This application is the U.S. national phase of PCT application PCT/DE2004/002144, filed 24 Sep. 2004, published 6 May 2005 as WO 2005/039806, and claiming the priority of German patent application 10346790.4 itself filed 8 Oct. 2003, the entire disclosures of which are herewith incorporated by reference.
The invention relates to a cutting element for the machining of metallic workpieces, in particular of wheel sets, having an upper and a lower face, of which at least one, preferably both, are designed as mounting faces, and having a side face that connects the upper and the lower face and that is perpendicular to them, that forms, together with the face, cutting edges usable for machining that have long straight cutting-edge sections that extend parallel to each other and short straight cutting-edge sections as well as cutting corners that connect respective adjacent long and short cutting-edge sections.
Such cutting elements correspond to the norm DIN 4987LNUX. The advantage of such cutting elements is that they can be used for combined longitudinal and transverse turning due to the existing long cutting edges and the short cutting edges, of which adjacent ones are connected with each other by a cutting corner. However, the chip formation in the embodiments known in the prior art is not always satisfying. Particularly in turning, chips are often formed with insufficient thicknesses, creating the disadvantage that the chips break poorly, which in extreme cases can lead to a dangerous formation of snarl chips. Indeed, it is possible to increase the thickness of the chip by means of the advance of the tool to some degree, however, thereby the machining forces that operate on the cutting edge increase, which can result in an undesired premature wear of the cutting edge to the point of the breaking of the cutting edge.
Hence, an object of the present invention is to provide a cutting element that have es a high cutting-edge stability and that allows as well machining with sufficient chip thickness, in particular in the machining of wheel sets or other coarse machining works due to the new design.
This object is attained by the cutting element for the machining of metallic workpieces, in particular of wheel sets, having a body formed with an upper and a lower face of which at least one, preferably both, are designed as mounting faces, and having a side face that connects the upper and the lower faces, that is perpendicular thereto, and that, together with the faces, forms cutting edges usable for machining, that have long straight cutting-edge sections extending parallel to each other, short straight cutting-edge sections also extending parallel to each other, and cutting corners that connect respective adjacent long and short cutting-edge sections. According to the invention, at least one part of the long straight cutting-edge sections is recessed by a distance (a) in relation to the adjacent edge sections as well as indented by a distance (b). The distance (a) of the recessing is 0.01×H to 0.2×H, preferably 0.02×H to 0.1×H, where H is the total height of the cutting element, the distance (b) of the indentation is 0.005×B to 0.1×B, preferably 0.008×B to 0.05×B, where B is the total width of the cutting element. The recessing is to be understood in relation to the cutting-edge plane, in relation to which this part of the long cutting-edge sections is disposed such that it is displaced in the height. It is substantial for the present invention that at least one part of the long straight cutting-edge section is both recessed and indented, i.e. that this arrangement differs, due to the combination of both mentioned features, from embodiments known in the prior art, that in part exclusively disclose recessing of cutting edges, such as by indentations, that penetrate the cutting edge or cutting edges with cutting-edge sections of different heights that are connected by transition areas. Surprisingly, it was found that the combination of the recessing as well as the indentation of a cutting-edge part in turning, where this part is used as an active cutting edge, enables the formation of a chip which breaks substantially more easily than for example possible with a straight cutting edge. In particular, the chip is curved according to the shape of the cutting edge of the long cutting edge as it is being detached also in cross section, which enables easier breaking of the chip.
Thus, preferably the indented and recessed part of the cutting-edge section is—apart from transition areas—parallel to adjacent cutting-edge sections. Ascending flank sections abut the indented and recessed cutting-edge sections as transition areas, respectively preferably at an angle of 10° to 90°, preferably of 40° to 50°. These flank sections serve for the formation of a chip that is curved in cross section.
Preferably, the cutting-edge corners each have a corner radius (R) of 0.05×B to 0.5×B, preferably of 0.1×B to 0.4×B, wherein B corresponds to the total width of the cutting element.
