The disclosure relates generally to cutting elements for earth-boring tools. More specifically, disclosed embodiments relate to non-planar interfaces between polycrystalline tables and substrates of cutting elements for earth-boring tools that may manage stress in regions of the polycrystalline table and interrupt crack propagation through the polycrystalline table.
Earth-boring tools for forming wellbores in subterranean earth formations may include cutting elements secured to a body. For example, fixed-cutter earth-boring rotary drill bits (also referred to as “drag bits”) include cutting elements that are fixedly attached to a bit body of the drill bit. Roller cone earth-boring rotary drill bits may include cones that are mounted on bearing pins extending from legs of a bit body such that each cone is capable of rotating about the bearing pin on which it is mounted. Cutting elements may extend from each cone of the drill bit.
The cutting elements used in such earth-boring tools often include polycrystalline diamond compact (PDC) cutting elements, also termed “cutters,” which are cutting elements including a polycrystalline diamond (PCD) material, which may be characterized as a superabrasive or superhard material. Such polycrystalline diamond materials are formed by sintering and bonding together relatively small synthetic, natural, or a combination of synthetic and natural diamond grains or crystals, termed “grit,” under conditions of high temperature and high pressure in the presence of a catalyst, such as, for example, cobalt, iron, nickel, or alloys and mixtures thereof, to form a layer of polycrystalline diamond material, also called a diamond table. These processes are often referred to as high temperature/high pressure (HTHP) processes. The polycrystalline diamond material may be secured to a substrate, which may comprise a cermet material, i.e., a ceramic-metallic composite material, such as, for example, cobalt-cemented tungsten carbide. In some instances, the polycrystalline diamond table may be formed on the cutting element, for example, during the HTHP sintering process. In such instances, cobalt or other catalyst material in the cutting element substrate may be swept among the diamond grains or crystals during sintering and serve as a catalyst material for forming a diamond table from the diamond grains or crystals. Powdered catalyst material may also be mixed with the diamond grains or crystals prior to sintering the grains or crystals together in an HTHP process. In other methods, however, the diamond table may be formed separately from the cutting element substrate and subsequently attached thereto.
As the diamond table of the cutting element interacts with the underlying earth formation, for example by shearing or crushing, the diamond table may delaminate, spall, or otherwise fracture because of the high forces acting on the cutting element and resulting high internal stresses within the diamond table of the cutting element. Some cutting elements may include non-planar interfaces, such as, for example, grooves, depressions, indentations, and notches, formed in one of the substrate and the diamond table, with the other of the substrate and the diamond table including corresponding, mating interface features. Illustrative non-planar interface designs are disclosed in, for example, U.S. Pat. No. 6,283,234, issued Sep. 4, 2001, to Torbet, U.S. Pat. No. 6,527,069, issued Mar. 4, 2003, to Meiners et al., U.S. Pat. No. 7,243,745, issued Jul. 17, 2007, to Skeem et al., and U.S. Pat. No. 8,020,642, issued Sep. 20, 2011, to Lancaster et al., the disclosure of each of which is incorporated herein in its entirety by this reference.
In some embodiments, cutting elements for earth-boring tools may comprise a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface may comprise a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface may be rounded.
In other embodiments, earth-boring tools may comprise a body and cutting elements secured to the body. At least one of the cutting elements may comprise a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface may comprise a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface may be rounded.
In still other embodiments, methods of forming cutting elements for earth-boring tools may comprise forming a substrate to have a non-planar end. The non-planar end comprises a cross-shaped groove extending into the substrate and L-shaped protrusions extending from a remainder of the substrate proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar end are shaped to be rounded. Particles of superhard material are positioned adjacent the non-planar end of the substrate in a container. The particles are sintered in a presence of a catalyst material to form a polycrystalline table secured to the substrate, with a non-planar interface being defined between the substrate and the polycrystalline table.
