The present disclosure generally relates to cutting dies, and more particularly to cutting dies with improved scrap and product ejection and stabilization during cutting.
Cutting dies are commonly used for producing a container or carton from corrugated board sheet material. These containers or cartons can be produced by flat dies or rotary dies. Rotary cutting dies are typically comprised of a pair of cooperating cylinders or drums. One of the cylinders includes a substrate having cutting blades or rules while the other provides a backing surface against which the cut is made.
Rotary cutting dies of the type described above are often employed to produce slots or cut away a scrap portion from the perimeter of a usable product portion of a blank sheet of corrugated board material as it is processed. As such, provisions for removing or stripping the severed scrap material from certain cutting blades and the processed blank should be provided. Otherwise, if not removed from the vicinity of the cutting die during the cutting process, the scrap material may collect around the cutting blades and, if not properly ejected, may end up being inadvertently combined with the usable product.
To assist in ejecting portions of the blank sheet, it is known in the art to position ejectors on cutting dies. Examples include U.S. Pat. No. 5,881,620 (“Smithwick”) and U.S. Pat. No. 7,111,534 (“Simpson”). In addition, U.S. Pat. No. 5,176,613 and U.S. Patent Application Publication No. 2005/0115372 (collectively the “Cavlin references”) disclose a material positioned between the ejectors and the blank being cut. Although, the Cavlin references are silent as to if or how the material is attached to the ejectors, a product marked with the Cavlin patent number has material glued to the ejectors.
Ejectors may be positioned on the cutting die to eject different portions of the blank after it is cut, and product throughput may be improved if the ejectors can function properly at high speeds and be durable over many cycles without replacement.
Embodiments of the present disclosure generally provide a cutting die system. The cutting die system includes a substrate and at least one blade coupled to the substrate. An ejector is also coupled to the substrate. The ejector includes a compressible portion having a top surface and a bottom surface opposite the top surface. The bottom surface is coupled to the substrate and a protective layer is cured to the top surface.
Further embodiments of the present disclosure include a cutting die that includes a substrate with a first and second blade coupled to it. A first stabilizer and a second stabilizer are also coupled to the substrate. The first stabilizer is proximate the first blade and the second stabilizer proximate the second blade. The first stabilizer and the second stabilizer are positioned to contact a respective perimeter portion of a usable product portion of a blank during die cutting. The cutting die further includes a product ejector coupled to the substrate. The product ejector comprises a sheet of rubber that is positioned between the first stabilizer and the second stabilizer to contact a substantial portion of the usable product portion of the blank during die cutting. The product ejector extends from the substrate less than either the first or second stabilizer.
In one embodiment, the cutting die system of the present disclosure provides durable ejectors that may effectively crush and eject scrap material from the usable product after die cutting. The increased durability may be provided by a layer of protective material cured on a top surface of compressible material. A cutting die system employing ejectors in accordance with an embodiment of the present disclosure, may allow increased speed and a longer useful life of the cutting die system.
In an additional embodiment, the cutting die of the present disclosure may include a product ejector. The product ejector may stabilize a blank and hold it flat against an anvil. It may reduce or eliminate back folding, wrinkling, crush, and false scoring of the blank when die cutting. Such reduction or elimination may increase stacking strength and make the finished product more aesthetically pleasing. The product ejector may be particularly useful when cutting across the corrugation of the blank.
Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
The present disclosure generally provides durable and long lasting cutting dies. In particular, improving the durability and strength of its ejectors may significantly enhance the performance of a cutting die. The ejectors may be positioned at certain locations on the cutting die depending on the configuration and the features desired in the final usable product.
