The present invention relates generally to the field of sawmills. More particularly, the present invention relates to a cutting fluid delivery controller for a portable sawmill having a cutting blade, and methods and systems for controlling delivery of cutting fluid to a saw blade in a portable sawmill.
A sawmill typically includes three main components, namely, a bed, a carriage, and a saw head. The bed is adapted to support a log extending horizontally along the bed. The carriage is mounted to the bed for horizontal movement along the length of the log, and the saw head is mounted to vertical posts on the carriage. The vertical posts of the carriage permit vertical movement of the saw head relative to the carriage, and the carriage is adapted for horizontal movement along the bed. The saw head typically includes a band saw blade to cut the log as the carriage is moved horizontally along the bed. U.S. Pat. No. 4,275,632 to Ross, and U.S. Pat. No. 7,784,387 to Dale disclose examples of such a sawmill.
It is known to employ systems which cool and lubricate the saw blade with a cutting fluid. The cutting fluid washes away swarf and keeps the saw blade cool and lubricated. The cutting fluid preferably serves as a liquid coolant to reduce or regulate the temperature of the saw blade, by removing heat generated by friction between the surfaces of the saw blade and the workpiece material, and by reducing friction between the surfaces of the saw blade and the workpiece material. Preferred cutting fluids have high thermal capacity, low viscosity, are low-cost, non-toxic, chemically inert, and neither cause nor promote corrosion of the saw blade or other components of the sawmill. In some applications, it may also be preferable for the cutting fluid to be an electrical insulator.
It has been found that sawmills work better when the saw blade is kept cool and lubricated with a cutting fluid. The cutting fluid helps keep the saw blade pitch-free, improves cutting performance, and extends the life of the saw blade.
There are various kinds of cutting fluids, which include oils, oil-water emulsions, pastes, gels, aerosols (mists), and air or other gases. They may be made from petroleum distillates, animal fats, plant oils, water and air, or other raw ingredients. Depending on context and on which type of cutting fluid is being considered, it may be referred to as cutting fluid, cutting oil, cutting compound, coolant, or lubricant.
In the case of portable sawmills, the cutting fluid is often water, and the source may be, for example, a public utility supplying the water via a water tap, or a reservoir tank supplying the water by gravity feed.
The flow of the cutting fluid from the source to the saw blade may be regulated by a simple on/off valve, separate from the throttle control which is used to regulate the operating speed of the sawmill's motor. When the simple on/off valve is in the on position, cutting fluid is discharged on the saw blade at a maximum rate, which is suitable for operating the saw blade at normal cutting speed, but is wasteful when the saw blade is stopped, or being operated at below normal cutting speed. On the other hand, the saw blade can be damaged or worn prematurely when the simple on/off valve is inadvertently left off while the saw blade is being operated at the normal cutting speed to cut the workpiece material.
In conventional sawmills equipped with a saw blade lubrication system having a simple on/off valve such as the one described above, the operator turns on the valve before use, which, in turn, releases the cutting fluid onto the saw blade. In order to conserve cutting fluid and minimize a muddy or wet cutting environment, it is common for the operator to turn the valve off after completing a cut through the log. The operator will keep the valve off as he adjusts the sawmill for the next cut, and then turn the valve on immediately before starting the next cut. These additional steps of turning the valve off and on between cuts through the log increases the amount of effort and time required by the operator to complete the log cutting task.
Attempts have been made in the prior art to address the problems described above in relation to known ways of regulating the flow of the cutting fluid from the source to the saw blade.
U.S. Pat. No. 8,215,216 to Dale is one example of a blade lubrication system for a sawmill having a blade, chain or band saw, and a control mechanism for activating the blade, chain or band. The blade lubrication system automatically activates cooling and cleaning of the blade, or band when the control mechanism is activated, and automatically deactivates the cooling and cleaning of the blade, chain or band when the control mechanism is deactivated. The blade lubrication system uses a plurality of Bowden cables to allow an operator to simultaneously regulate a saw throttle and a blade lubrication controller. The blade lubrication controller is a simple, commercially available slam latch, having a pull and bolt. The bolt is spring biassed in an outwards direction to clamp closed a malleable, elastic or flexible hose used to deliver blade lubricant from a reservoir to the saw blade, by applying pressure to the external surface of the hose. Pulling on the pull withdraws the bolt inwards to unclamp the hose, thereby allowing the blade lubricant to flow from the reservoir through the hose to contact the blade when it emerges from the end of the hose. The throttle control is connected to the pull by a blade lubrication inner cable. The throttle control is also connected to a saw throttle by a separate throttle inner cable. In this way, the blade lubrication system is triggered in conjunction with the triggering of the saw throttle, such that the blade is lubricated only when the throttle is on and the blade is cutting a log.