While the disclosure concludes with claims particularly pointing out and distinctly claiming embodiments within the scope of the disclosure, various features and advantages of embodiments encompassed by the disclosure may be more readily ascertained from the following description when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not meant to be actual views of any particular earth-boring tool, cutting element, non-planar interface, component thereof, or act in a method of forming such structures, but are merely idealized representations employed to describe illustrative embodiments. Thus, the drawings are not necessarily to scale.
Disclosed embodiments relate generally to non-planar interfaces between polycrystalline tables and substrates of cutting elements for earth-boring tools that may manage stress in regions of the polycrystalline table and interrupt crack propagation through the polycrystalline table. More specifically, disclosed are embodiments of non-planar interfaces that may strengthen high-stress regions within the polycrystalline table, interrupt crack propagation tending to extend circumferentially around the polycrystalline table, and reduce stress concentrations associated with conventional non-planar interface designs.
As used herein, the term “earth-boring tool” means and includes any type of bit or tool used for removing earth material during the formation or enlargement of a wellbore in a subterranean formation. For example, earth-boring tools include fixed-cutter bits, rolling cone bits, impregnated bits, percussion bits, core bits, eccentric bits, bicenter bits, mills, reamers, drag bits, hybrid bits, and other drilling bits and tools known in the art.
As used herein, the terms “polycrystalline table” and “polycrystalline material” mean and include any structure or material comprising grains (e.g., crystals) of a material (e.g., a superabrasive material) that are bonded directly together by inter-granular bonds. The crystal structures of the individual grains of the material may be randomly oriented in space within the polycrystalline table. For example, polycrystalline tables include polycrystalline diamond compacts (PDCs) characterized by diamond grains that are directly bonded to one another to form a matrix of diamond material with interstitial spaces among the diamond grains.
As used herein, the terms “inter-granular bond” and “interbonded” mean and include any direct atomic bond (e.g., covalent, metallic, etc.) between atoms in adjacent grains of superabrasive material.
As used herein, the term “superhard” means and includes any material having a Knoop hardness value of about 3,000 Kgf/mm2 (29,420 MPa) or more. Superhard materials include, for example, diamond and cubic boron nitride. Superhard materials may also be characterized as “superabrasive” materials.
As used herein, the phrase “substantially completely removed” when used in connection with removal of catalyst material from a polycrystalline material means and includes removal of all catalyst material accessible by known catalyst removal processes. For example, substantially completely removing catalyst material includes leaching catalyst material from all accessible interstitial spaces of a polycrystalline material by immersing the polycrystalline material in a leaching agent (e.g., aqua regia) and permitting the leaching agent to flow through the network of interconnected interstitial spaces until all accessible catalyst material has been removed. Residual catalyst material located in isolated interstitial spaces, which are not connected to the rest of the network of interstitial spaces and are not accessible without damaging or otherwise altering the polycrystalline material, may remain.
As used herein, the term “L-shaped” means and includes any shape defined by two rays extending from an intersection, wherein an angle defined by the rays is between 80° and 100°. For example, L-shapes include right angles, T-squares, perpendicular rays, and other known L-shapes.
Referring to
Referring to
The polycrystalline table 116 may be positioned on an end of a substrate 118 and secured to the substrate 118. The substrate 118 may comprise a hard material suitable for use in earth-boring applications such as, for example, a ceramic-metallic composite material (i.e., a cermet) (e.g., cemented tungsten carbide), and may be formed in a generally cylindrical shape. The polycrystalline table 116 may be secured to the substrate 118 by, for example, a continuous metal material extending into the polycrystalline table 116 and the substrate 118, such as, for example, matrix material of the substrate 118 that has infiltrated among and extends continuously into the interstitial spaces of the polycrystalline table 116. An interface 120 between the polycrystalline table 116 and the substrate 118, defined by their abutting surfaces, may be non-planar. The non-planar interface 120 of the cutting element 112 may be configured to strengthen high-stress regions within the polycrystalline table 116, interrupt crack propagation tending to extend circumferentially around the polycrystalline table 116, and reduce stress concentrations associated with conventional non-planar interface designs.