It should be understood that the diagrams shown in
Referring to the drawings, and particularly to
The anvil 14 may be a cylinder with a rubber material comprising its outer surface. This soft anvil 14 may provide a soft surface for the cutting die 12 to cut against. In operation, the cutting die and the anvil 14 may be disposed closely adjacent to each other and define a nip 22. The cutting die 12 and anvil 14 may rotate at approximately the same speed, and the blank 16 may be fed through the nip 22. As the blank 16 is fed through the nip 22, the cutting die 12 cuts through or scores the blank 16 against the anvil 14. Thus, the blank 16 is trimmed, scored, slotted, etc. to produce a finished usable product, and scrap material may be ejected away from the usable product where it may be discarded.
The cutting die 12 may include a base or a substrate 20. In certain embodiments, the substrate may be wood, while in others it may be metal or plastic or other synthetic material. The substrate 20 may be secured to the cylinder 18 with any suitable fastener; for example, the substrate 20 may be bolted to the cylinder 18.
In certain embodiments, an array of blades 30 may be secured to the substrate. (The blades 30 are not visible in
Stabilizers 32 may be positioned on each side of the blade 30. In operation, the stabilizers 32 may hold the blank 16 during the cutting operation. The stabilizers 32 may be made of compressible and resilient rubber such that they compress when they contact the blank 16 against the anvil 14. This compression of stabilizers 32 may reveal a cutting portion of the blade 30 that may then cut the blank 16. The stabilizers 32 may be made of any suitable compressible and resilient material. In certain embodiments, the stabilizers 32 may be made of a low expansion elastomer, such as natural or synthetic rubber. The stabilizers 32 may extend approximately ½ to ⅝ inches beyond the substrate 20, which may be approximately even with to ⅛ of an inch beyond the blades 30.
Scrap ejectors 24 may also be secured to the substrate 20 in specific locations. Scrap ejectors 24 may also serve to hold the blank during the cutting operation and may be functional to eject the scrap material and separate it from the usable portion of the blank 16. Because scrap ejectors 24 may contact the discarded portion of the blank 16, they may have certain properties that allow them to crush the blank 16 during die cutting, whereas such properties may not be advisable to ejectors or stabilizers positioned to come in contact with the usable product portion of the blank 16. The scrap ejectors 24 may include interior scrap ejectors 24a and exterior scrap ejectors 24b. Similar to the blades 30, the interior scrap ejectors 24a may contact material internal to the portion of the blank 16 making up the finished product, and exterior scrap ejectors 24b may contact material of the blank 16 external to the portion of the blank 16 making up the finished product.
As used herein, “interior” may generally refer to a feature positioned on the cutting die 12 to contact material internal to the portion of the blank 16 making up the finished product, and “exterior” may generally refer to a feature positioned on the cutting die 12 to contact material external to the portion of the blank 16 making up the finished product.
A product ejector 26 may also be secured to the substrate according to an embodiment of the present disclosure. In certain embodiments, the product ejector 26 may be located between interior stabilizers 32, or the stabilizers 32 may be glued on the top surface of the product ejector 26. In operation, the product ejector 26 may contact the portion of the blank 16 that will become the usable product. This contact may allow the usable product portion of the blank 16 to be ejected after passing through the cutting die system 10. The product ejectors 26 may reduce or eliminate back folding, wrinkling, and false scoring of the blank 16. Back folding, wrinkling, and false scoring may be more likely to occur on cross corrugated runs, hot board runs, or when the blank 16 is imperfect, such as when it is warped.
The product ejector 26 may be comprised of a material that is compressible and resilient. In certain embodiments, the product ejector 26 may be a sheet of 10-30 durometer closed-cell, low-density natural or synthetic rubber affixed or glued to the substrate 20. The product ejectors 26 may have a thickness that is less than the stabilizers 32 and less than the scrap ejectors 24. In certain embodiments, the product ejector 26 may have a thickness of approximately ⅛ to ⅜ inches. Having the product ejector 26 contact a substantial portion of the blank 16 that is to become the usable product may have certain advantages over conventional die cutting systems. For example, the product ejector 26 may stabilize the blank 16 and hold the blank 16 flat against the anvil 14. This may prevent a portion of the blank 16 from sticking to the blades 30. The product ejector 26 may reduce or eliminate back folding, wrinkling, crush, and false scoring of the blank when die cutting. Such reduction or elimination may increase stacking strength and make the finished product more aesthetically pleasing. The product ejector 26 may be particularly useful when cutting across the corrugation of the blank 16. The compressible and resilient properties of the product ejector 26 may also assist in ensuring that the usable product portion of the blank 16 is efficiently ejected from the cutting die system 10.
