Embodiments of the present invention relate to earth-boring tools, cutting elements for such tools, and related methods.
Wellbores are formed in subterranean formations for various purposes including, for example, extraction of oil and gas from the subterranean formation and extraction of geothermal heat from the subterranean formation. Wellbores may be formed in a subterranean formation using a drill bit such as, for example, an earth-boring rotary drill bit. Different types of earth-boring rotary drill bits are known in the art including, for example, fixed-cutter bits (which are often referred to in the art as “drag” bits), rolling-cutter bits (which are often referred to in the art as “rock” bits), diamond-impregnated bits, and hybrid bits (which may include, for example, both fixed cutters and rolling cutters). The drill bit is rotated and advanced into the subterranean formation. As the drill bit rotates, the cutters or abrasive structures thereof cut, crush, shear, and/or abrade away the formation material to form the wellbore. A diameter of the wellbore drilled by the drill bit may be defined by the cutting structures disposed at the largest outer diameter of the drill bit.
The drill bit is coupled, either directly or indirectly, to an end of what is referred to in the art as a “drill string,” which comprises a series of elongated tubular segments connected end-to-end that extends into the wellbore from the surface of the formation. Often various tools and components, including the drill bit, may be coupled together at the distal end of the drill string at the bottom of the wellbore being drilled. This assembly of tools and components is referred to in the art as a “bottom hole assembly” (BHA).
The drill bit may be rotated within the wellbore by rotating the drill string from the surface of the formation, or the drill bit may be rotated by coupling the drill bit to a downhole motor, which is also coupled to the drill string and disposed proximate the bottom of the wellbore. The downhole motor may comprise, for example, a hydraulic Moineau-type motor having a shaft, to which the drill bit is mounted, that may be caused to rotate by pumping fluid (e.g., drilling mud or fluid) from the surface of the formation down through the center of the drill string, through the hydraulic motor, out from nozzles in the drill bit, and back up to the surface of the formation through the annular space between the outer surface of the drill string and the exposed surface of the formation within the wellbore.
In some embodiments, a cutting element for an earth-boring tool may include a diamond table positioned on a substrate, the diamond table having an indentation in a cutting face thereof. Additionally, the cutting element may include a shaped feature in the substrate at the interface between the diamond table and the substrate corresponding to the indentation in the cutting face of the diamond table.
In further embodiments, a cutting element for an earth-boring tool may include a diamond table positioned on a substrate, an indentation in a cutting face of the diamond table, and a sacrificial structure positioned within the indentation.
In additional embodiments, a method of forming a cutting element may include positioning a sacrificial structure in a mold and positioning a powdered precursor material over the sacrificial structure. The method may further include pressing and sintering the powdered precursor material to form a diamond table having an indentation in a cutting face formed by the sacrificial structure.
In yet further embodiments, an earth-boring tool may include at least one cutting element including a diamond table positioned on a substrate, an indentation in a cutting face of the diamond table, and a shaped feature in the substrate at the interface between the diamond table and the substrate corresponding to the indentation in the cutting face of the diamond table.
In additional embodiments, an earth-boring tool may comprise at least one cutting element and a depth-of-cut limiting feature. The at least one cutting element may comprise a diamond table positioned on a substrate and an indentation in a cutting face of the diamond table. The depth-of-cut limiting feature may be positioned on the earth-boring tool to facilitate interaction between uncut earth formation and the indentation in the cutting face of the diamond table during earth-boring operations.
In yet additional embodiments, a method of forming a cutting element may include positioning a powder preform adjacent a shaped mold, and pressing and sintering the powder preform to form a diamond table having an indentation in a cutting face formed by the shaped mold.
While the specification concludes with claims particularly pointing out and distinctly claiming what are regarded as embodiments of the present invention, various features and advantages of this invention may be more readily ascertained from the following description of example embodiments of the invention provided with reference to the accompanying drawings.
The illustrations presented herein are not actual views of any particular earth-boring tool, drill bit, or component of such a tool or bit, but are merely idealized representations which are employed to describe embodiments of the present invention.
