adjusted. More in particular, when the counter-member is a counter-blade, it is possible to position the cutting blade such that at least one end thereof slightly overlaps with the counter-blade, i.e. at a negative tolerance, to obtain a scissor-like bias or tension between the cutting blade and the counter-blade.
In a further embodiment the holder is arranged to slide over or along the first guide and the second guide in the driving direction. The holder can thus be moved with respect to the guides while the guides are adjusted in the adjustment direction.
In a further embodiment the holder is provided with slotted holes through which the eccentric sections of the respective guides are received, wherein the slotted holes are elongated in a lateral direction perpendicular to the driving direction and the adjustment direction to absorb the eccentric movement of the eccentric sections relative to the holder in the lateral direction and to follow the eccentric movement of the eccentric sections in the adjustment direction. Consequently, the holder will only move in the adjustment direction and cancel out the component of the eccentric movement in the lateral direction. The holder can therefore remain in place in the lateral direction to maintain the cutting blade in proper alignment above the counter-member.
In a further embodiment thereof the eccentric sections of the first guide and the second guide have varying radii with respect to the first adjustment axis and the second adjust axis respectively, wherein the radii vary within a maximum adjustment range of at least half a millimeter, preferably at least one millimeter and most preferably at least two millimeters. The maximum adjustment range defines the maximum distance over which eccentric sections can displace the holder in the adjustment direction. The specified range should be sufficient to calibrate the cutting device properly.
In a further embodiment thereof each guide is provided with one or more tool engagement elements to facilitate engagement of the guide with a tool for rotating the guide about the respective adjustment axis. Preferably, the one or more tool engagement elements are tool holes for receiving a lever that facilitates manual rotation of the guides. A tool may be used to securely engage the guides and to allow for accurate and/or fine adjustment of the guides relative to the frame. In the embodiment of the tool holes, a tool such as a lever can be easily inserted into one of the tool holes to manually adjust the guides.
In a practical embodiment thereof each guide comprises two or more tool engagement elements which are offset in a circumferential direction about the guide body. The offset provides the calibration technician with multiple options to engage the guide and allows for switching between tool engagement elements, in particular, when one of the tool engagement elements is out of reach.
In a further embodiment each guide comprises a reference element that indicates a special position of the respective guide. The special position may be a starting position, a default position or an optimal position.
In another embodiment the one or more first fixation members are located at a top end of the frame, wherein the guides are fixed to a lower end of the frame by fasteners, wherein the fasteners are fixated against rotation relative to the frame about the respective adjustment axis by the tension of a spring acting in a tension direction parallel to the driving direction, wherein the cutting device is provided with a clearance between the guide bodies and the lower end of the frame to allow the guide bodies to move in the tension direction when released by the one or more first fixation members at the top end.
In another embodiment the one or more first fixation members comprises a bolt, preferably a bolt with a hexagonal socket. The bolt can be used to clampingly fixate the guide relative to the frame, while functioning as bearing for rotation of the guide about the respective adjustment axis when released.
In another embodiment the cutting device is provided with a drive mechanism to drive the movement of the cutting blade with respect to the counter-member in the driving direction, wherein the drive mechanism comprises a first linear actuator and a second linear actuator which are arranged to act on the holder in or parallel to the driving direction. The linear actuators can reliably drive the holder and the cutting blade attached thereto in the driving direction while the guides guide the holder in said driving direction.
In an embodiment thereof the cutting device comprises one or more second fixation members for fixating the holder to the linearly moving parts of the linear actuators, wherein the one or more second fixation members are arranged for releasing the holder from said fixation, wherein the holder, when released, is movable relative to the linear actuators in the adjustment direction. The holder can now be moved together with the guides in the adjustment direction. The holder can be fixated again after the calibration has been completed.
In a further embodiment thereof each linear actuator comprises a rotatable screw and a nut that is arranged to travel linearly along the screw, wherein the one or more second fixation members are arranged for fixating the holder to and releasing the holder from the nuts of the linear actuators. The rotatable screw and the nut together form a spindle. The holder can be released from the nuts to allow for calibration at the guides, while the same nuts can be fixated again to the holder after the calibration has been completed.