Referring collectively to
A depth D of the cross-shaped feature 124, as measured from a planar surface 134 at a periphery of the end 122 of the substrate 118 extending into the substrate 118 or into the polycrystalline table 116 (see
The non-planar end 122 of the substrate 118 may include L-shaped features 136 located proximate corners of the cross-shaped feature 124 in each quadrant defined by the cross-shaped feature 124, which L-shaped features 136 are depicted as L-shaped protrusions extending away from the remainder of the substrate 118 in the embodiment of
A height H of each L-shaped feature 136, as measured from the planar surface 134 at a periphery of the end 122 of the substrate 118 extending into the substrate 118 or into the polycrystalline table 116 (see
A width WLSF of each arm 138 of the L-shaped features 136 may be greater than or equal to the greatest width WCSF of each radially extending feature 130 of the cross-shaped feature 124. For example, the width WLSF of each arm 138 of the L-shaped features 136 may be at least about 1.25 times, at least about 1.5 times, or even at least about 1.75 times greater than the greatest width WCSF of each radially extending feature 130 of the cross-shaped feature 124. The width WLSF of each arm 138 of the L-shaped features 136 may be, for example, between about 1.00 mm and about 3.00 mm. As a specific, non-limiting example, the width WLSF of each arm 138 of the L-shaped features 136 may be about 2.00 mm.
In embodiments where each L-shaped feature 136 comprises an L-shaped protrusion extending away from the remainder of the substrate 118, the L-shaped feature 136 may strategically weaken regions where the polycrystalline table 116 (see
Transitions between surfaces defining the non-planar end 122 of the substrate 118 may be rounded. For example, a radius of curvature of each transition between surfaces defining the non-planar end 122 may be about 0.5 times the depth D of the cross-shaped feature 124 or greater. More specifically, the radius of curvature of each transition between surfaces defining the non-planar end 122 may be at least about 0.75 times the depth D of the cross-shaped feature 124, at least equal to the depth D of the cross-shaped feature 124, or at least 1.25 times the depth D of the cross-shaped feature 124. The radius of curvature of each transition between surfaces defining the non-planar end 122 may be, for example, at least about 0.25 mm. As a specific, non-limiting example, radiuses of curvature of each transition between surfaces defining the non-planar end 122 may be about 0.6 mm. In some embodiments, different transitions between different surfaces defining the non-planar end 122 (e.g., between the planar surface 134 and the L-shaped features 136, and between the L-shaped features 136 and the cross-shaped feature 124, between surfaces of each individual L-shaped feature 136 or of each cross-shaped feature 124) may exhibit different radiuses of curvature. In other embodiments, each transition may have the same radius of curvature. Because the features 124 and 136 described herein are curved, the location at which one feature 124 or 136 ends and another 124 or 136 begins may not be readily visible. Accordingly, the height H, depth D, and widths WCSF and WLSF described previously herein are to be measured from a point where the feature 124 or 136 intersects with the elevation of the planar surface 134. By making all transitions rounded, the non-planar interface 120 (see
Referring collectively to
A width WCF of each curved feature 140 may be less than or equal to the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. For example, the width WCF of each curved feature 136 may be about 1.0 time or less, about 0.75 times or less, or about 0.5 times or less than the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. The width WCF of each curved feature 140 may be, for example, between about 1.25 mm and about 0.50 mm. As a specific, non-limiting example, the width WCF of each curved feature 136 may be about 0.75 mm. A height HCF of each curved feature 140, as measured from the planar surface 134 at the periphery of the end 122 of the substrate 118 extending into the substrate 118 or into the polycrystalline table 116 (see
Referring collectively to