According to another design and as known in principle from the prior art, the cutting element preferably has a center plateau that is raised from the face relative to the planes defined by the cutting edges and that is offset at a distance from the cutting edges. In embodiments in which faces are provided on both the upper and the lower side, the respective center plateaus serve as support faces.
According to another design of the invention, the center plateau has projections whose longitudinal axes point toward a cutting corner or a short and/or long cutting-edge section. These projections serve as chip breakers that curve the chip being detached toward the “top” and thus make it break. In particular favorable for the breaking of the chip are center plateaus that merge into the face areas via surrounding descending flanks. These descending flanks form ascending flanks for curving up the chip that is being detached.
Further measures for forming and guiding the chip are realized by rib-shaped elevations disposed symmetrically to a bisecting line of a cutting corner or lying in its direction in the face and the height of which is less than that of the center plateau. These rib-shaped elevations can reach directly to this descending flank of the center plateau or, respectively, abut on it or end in front of this flank area. The rib-shaped elevations end on the other side at a spacing from the cutting edge or of a phase that is provided there.
According to another embodiment of the invention, further projections can originate from the center plateau that point toward the long cutting-edge sections and/or that are of a less height than the center plateau. Preferably, these further projections merge into the adjacent surrounding face areas via descending flanks and/or are designed crowned, i.e. convex.
According to another embodiment of the invention, also the short cutting-edge section can be recessed centrally at a part that merges via ascending flanks into the adjacent cutting-edge sections. The cutting edge thus has es only one recess in this area. In addition to the rib-shaped elevations that have already been described, also grooves can be provided as chip-breaking elements at a spacing from the cutting edge, that are in particular designed in a sickle-shape on the face.
Alternatively or additionally to the rib-shaped chip-breaking elements, chip-breaking elements can also be provided that are trapezoidal in the cross section and are separated from the cutting edge by a spacing that increases as height increases, that reach preferably to the center plateau. These raised chip-breaking elements extend as wedges toward the cutting edge and constitute a kind of “seizing ramp” for the chip that is detached, by means of which the chip gets a certain pre-curvature until it meets the ascending ramps of the center plateau.
According to another design of the invention, the cutting elements are mirror-symmetrical to a longitudinal center axis and/or a transverse center axis and/or a diagonal, so that every face is usable for counterclockwise as well as for clockwise turning or, respectively, as an indexable insert (by means of a rotation of 180° of the cutting element). When the upper and lower face also serve as mounting faces, a further mirror symmetry relative to a longitudinal center plane results or a cutting element that has es two usable faces with respective pairs of long and short cutting-edge sections.
Further advantages and examples of designs of the invention will be explained on the basis of the drawings, wherein
As it is evident from
As can be seen from
On the faces, different embossed or groove-shaped chip-breaking elements can be used as known in the prior art. As well, it is recommended to select on opposite sides designs of faces that have a center plateau 25 that serves at the rotation center of the cutting element as a support face in a cutting plate fit. This face plateau 25 can have be shaped as shown in
In the same manner, and as shown in the example of the cutting element according to
As shown schematically in
Number | Date | Country | Kind |
---|---|---|---|
103 46 790 | Oct 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2004/002144 | 9/24/2004 | WO | 00 | 3/24/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/039806 | 5/6/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4648760 | Karlsson et al. | Mar 1987 | A |
4859122 | Patterson et al. | Aug 1989 | A |
5203648 | Bohannan et al. | Apr 1993 | A |
6065907 | Ghosh et al. | May 2000 | A |
6234726 | Okada et al. | May 2001 | B1 |
6527486 | Wiman et al. | Mar 2003 | B2 |
D488176 | Kasperik et al. | Apr 2004 | S |
6848868 | Kasperik | Feb 2005 | B2 |
6957935 | Sung et al. | Oct 2005 | B2 |
7101121 | Wermeister et al. | Sep 2006 | B2 |
7182555 | Kitagawa et al. | Feb 2007 | B2 |
20010014259 | Inayama | Aug 2001 | A1 |
20050019111 | Kitagawa et al. | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070034063 A1 | Feb 2007 | US |