In a further embodiment thereof the holder is movable with respect to the linear actuators in the adjustment direction within a maximum adjustment range of at least half a millimeter, preferably at least one millimeter and most preferably at least two millimeters. In other words, a tolerance or gap is provided between the linear actuators and the holder to allow for the calibration at the guides when the holder is released from the linear actuators.
Additionally or alternatively, the cutting blade comprises a flat or substantially flat cutting surface, wherein the driving direction is parallel or substantially parallel to said flat cutting surface.
According to a second aspect, the invention provides a method for cutting paper with the use of the cutting device according to any one of the aforementioned embodiments, wherein the method comprises a calibration of the cutting blade with respect to the counter-member, wherein the calibration comprises the steps of using the one or more first fixation members to release the fixation of the first guide relative to the frame and moving the first guide relative to the frame in the adjustment direction.
The method relates to the practical use of the previously discussed cutting device. Consequently, the method and its embodiments have the same technical advantages as the aforementioned cutting device and its respective embodiments. These advantages will not be repeated hereafter.
Preferably, the calibration further comprises the steps of using the one or more first fixation members to release the fixation of the second guide relative to the frame and moving the second guide relative to the frame in the adjustment direction.
In a further embodiment the first guide and/or the second guide are moved over small increments, wherein the calibration further comprises the step of performing a cutting stroke between the increments to check if the paper is being cut. Hence, the cutting blade may be progressively calibrated relative to the counter-member to prevent excessive adjustment that could lead to jamming, malfunction or even damage to the cutting device.
In an embodiment thereof the cutting blade is initially calibrated by cutting and checking the cut in a single sheet of paper, wherein, when the calibration based on the single sheet of paper has been completed, the calibration further comprises the step of cutting a stack of paper and then again cutting a single sheet of paper. The stack of paper may cause some deburring at the cutting edges that may have a negative impact on the cutting quality. After the stack of paper has been cut successfully, the calibration technician again cuts a single sheet of paper to see if said single sheet of paper is still cut consistently. If not, the abovementioned calibration steps can be repeated.
Additionally or alternatively, the cutting blade comprises a flat or substantially flat cutting surface, wherein the driving direction is parallel or substantially parallel to said flat cutting surface.
The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
The invention will be elucidated on the basis of an exemplary embodiment shown in the attached schematic drawings, in which:
As shown in
The cutting device 1 according to the first exemplary embodiment of the invention operates as a guillotine cutter. As such, the cutting blade 3 is movable in a driving direction D perpendicular to the cutting line C towards and away from the counter-blade 4 for cutting the paper 9. In this exemplary embodiment, the driving direction D is vertical or substantially vertical. Hence, the cutting blade 3 is movable in a vertically downward cutting stroke and a vertically upward return stroke. The cutting blade 3 is angled at an oblique angle to the cutting line C to progressively cut the paper 9 along the cutting line C. In contrast, the counter-blade 4 extends parallel or substantially parallel to the cutting line C.
As best seen in
In this exemplary embodiment, the counter-blade 4 is formed as a rectangular strip that is secured to the frame 2 by bolts or other suitable fasteners at or along the cutting line C in a position opposite to the cutting blade 3. The counter-blade 4 forms a lower cutting edge 40 that extends parallel or substantially parallel to the cutting line C. The counter-blade 4 may be slightly beveled at the cutting edge 40. Optionally, as shown in
As further shown in
As best seen in
In a preferred embodiment of the invention, the one or more guides 61, 62 double as calibration members for calibrating the position of the cutting blade 3 relative to the counter-blade 4. In particular, as shown in
In the exemplary embodiment as shown in
Each guide body 60 further comprises an eccentric section 64 that is eccentric with respect to the one or more concentric sections 63 and/or the respective adjustment axis X1, X2. As such, each eccentric section 64 is arranged to travel an eccentric path or moves eccentrically about the respective adjustment axis X1, X2 with at least a component in the adjustment direction A. The radii of the eccentric section 64 with respect to the respective adjustment axis X1, X2 vary within a maximum adjustment range R of at least half a millimeter, preferably at least one millimeter and most preferably at least two millimeters. Hence, each eccentric section 64 can effectively cause a displacement in the adjustment direction A within the specified range.