As used herein, the term earth-boring tool means and includes any tool used to remove formation material and form a bore (e.g., a wellbore) through the formation by way of the removal of the formation material. Earth-boring tools include, for example, rotary drill bits (e.g., fixed-cutter or “drag” bits and roller cone or “rock” bits), hybrid bits including both fixed cutters and roller elements, coring bits, percussion bits, bi-center bits, reamers (including expandable reamers and fixed-wing reamers), and other so-called “hole-opening” tools.
As used herein, the term “cutting element” means and includes any element of an earth-boring tool that is used to cut or otherwise disintegrate formation material when the earth-boring tool is used to form or enlarge a bore in the formation.
During a drilling operation, the drill bit 10 may be coupled to a drill string (not shown). As the drill bit 10 is rotated within the wellbore, drilling fluid may be pumped down the drill string, through the internal fluid plenum and fluid passageways within the bit body 11 of the drill bit 10, and out from the drill bit 10 through the nozzles 18. Formation cuttings generated by the cutting elements 20 of the drill bit 10 may be carried with the drilling fluid through the fluid courses 13, around the drill bit 10, and back up the wellbore through the annular space within the wellbore outside the drill string.
The diamond table 24 may be formed on the cutting element substrate 22, or the diamond table 24 and the substrate 22 may be separately formed and subsequently attached together. The cutting element substrate 22 may be formed from a material that is relatively hard and resistant to wear. For example, the cutting element substrate 22 may be formed from and include a ceramic-metal composite material (which are often referred to as “cermet” materials). The cutting element substrate 22 may include a cemented carbide material, such as a cemented tungsten carbide material, in which tungsten carbide particles are cemented together in a metallic binder material. The metallic binder material may include, for example, cobalt, nickel, iron, or alloys and mixtures thereof. In some instances, cutting element substrate 22 may comprise two pieces, the piece immediately supporting diamond table 24 and on which is has been formed being bonded to another, longer piece of like diameter. In any case, the cutting elements 20 may be secured in pockets in blades 12 as depicted in
A circumferentially extending indentation 34 may be defined in the cutting face 26 of the cutting element 20. For example, a generally annular, arcuate indentation 34 may be defined in the cutting face 26 of the cutting element 20, as shown in
In additional embodiments, the path that the indentation 34 extends along may be defined by other shapes, rather than a path configured as an annulus or a circle. For example, the indentation 34 may extend along a path shaped generally as a polygon, such as a generally triangular path, as shown in
In additional embodiments, the path that the indentation 34 extends along may be generally shaped as a Reuleaux polygon (i.e., a curvilinear polygon built up of circular arcs), such as a path shaped generally as a Reuleaux triangle, as shown in
In yet additional embodiments, a transverse cross-sectional shape of the indentation 34 taken across a segment thereof may be defined by other shapes, in addition to a circular arc. For example, a cross-section of the indentation 34 may be generally defined as one or more of an elliptical arc (
The indentation 34 may be formed in the diamond table 24 after the diamond table 24 has been formed, such as by using electrical discharge machining (EDM), whereby a desired shape is achieved by using electrical discharges from an electrode (not shown). In some embodiments, the diamond table 24 may be moved relative an electrode having a shape of a desired cross-section of the indentation 34 (and/or the electrode may be moved along a desired path relative to the diamond table 24) to form the indentation 34. For example, an electrode having an arcuate shape may be lowered into the cutting face 26 of the diamond table 24, and then the diamond table 24 may be rotated to form an indentation 34 comprising an arcuate groove following an annular path. In additional embodiments, an electrode die having a negative shape of the desired indentation 34 (i.e., a protrusion), may be sunk into the cutting face 26 of the diamond table 24 to form the indentation 34.