A width WT of each trench 142 may be less than the width WCF of its associated curved feature 140. For example, the width WT of each trench 142 may be about 0.5 times or less, about 0.25 times or less, or about 0.125 times or less than the width WCF of its associated curved feature 140. The width WT of each trench 142 may be, for example, between about 0.75 mm and about 0.12 mm. As a specific, non-limiting example, the width WT of each trench 142 may be about 0.25 mm. A depth DT of each trench 142, as measured from an uppermost point on its associated curved feature 140 extending into or away from the curved feature 140, may be less than or equal to the height HCF of the associated curved feature 140. For example, the depth DT of each trench 142 may be about 0.75 times or less, or about 0.50 times or less, or about 0.25 times or less than the height HCF of each associated curved feature 140. The depth DT of each curved feature 140 may be, for example, between about 0.75 mm and about 0.25 mm. As a specific, non-limiting example, the depth DT of each trench 142 may be about 0.50 mm. The trenches 142 may interrupt crack propagation within the polycrystalline table 116 (see
Referring collectively to
A slope of each tapered surface 144 may be less than or equal to the height H of each L-shaped feature 136 divided by the length of an arm 138 of each L-shaped feature. For example, the slope of each tapered surface 144 may be less than or equal to the height H of each L-shaped feature 136 divided by the length of an arm 138 as measured from a radially outermost point of the arm 138 at an elevation of the planar surface 134 to a radially innermost point of the arm 138 at the elevation of the planar surface 134. The slope of each tapered surface 144 may be, for example, between about 0.50 and about 0.10. As a specific, non-limiting example, the slope of each tapered surface 144 may be about 0.30. The sloped surfaces 144 may strategically weaken the polycrystalline table 116 (see
Referring collectively to
A greatest width WPSF of each pear-shaped feature 148 taken in a direction perpendicular to the axis of symmetry 150 of a respective pear-shaped feature 148 may be less than or equal to the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. For example, the greatest width WPSF of each pear-shaped feature 148 may be about 1.0 time or less, about 0.75 times or less, or about 0.5 times or less than the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. The greatest width WPSF of each pear-shaped feature 148 may be, for example, between about 1.25 mm and about 0.50 mm. As a specific, non-limiting example, the greatest width WPSF of each pear-shaped feature 148 may be about 0.75 mm. A length LCF of each pear-shaped feature 148 taken in a direction parallel to the axis of symmetry 150 of a respective pear-shaped feature 148 may be greater than or equal to the greatest width WPSF of the pear-shaped feature 148. For example, the length LPSF of each pear-shaped feature 148 may be about 1.0 time or greater, about 1.1 times or greater, or about 1.25 times or greater than the greatest width WPSF of the pear-shaped feature 148. The length LPSF of each pear-shaped feature 148 may be, for example, between about 1.50 mm and about 0.50 mm. As a specific, non-limiting example, the length LPSF of each pear-shaped feature 148 may be about 1.00 mm. A height HPSF of each pear-shaped feature 148, as measured from the planar surface 134 at the periphery of the end 122 of the substrate 118 extending into the substrate 118 or into the polycrystalline table 116 (see
Referring collectively to
A width WCA of each concentric arc 152 may be less than the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. For example, the width WCA of each concentric arc 152 may be about 0.50 times or less, about 0.25 times or less, or about 0.125 times or less than the greatest width WCSF of the radially extending features 130 of the cross-shaped feature 124. The width WCA of each concentric arc may be, for example, between about 0.75 mm and about 0.10 mm. As a specific, non-limiting example, the width WCA of each concentric arc 152 may be about 0.25 mm. A height HCA of each concentric arc 152, as measured from the tapered surface 144 extending into the substrate 118 or into the polycrystalline table 116 (see
In some embodiments, the polycrystalline table 116 (see
Referring to
Additional, non-limiting embodiments within the scope of the present disclosure include, but are not limited to, the following:
A cutting element for an earth-boring tool comprises a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface comprises a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface are rounded.
The cutting element of Embodiment 1, further comprising a tapered surface in an area between arms of each of the L-shaped grooves, the tapered surface extending from an intersect point of each of the L-shaped grooves toward the one of the substrate and the polycrystalline table.
The cutting element of Embodiment 2, further comprising concentric grooves extending from each tapered surface into the other of the substrate and the polycrystalline table, wherein the concentric grooves do not intersect with the arms of the L-shaped grooves and a center of curvature of each of the concentric grooves is located at a central axis of the cutting element.