The cutting die 12 may also include trim ejectors 28. Trim ejectors 28 may have a scalloped top surface that may allow the trim ejectors 28 to be positioned closer to the blades 30, which may result in less trim material to be discarded. The trim ejectors 28 may be particularly useful when the cutting die system 10 is used for short trim runs. They also may be secured to the substrate 20 where slots are to be cut in the blank 16.
The compressible portion 34 may be firmer than, for example, the stabilizers 32 because the scrap ejectors 24 may crush the scrap material because it will not become part of the usable product. In contrast, the stabilizers 32 and the product ejector 26 may be less firm than the compressible portion 34 of the scrap ejector 24 because they should contact and stabilize the usable portion of the blank 16, but they should not crush or otherwise damage the usable portion of the blank 16. To assist the crushing of the scrap, the compressible portion 34 of the scrap ejector 24, may also be thicker than the stabilizers 32 and the product ejector 26. For example, the overall thickness of the scrap ejector 24 in some embodiments may range from ⅝ to ⅞ inches, which may be the distance the scrap ejector 24 extends from the substrate 20. The scrap ejector 24 may extend ⅛ to ⅜ inches beyond the blades 30 that completely through the blank 16. Because of the increased thickness and increased firmness of the scrap ejector 24, it may be subjected to increased forces during operation, and thus a protective layer 36 may increase the durability of the scrap ejector 24 and allow operation of the cutting die system 10 at higher speeds.
As illustrated, the thickness of the scrap ejector 24 may include a first thickness of the compressible portion 34 and a second thickness of the protective layer 36. In certain embodiments, the combined thickness of the compressible portion 34 and the protective layer 36 may be from ¾ to 1 inch. Because of the improved durability provided by the protective layer 36, scrap ejectors 24 may be a significant improvement over conventional scrap ejectors where a thin sheet of PVC plastic may come unglued and separate from a rubber portion. In contrast, according to an embodiment of the present disclosure, the protective layer 36 may be approximately 1/16 to ¼ inches thick. For example in certain embodiments, the protective layer 36 may be ⅛ inches thick.
According to an embodiment of the present disclosure, the protective layer 36 may be cured to the top surface 38 of the compressible portion 34. This curing process may allow the protective layer 36 to be bonded to the compressible portion 34 without using any additional adhesive. The curing process may also allow the protective layer 36 to flex with the compressible portion 34 without separating from it when the compressible portion 34 is compressed. Thus, at increased operating speeds of the die cutting system 10 and after many millions of cycles, the protective layer 36 may still be bonded to the compressible portion 34.
In certain embodiments, the protective layer 36 may include a thermoset or cured thermosetting polymer. Curing may occur as a result of a reaction of a resin with a hardener. In certain embodiments, the protective layer 36 may include a polyurethane resin, a color component, and an iso-hardener. The protective layer 36 may initially be in a fluid form, such that it may be sprayed or otherwise applied as a fluid to the compressible portion 34. Once it is applied to the top surface 38 of the compressible portion 34, it may then be cured. When the protective material is cured, it may toughen or harden due to cross-linking polymer chains in the protective layer 36. The curing process may transform the resin into a hardened or solid thermoset. The solid material may be formed because during the reaction, the molecular weight may increase to a point where the melting point of the protective layer 36 is higher than the surrounding ambient temperature. When the protective layer 36 is applied as a fluid to the compressible portion 34, the two materials may be in direct contact with each other and a strong bond may be formed directly between the protective layer 36 and the compressible portion 34 when the protective layer 36 is cured. This bond may be much stronger than a bond formed by applying glue or another type of adhesive between the protective layer 36 and the compressible portion 34.