In some embodiments, the indentation 34 in the diamond table 24 may include a sacrificial structure 42 positioned therein. For example, the sacrificial structure 42 may substantially fill the indentation 34 in the diamond table 24, such that a surface 44 of the sacrificial structure 42 may be substantially aligned and coplanar with the adjacent, substantially planar surfaces 36 of the cutting face 26 of the diamond table 24, as shown in
In such embodiments, the indentation 34 may be formed into the diamond table 24 during the formation of the diamond table 24. For example, the sacrificial structure 42 may be positioned within a mold (not shown) and powdered precursor material comprising diamond particles may be positioned over (e.g., around) the sacrificial structure 42. Then the powdered precursor material may be compacted and sintered in the presence of a catalyst mixed with the diamond particles or swept from an adjacent substrate as known in the art to form the diamond table 24, with the sacrificial structure 42 forming the indentation 34 in the diamond table 24. The entire sacrificial structure 42, or a portion thereof, may then be removed, such as by sandblasting, machining, acid leaching or another process, or the entire sacrificial structure 34, or a portion thereof, may remain positioned in the indentation to be removed by the formation during drilling operations. Additionally, for embodiments wherein the entire sacrificial structure 42, or a portion thereof, may then be removed, such as by sandblasting, machining, acid leaching or another process, the diamond table 24 may be machined, such as by an EDM process, to a final geometry.
In some embodiments, the sacrificial structure 42 may be positioned within the indentation 34 in the diamond table after the indentation 34 is formed therein, such as after a high pressure, high temperature (HPHT) process. For example, a sacrificial structure 42 may comprise one or more of a polymer, a glass, a ceramic, a cermet, a refractory metal, and a combination thereof that may be positioned within the indentation 34 of the diamond table. In view of this, the cutting face 26 of the cutting element 20 may appear substantially planar in an unused state, with the sacrificial structure 42 positioned therein. Upon wearing, the sacrificial structure 42 may wear away and the indentation 34 may become exposed for engagement with a formation during drilling operations.
In further embodiments, a powder perform, such as a diamond comprising powder contained in a cylindrical niobium cup, may be positioned adjacent a shaped mold, such as a mold having a shaped protrusion, during at least a portion of the sintering process. For example, the powder perform may be positioned adjacent the shaped mold (not shown) during a high pressure, high temperature (HPHT) process and a shape imparted by the shaped mold may be retained throughout a sintering cycle to form the indentation 34 in the diamond table 24. In further embodiments, the shape imparted by the mold may be near desired net shape of the indentation 34, and the final shape of the indentation 34 may be machined, such as by an EDM process, to a final geometry.
Optionally, the catalyst material may be removed from the hard polycrystalline material of the diamond table 24 after the HTHP process, as known in the art. For example, a leaching process may be used to remove catalyst material from interstitial spaces between the inter-bonded grains of the hard polycrystalline material of the diamond table 24. By way of example and not limitation, the hard polycrystalline material may be leached using a leaching agent and process such as those described more fully in, for example, U.S. Pat. No. 5,127,923 to Bunting et al. (issued Jul. 7, 1992), and U.S. Pat. No. 4,224,380 to Bovenkerk et al. (issued Sep. 23, 1980), the disclosure of each of which patent is incorporated herein in its entirety by this reference. Specifically, aqua regia (a mixture of concentrated nitric acid (HNO3) and concentrated hydrochloric acid (HCl)) may be used to at least substantially remove catalyst material from the interstitial spaces between the inter-bonded grains in the hard polycrystalline material of the diamond table 24. It is also known to use boiling hydrochloric acid (HCl) and boiling hydrofluoric acid (HF) as leaching agents. One particularly suitable leaching agent is hydrochloric acid (HCl) at a temperature of above 110° C., which may be provided in contact with the hard polycrystalline material of the diamond table 24 for a period of about 2 hours to about 60 hours, depending upon the size of the body comprising the hard polycrystalline material. After leaching the hard polycrystalline material, the interstitial spaces between the inter-bonded grains within the hard polycrystalline material may be at least substantially free of catalyst material used to catalyze formation of inter-granular bonds between the grains in the hard polycrystalline material. In some embodiments, leaching may be selectively applied to specific regions of the diamond table, and not to other regions. For example, in some embodiments, a mask may be applied to a region of the diamond table 24, such as the indentation 34 or a region of the indentation 34 in the diamond table 24, and only the unmasked regions may be leached.