As best seen in
In this example, as best seen in
Optionally, each guide 61, 62 may comprise a reference element 67, i.e. a marking, a recess or a protrusion, that indicates a special position of the respective guide 61, 62. Such a special position may be the position in which the guides 61, 62 position the cutting blade 3 at a distance in which the upper cutting edge 30 and the lower cutting edge 40 are maximally spaced apart from the counter-blade 4 in the adjustment direction A. Note that the maximum spacing between the cutting blade 3 and the counter-blade 4 does not necessarily correspond to the maximum adjustment range R of the guides 61, 62 in the adjustment direction A. Instead, it is preferred to have the cutting blade 3 closer to the counter-blade 4 than said maximum adjustment range R at said maximum spacing, such that the position of the cutting blade 3 can be calibrated relative to the counter-blade 4 within the maximum adjustment range R that overlaps with the counter-blade 4. Consequently, when the cutting blade 3 and/or the counter-blade wear down, part of the maximum adjustment range R remains unused to compensate accordingly. In this example, the upper cutting edge 30 is spaced apart maximally from the lower cutting edge 40 in the adjustment direction A at a distance of approximately half a millimeter. Hence, with a maximum adjustment range R of for example one millimeter, the position of the cutting blade 3 can be adjusted over half a millimeters beyond the counter-blade 4 within the maximum adjustment range R.
As shown in
As shown in
As shown in
Preferably, the main sprocket wheel 75 is connected to the idler wheels 76, 77 in a ratio of at least 2:1, preferably at least 2.5:1 and most preferably at least 3:1.
Preferably, the motor 73 is an electro-motor, in particular an electric servo-motor. Hence, the position of the motor 73 can be very accurately determined and/or controlled.
In this exemplary embodiment, the linear actuators 71, 72 are mechanical linear actuators, in particular spindles. As such, each linear actuator 71, 72 comprises a screw 78 that is arranged to be rotated by the transmission element 74 and a nut 79 that travels linearly along the screw 78 as the screw 78 rotates. The screws 78 of the linear actuators 71, 72 extend parallel to the guides 61, 62 in the driving direction D.
As shown in
A method for cutting paper with the use of the aforementioned cutting device 1 will now be explained with reference to
When cutting paper, it is important to calibrate the position of the cutting blade 3 with respect to the counter-blade 4. When the cutting blade 3 is too far spaced apart from the counter-blade 4, the paper will not be cut. When the cutting blade 3 is too close to the counter-blade 4, the cutting device 1 may become jammed. Moreover, the cutting blade 3 and the counter-blade 4 preferably are not at a constant distance along the cutting line C. In other words, their upper cutting edge 30 and lower cutting edge 40 should not be parallel. Ideally, the cutting blade 3 is calibrated so that the lowest point of its upper cutting edge 30 is as close as possible to the lower cutting edge 40 of the counter-blade 4, without making contact. In contrast, the highest point of the upper cutting edge 30 should slightly overlap with the lower cutting edge 40 to create a small tension or bias between the cutting blade 3 and the counter-blade 4 during the cutting.
In the prior art cutting devices, calibration required specialized knowledge and above all; time. Calibration took at least half an hour or more, depending on the experience of the calibration technician. With the cutting device 1 according to the present invention, the calibration can be performed within a few minutes.
As shown in
As shown in
Now, the calibration may start in accordance with the steps as described below and as shown in
Optionally, the calibration technician may perform an additional check in which a stack of paper 90, as for example shown in
Finally, the one or more second fixation members 82 are tightened or fastened with suitable tools to fixate the position of the drive mechanism 7 with respect to the holder 5 in its newly calibrated position. The cutting device 1 according to the invention is now calibrated and ready for cutting.