A problem with the Dale system is that it relies on multiple cables to operate the saw throttle and the blade lubrication system, increasing material costs, and labour costs associated with adjusting the cables. Another problem with the Dale system is that over time, the slam latch will wear down and damage the lubrication hose, causing it to leak. The risk of damage to the lubrication hose may be elevated in cold weather conditions, since the lubrication hose will be more brittle, and less flexible when it is cold. Yet another problem with the Dale system is that over time, the lubrication hose will not return to a fully open position when the bolt of the slam latch is withdrawn, resulting in a reduction in the maximum flow of blade lubricant from the reservoir to the blade.
As a potential solution to the problems associated with the Dale system, Wood-mizer LLC, of Indianapolis, Ind., U.S.A., manufactures sawmills including saw blade lubrication systems that use a solenoid valve to turn the flow of water to the saw blade on and off. The solenoid valve is positioned in a hose between a water reservoir and the saw blade. The solenoid valve is energized by electrical power, causing it to open to allow water to flow on to the saw blade, when the operator squeezes a handle of a throttle control to increase the speed of the motor to drive the saw blade to a normal cutting speed. The solenoid valve is energized by an alternator driven by the motor. The solenoid valve either gradually opens as the charge requirement is met, or the solenoid valve opens completely only after the charge requirement is met (i.e. 12 volts). When the operator releases the handle to bring the speed of the motor down to an idle speed, thereby stopping the saw blade, the solenoid valve is de-energized, causing the solenoid valve to close to block water from flowing on to the saw blade.
However, a problem with the Wood-mizer saw blade lubrication system, and others of its type which rely on a solenoid valve to regulate the flow of cutting fluid, is that it requires a source of electrical power to operate. Typically, sawmills with smaller motors do not have a source of electrical power sufficient to actuate a solenoid valve. In particular, the sawmill may not come equipped with any source of electrical power, or the source of electrical power may not be sufficient to actuate the needed solenoid valve. Other problems with saw blade lubrication systems that utilize solenoid valves are the added manufacturing costs associated with the solenoid valves, and the added risks of component failure associated with electrical components such as solenoid valves, as compared to their mechanical counterparts.
Accordingly, there is a continuing need for improvements in sawmills.
What is desired therefore, is a sawmill which overcomes at least some of the problems associated with the prior art.
According to a preferred embodiment of the present invention, there is disclosed a cutting fluid delivery system for a sawmill, and a sawmill incorporating the same. Preferably, the sawmill may have a saw blade driven by a motor, such as, for example, an internal combustion engine. The speed of the motor is preferably regulated by a throttle assembly having an idle speed position and a cutting speed position. The cutting fluid delivery system includes a cutting fluid delivery controller having a valve assembly configured to automatically turn on a flow of the cutting fluid to the saw blade when the throttle assembly is set to the cutting speed position, and to automatically turn off the flow of the cutting fluid when the throttle assembly is set to the idle speed position. Preferably, the cutting fluid delivery controller interconnects the valve assembly and the throttle assembly to allow the operator to simultaneously control operation of the saw blade, and the flow of cutting fluid to the saw blade, with a single operator manipulable actuator.
Therefore, according to one aspect of the present invention, there is disclosed a cutting fluid delivery controller for controlling a flow of a cutting fluid from a cutting fluid reservoir to a saw blade in a sawmill, said sawmill being of the type having a motor for driving the saw blade, and a throttle lever for regulating an operating speed of the motor, the throttle lever being movable between an idle speed position and a cutting speed position, said controller comprising:
According to another aspect of the present invention, there is disclosed a sawmill comprising the cutting fluid delivery controller mentioned above.
According to yet another aspect of the present invention, there is disclosed a throttle assembly for a sawmill, said throttle assembly comprising the cutting fluid delivery controller mentioned above.
According to yet another aspect of the present invention, there is disclosed a use of the cutting fluid delivery controller mentioned above, in a sawmill to control said flow of said cutting fluid from said cutting fluid reservoir to said saw blade.
According to yet another aspect of the present invention, there is disclosed a method of controlling delivery of cutting fluid to a saw blade in a sawmill, said sawmill being of the type having a motor for driving the saw blade, and a throttle lever for regulating an operating speed of the motor, the lever being movable between an idle speed position and a cutting speed position, said method comprising the step of:
Reference will now be made to the preferred embodiments of the present invention with reference, by way of example only, to the following drawings in which:
The present invention is described in more detail with reference to exemplary embodiments thereof as shown in the appended drawings. While the present invention is described below including preferred embodiments, it should be understood that the present invention is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments which are within the scope of the present invention as disclosed and claimed herein.
A sawmill 10 according to an embodiment of the present invention is shown in
With continued reference to
Although, the preferred saw head 24 includes a band saw, it is contemplated that the band saw may be replaced with another known type of saw. By way of example only, such other known types of saws may include a chain saw, a reciprocating saw, a circular saw, and the like. All such embodiments are comprehended by the present invention.