In certain embodiments, when the raised portions 50 contact the blank 16 and are compressed during die cutting, the raised portions 50 can expand into the vacancy defined by the lower portions 52. Thus, in certain embodiments, the trim ejectors 28 may be placed nearer the blades 30, than might otherwise be advisable with conventional cutting dies. For example, in a conventional cutting die system, best cutting and ejection results may be achieved if the trim ejector is positioned approximately ⅜ inches away from the blades 30. In accordance with the teachings of the present disclosure, the distance the trim ejectors 28 may be placed away from the blades 30 may be reduced to ⅛ of an inch. This reduced distance may result in less trim being discarded as scrap, and it may also result in improved cutting and ejection of the trim portion of the blank 16.
Also similar to the scrap ejectors 24, the trim ejectors 28 may have a protective layer 44 cured to the top surface of the compressible portion 42. This curing of the protective layer 44 to the compressible portion 42 may be accomplished as described above with respect to the scrap ejectors 24. Thus, when the protective layer 44 is applied to the compressible portion 42, the two materials may be in direct contact with each other, and a strong bond may be formed directly between the protective layer 44 and the compressible portion 42 when the protective layer 44 is cured. This bond may be much stronger than a bond formed by applying glue or another type of adhesive between the protective layer 44 and the compressible portion 42. When the protective layer 44 is applied to the top surface 46, a scalloped protective layer 44 having raised and lower portions 50, 52 may result. The trim ejector 28 may allow a blank to be cut with a minimum width of scrap material being approximately ⅛ inches. The trim ejector 28 may also prevent the trim pieces of the blank 16 from being caught in the cutting die 12 proximate the blades 30.
In addition, during the cutting operation shown in
It may be advantageous to set forth definitions of certain words and phrases used in this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
While this disclosure has described certain embodiments and generally associated methods, alterations, and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure and the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2821871 | Sarno | Feb 1958 | A |
3264166 | Lowery | Aug 1966 | A |
3288007 | Masumi Eda et al. | Nov 1966 | A |
3496841 | Kirby et al. | Feb 1970 | A |
3552244 | Smith, Jr. | Jan 1971 | A |
3705526 | Bishop | Dec 1972 | A |
3765329 | Kirkpatrick et al. | Oct 1973 | A |
3850064 | Dwyer | Nov 1974 | A |
4306476 | Saunders et al. | Dec 1981 | A |
4499802 | Simpson | Feb 1985 | A |
4856393 | Braddon | Aug 1989 | A |
5111725 | Simpson et al. | May 1992 | A |
5176613 | Calvin et al. | Jan 1993 | A |
5179882 | Takeuchi et al. | Jan 1993 | A |
5512233 | Gallagher et al. | Apr 1996 | A |
5881620 | Smithwick, Jr. et al. | Mar 1999 | A |
6280373 | Lanvin | Aug 2001 | B1 |
6925918 | Bunge | Aug 2005 | B1 |
7111534 | Simpson | Sep 2006 | B1 |
20050115372 | Cavlin | Jun 2005 | A1 |
20100068499 | Kanagawa et al. | Mar 2010 | A1 |
20110203435 | Smithwick | Aug 2011 | A1 |
Entry |
---|
Darin M. Klemchuk, Letter dated Sep. 9, 2010 to David Reynolds at U.S. Steel Rule Dies, Inc. regarding the company's fabricating and selling of rotary cutting dies that include a product stabilizer, including Exhibit A, a picture of the product stabilizer marked with reference No. 26 claimed to be Applicant's invention, and request that company cease and desist from further use of product stabilizer. |
Michael M. Carlson, Letter dated Oct. 5, 2010 to Darin M. Klemchuk in response to above-cited NPL reference #1. |
Number | Date | Country | |
---|---|---|---|
20110265620 A1 | Nov 2011 | US |