When cutting through a stack of paper 90, as shown in
The further alternative cutting device 201 further differs from the previously discussed cutting devices 1, 101 in that it features an alternative cutting blade 203 and counter-member 204 configuration. While the counter-member 204 is still supported in a substantially level or horizontal orientation and supports the paper 9 along a substantially level or horizontal cutting line C, the alternative cutting blade 203 moves at the oblique driving direction D towards the counter-member 204 and has an upper cutting edge 230 that extends parallel or substantially parallel to the cutting line C.
As a result of the oblique driving direction D, the alternative cutting blade 203 travels towards the cutting line C with a component in the vertical direction and a component in the horizontal direction, parallel to the cutting line C. The upper cutting edge 230 thus makes a sawing movement through the stack of paper 90 rather than a vertical guillotine cutting movement. This allows the alternative cutting blade 203 to saw through thicker stacks of paper 90.
To accommodate the alternative cutting blade 203 moving at the oblique driving direction D, an alternative frame 202 is provided with an upper end 221 that is angled to match the oblique driving direction D and a lower end 222 that supports the counter-member 204 at the cutting line C. The further alternative cutting device 201 is provided with an alternative drive mechanism 207 that has linear actuators 271, 272 arranged at the same angle H to the cutting line C as the oblique driving direction D. In other words, the linear actuators 271, 272 are arranged to act in or parallel to the oblique driving direction D. Apart from the orientation, the alternative drive mechanism 207 may function similarly to the drive mechanisms 7, 107 of the previous embodiments of the invention.
Note that one side of the frame 202 is now considerably longer than the other side. The guides 61, 62 may remain the same length as in the previous embodiments of the invention, as they only need to provide guidance at the location of the holder 5. Optionally, the length of the linear actuators 271, 272 may be increased to increase the length of the cutting stroke. The length of the guides 61, 62 may be increased accordingly. Hence, the thickness of the stacks of paper 90 that can be cut is in principle only limited by the geometrical limitations of the available space.
The combination of the oblique driving direction D and the linear actuators 271, 272 acting in or parallel to said oblique driving direction D results in a sawing action during which the load on the alternative cutting blade 230 remains substantially constant at any depth during the cutting, regardless of the thickness of the stack of paper 90 that is being cut. Hence, the maximum thickness of stacks of paper that can be cut is in principle limitless.
In this alternative embodiment, the counter-member 204 forms a flat counter-surface 240 at the cutting line C that cooperates with the alternative cutting blade 203 to cut the paper 9. The cutting process may leave snippets of paper 9 or other paper residue on the counter-surface 240. In conventional cutting devices, these paper snippets have to be removed manually. In the present invention, the counter-member 204 is pivotable relative to the lower end 222 of the frame 202 about a pivot axis P to drop the paper snippets from the counter-surface 240, i.e. into a waste bin below the cutting device 201. The pivoting may be user-activated or automatically activated after a predetermined number of cuts. The automatic activation may be performed by a pushing member 205, i.e. a mechanical finger, that pushes down on the counter surface 240 at the same side of the pivot axis P as the cutting line C to force the counter-member 204 into a drop position.
Alternatively, as shown in a further alternative cutting device according to a fourth embodiment of the invention, the counter-member 304 may be driven in rotation about the pivot axis P by a drive 306, i.e. a servo-motor. Also in this case, the counter-member 304 is pivotable relative to the lower end 322 of the frame 302 about a pivot axis P to move into an active position (shown in dashed lines) and a drop position (shown in solid lines) relative to the cutting blade 303. In this particular example, the transmission from the drive 306 to the counter-member 304 is an eccentric drive comprising a crank shaft 307 that is driven in rotation by the drive 306 and an arm or a finger 305 driven by said crank shaft 307. The finger 305 is connected to the counter-member 304 at a distance from the pivot axis P so that it may act as a lever on the counter-member 304.
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2021522 | Aug 2018 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2019/050535 | 8/16/2019 | WO | 00 |