Additionally, an outer surface of the diamond table 24 may be physically modified, such as by polishing to a smooth or mirrored finish. For example, an outer surface of the diamond table 24 may have a reduced surface roughness, such as described in U.S. Pat. No. 6,145,608, which issued on Nov. 14, 2000 to Lund et al. and is assigned to the assignee of the present application; U.S. Pat. No. 5,653,300, which issued Aug. 5, 1997 to Lund et al. and is assigned to the assignee of the present application; and U.S. Pat. No. 5,447,208, which issued Sep. 5, 1995 to Lund et al. and is assigned to the assignee of the present application, the disclosure of each of which is incorporated herein in its entirety by this reference.
In conventional PDC cutting elements, a cutting face or leading face of PDC might be lapped to a surface finish of 20 μ in (about 0.508 μm) to 40 μin. (about 1.02 μm) RMS (all surface finishes referenced herein being RMS), which is relatively smooth to the touch and visually planar (if the cutting face is itself flat), but which includes a number of surface anomalies and exhibits a degree of roughness which is readily visible to one even under very low power magnification, such as a 10× jeweler's loupe. However, an exterior surface of the diamond table 24 may be treated to have a greatly reduced surface roughness. As a non-limiting example, an exterior surface of the diamond table 24 may be polished a surface roughness of about 0.5 μin. (about 0.0127 μm) RMS.
In some embodiments, the surface roughness of a surface of the diamond table 24 may be reduced by lapping of the cutting face on conventional cast iron laps known in the art using progressively smaller diamond grit suspended in a glycol, glycerine or other suitable carrier liquid. The lapping may be conducted as a three-step process commencing with a 70 micron grit, progressing to a 40 micron grit and then to a grit of about 1-3 microns in size. In contrast, standard lapping techniques for a PDC cutting element 10, which may follow an initial electrodischarge grinding of the cutting face, finish lap in one step with 70 micron grit. By way of comparison of grit size, 70 micron grit is of the consistency of fine sand or crystalline material, while 1-3 micron grit is similar in consistency to powdered sugar.
In additional embodiments, the surface roughness of a surface of the diamond table 24 may be reduced by placing the surface in contact with a dry, rotating diamond wheel. For example, the Winter RB778 resin bonded diamond wheel, offered by Ernst Winter & Sons, Inc. of Travelers Rest, S.C. It may be important that the wheel be cooled as the diamond wheel is of resin bonded construction. Elevated temperatures may result in the destruction of the wheel. The nature of the polishing process may require that the abrasive surface be kept dry. However, the wheel may be moistened with water at the start of the polishing process to reduce drag and facilitate proper orientation of the diamond table 24 against the wheel. In addition, a temperature range wherein polishing may be effected may be between about 140° F. (about 60° C.) and about 220° F. (about 104° C.). While specific polishers employed may rotate at about 3500 RPM, it is believed that a range between about 3000 RPM and about 5000 RPM would likely be adequate. About 2 lb. force (about 0.9 Kg) to about 8 lb. force (about 3.6 Kg) may be applied to the diamond table 24 against the wheel. As noted, the finish of an exterior surface of the diamond table 24 may be smoothed to about 0.5 μin. (about 0.0127 μm) RMS or less surface finish roughness approaching a true “mirror” finish. It may take about fifty minutes to about an hour of polishing with the aforementioned diamond wheel to achieve this finish on a surface of a one-half inch (about 1.27 cm) diameter diamond table 24, and about one and one-half to about two hours for a nominal three-quarter inch (about 1.905 cm) diameter diamond table 24. This same method described for polishing a face of the diamond table 24 may also be applied to polish the chamfer 32, as well as the side of the diamond table 24. To polish such surfaces, the diamond table 24, held by the substrate 22, is disposed at the desired angle to the rotating wheel. The cutting element 20 may then be rotated about an axis of symmetry to smooth and polish the chamfer 32 or other side areas of the diamond table 24. Thus, one could smooth and polish a curved, ridged, waved or other cutting face of a diamond table 24 to remove and reduce both large and small asperities, resulting in a mirror finish cutting face which nonetheless is not flat in the absolute sense.