The cutting element of Embodiment 2, further comprising a pear-shaped depression extending from each tapered surface into the other of the substrate and the polycrystalline table, wherein an axis of symmetry of the pear-shaped depression bisects an angle defined between the arms of each of the L-shaped grooves.
The cutting element of Embodiment 4, wherein a depth of each pear-shaped depression is less than a depth of each of the L-shaped grooves.
The cutting element of Embodiment 1, further comprising a curved groove extending between arms of each of the L-shaped grooves into the other of the substrate and the polycrystalline table, wherein a center of curvature of each curved groove is located at a central axis of the cutting element and wherein the curved grooves do not intersect with the arms of the L-shaped grooves.
The cutting element of Embodiment 6, wherein a circle defined by connecting outermost points of the arms of the L-shaped grooves also defines an outermost extent of the curved grooves.
The cutting element of Embodiment 6 or Embodiment 7, further comprising a trench formed in each curved groove extending into the one of the substrate and the polycrystalline table, wherein the trench follows the curve of each curved groove.
The cutting element of any one of Embodiments 1 through 8, wherein a depth of the cross-shaped groove is less than a depth of each of the L-shaped grooves.
The cutting element of any one of Embodiments 1 through 9, wherein the transitions between the surfaces defining the non-planar interface have a radius of curvature of at least 0.25 mm.
An earth-boring tool comprises a body and cutting elements secured to the body. At least one of the cutting elements comprises a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface comprises a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface are rounded.
A method of forming a cutting element for an earth-boring tool comprises forming a substrate to have a non-planar end. The non-planar end comprises a cross-shaped groove extending into the substrate and L-shaped protrusions extending from a remainder of the substrate proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar end are shaped to be rounded. Particles of superhard material are positioned adjacent the non-planar end of the substrate in a container. The particles are sintered in a presence of a catalyst material to form a polycrystalline table secured to the substrate, with a non-planar interface being defined between the substrate and the polycrystalline table.
The method of Embodiment 12, further comprising forming the non-planar end to comprise a tapered surface in an area between arms of each of the L-shaped grooves, the tapered surface extending from an intersect point of each of the L-shaped grooves toward the remainder of the substrate.
The method of Embodiment 13, further comprising forming the non-planar end to comprise concentric protrusions extending from each tapered surface away from the remainder of the substrate, wherein the concentric protrusions do not intersect with the arms of the L-shaped protrusions and a center of curvature of each of the concentric protrusions is located at a central axis of the substrate.
The method of Embodiment 13, further comprising forming the non-planar end to comprise a pear-shaped protrusion extending from each tapered surface away from the remainder of the substrate, wherein an axis of symmetry of the pear-shaped protrusion bisects an angle defined between the arms of each of the L-shaped protrusions.
The method of Embodiment 12, further comprising forming the non-planar end to comprise a curved protrusion extending between arms of each of the L-shaped protrusions into the substrate, wherein a center of curvature of each curved protrusion is located at a central axis of the substrate and wherein the curved protrusions do not intersect with the arms of the L-shaped protrusions.
The method of Embodiment 16, wherein forming the non-planar end to comprise the curved protrusion extending between the arms of each of the L-shaped protrusions comprises forming an outermost extent of each curved protrusion to coincide with a circle defined by connecting outermost points of the arms of the L-shaped protrusions.
The method of Embodiment 16 or Embodiment 17, further comprising forming the non-planar end to comprise a trench extending toward the substrate formed in each curved protrusion, wherein the trench follows the curve of each curved protrusion.
The method of any one of Embodiments 12 through 18, further comprising forming a depth of the cross-shaped groove to be less than a height of each of the L-shaped protrusions.
The cutting element of any one of Embodiments 12 through 18, further comprising pressing the non-planar end of the substrate against the particles to impart an inverse shape of the non-planar end to the particles.
While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that the scope of the disclosure is not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made to produce embodiments within the scope of the disclosure, such as those hereinafter claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being within the scope of the disclosure, as contemplated by the inventors.