The cutting element cutting surfaces (cutting face, chamfer, side, etc.) may be polished by other methods, such as ion beams or chemicals, although the inherently inert chemical nature of diamond may make the latter approach somewhat difficult for diamond.
While an industry-standard PDC or other superhard cutting element may have a lapped surface finish on the cutting face with irregularities or roughness (measured vertically from the surface) on the order of 20 μin (about 0.508 μm) to 40 μin. (about 1.02 μm) RMS, as a result of the above-described polishing, some embodiments may have a diamond table 24 surface roughness between about 0.3 μin. RMS and about 0.5 μin. (about 0.0127 μm) RMS. Additional embodiments may have a diamond table 24 surface roughness between about 0.4 μin. (about 0.0102 μm) RMS and about 0.6 μin. (about 0.0152 μm) RMS. In yet additional embodiments, the diamond table 24 may have a surface roughness less than about 10 μin. (about 0.254 μm) RMS. In further embodiments, the diamond table 24 may have a surface roughness less than about 2 μin. (about 0.0508 μm) RMS. In yet further embodiments, the diamond table 24 may have a surface roughness less than about 0.5 μin. (about 0.0127 μm) RMS, approaching a true “mirror” finish. The foregoing surface roughness measurements of the diamond table 24 may be measured using a calibrated Hommel America Model T-4000 diamond stylus profilometer contacting the surface of the diamond table 24.
In view of the foregoing, selected surfaces of the diamond table 24 may be polished or otherwise smoothed to have a reduced surface roughness. In some embodiments, the substantially planar surfaces 36 of the cutting face 26 may have a reduced surface roughness. In further embodiments, the surface of the indentation 34 may have a reduced surface roughness. In yet further embodiments, the entire cutting face 26 of the diamond table 24 may have a reduced surface roughness. In additional embodiments, the chamfer 32 and/or other side surfaces of the diamond table 24 may have a reduced surface roughness. In yet additional embodiments, all of the exposed surfaces of the diamond table 24 may have a reduced surface roughness.
Referring now to
In top-hole drilling operations, such as first bit under surface (FBUS) drilling operations, the geometry of the cutting element 20 may provide improved aggressiveness for a given depth of cut (DOC). When drilling in relatively soft formations at high depths of cut, such as formations typically experienced during a FBUS drilling operation, increases in aggressivity can be achieved with the cutting elements 20 described herein, while maintaining standard back-rakes, which can increase durability and longevity of the cutting elements 20. As a non-limiting example, a DOC up to about 0.15 inch (about 3.8 mm) may be targeted in a drilling operation such as shown in
In some embodiments, a depth-of-cut limiting feature on an earth-boring tool may be positioned to facilitate interaction between uncut earth formation and an indentation 34 in the cutting face of the diamond table 24 during earth-boring operations. For example, the depth-of-cut limiting feature on an earth-boring tool may be one or more of an outer surface of a blade 12 of the drill bit 10 shown in
Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present invention, but merely as providing certain exemplary embodiments. Similarly, other embodiments of the invention may be devised which are within the scope of the present invention. For example, features described herein with reference to one embodiment may also be combined with features of other embodiments described herein. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims, are encompassed by the present invention.
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/327,484, filed Apr. 23, 2010, for “CUTTING ELEMENTS FOR EARTH-BORING TOOLS, EARTH-BORING TOOLS INCLUDING SUCH CUTTING ELEMENTS AND RELATED METHODS,” the disclosure of which is incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
61327484 | Apr 2010 | US |