With reference now to
While good results have been obtained using water as the cutting fluid, there are various other known kinds of cutting fluids which may be used, such as, oils, oil-water emulsions, and the like. They may be made from petroleum distillates, animal fats, plant oils, water and air, or other raw ingredients. All such embodiments are comprehended by the present invention.
Preferably, the cutting fluid delivery system includes a cutting fluid reservoir 32, a cutting fluid delivery controller 34, a cutting fluid discharge outlet 36, and conduits 38 operatively connected together to provide a pathway for the cutting fluid from the cutting fluid reservoir 32, through the cutting fluid delivery controller 34 to the cutting fluid discharge outlet 36, and out onto the saw blade 26. Preferably, the cutting fluid discharge outlet 36 may include a cutting fluid applicator in the form of a spout 40 extending from a blade guide 42, and aimed so as to deliver the cutting fluid onto the blade 26.
Preferably, the cutting fluid reservoir 32 may be a container sized and shaped to hold a sufficient amount of cutting fluid to last through 4 to 8 hours of cutting, depending on the flow rate of the cutting fluid to the blade 26. Good results have been obtained by sizing and shaping the cutting fluid reservoir 32 to hold 3 to 13 litres of liquid cutting fluid. As another example, the cutting fluid reservoir 32 may be a public utility supplying water via a water tap, for example.
The conduits 38 are preferably flexible polyurethane, rubber, or rubber-like hoses, which are compatible with the cutting fluid, having an inside diameter of ¼ inch. What is important is that the cutting fluid pathway, including the conduits 38, the cutting fluid discharge outlet 36, and the spout 40 are sized to allow a desirable flow rate for the cutting fluid therethrough by gravity flow.
Preferably, the cutting fluid reservoir 32 may be mounted to the top of the frame 22, at a height above the height of the cutting fluid discharge outlet 36, to ensure that the cutting fluid flows out of the cutting fluid discharge outlet 36 by gravity flow, when the operator engages an operator manipulable actuator 44.
However, it is also contemplated that in other embodiments of the present invention, the cutting fluid reservoir 32 may be omitted and replaced with a direct or indirect connection of a source of cutting fluid, such as a water tap, to the cutting fluid delivery controller 34. As above, it will be important to ensure that the cutting fluid pathway, including the conduits 38, the cutting fluid discharge outlet 36, and the spout 40 are sized to allow a desirable flow rate for the cutting fluid by gravity flow, or by pressure flow, as the case may be. An operator adjustable restriction valve may also be included in the cutting fluid pathway to help regulate the flow rate.
Preferably, the flow rate from the spout 40 may be adjustable by the user to enable him or her to set the flow rate of between about 0.091 litres/minute (i.e. a fast drip), and about 0.272 litres/min (i.e. a stream), inclusive. Most preferably, the user may set the flow rate to the fast drip of about 0.091 litres/min.
The cutting fluid delivery controller 34 may preferably be connected to the operator manipulable actuator 44 by a throttle link 46, such as for example, a Bowden cable, and mounted to a handle 48 attached to the side of the frame 22 for easy access, as shown in
As best seen in
As can be seen, the cutting fluid delivery controller 34 preferably includes a frame member, such as for example the bracket 54 shown comprising a pair of apertures 56 sized and shaped to allow a pair of threaded fasteners 58 to secure the bracket 54 to matching threaded bores (not shown) in the motor 28. Preferably, the pair of apertures 56 are slot, or oval shaped to allow the bracket 54 to be adjusted left or right before being secured by tightening of the threaded fasteners 58. By way of example only, good results have been obtained by using M10 hex bolts for fasteners 58.
One end of a resiliently biassing member, such as a spring 60, may preferably be attached to the throttle lever 50, and the other end of the spring 60 may be attached to the bracket 54 on one side 62 of the throttle lever 50 so as to bias the throttle lever 50 to its idle speed position. Preferably, the bracket 54 may include a flange 64 positioned at one end 66 of the bracket 54 to provide an attachment point for the other end of the spring 60.
Preferably, the throttle lever 50 is also operably attached to the operator manipulable actuator 44 via the throttle link 46, as mentioned above. As shown, throttle link 46 may preferably include a Bowden cable having its outer sheath 68 terminating in an adjustable guide such as for example a cable thimble 70 adjustably mounted to the other end 72 of the bracket 54. Preferably, the cable thimble 70 may be threadingly carried by a threaded bore in the bracket 54. In this way, turning the cable thimble 70 one way adjusts the cable thimble 70 in one of a first direction away from the threaded bore, and a second direction toward the threaded bore, and turning the cable thimble 70 the other way adjusts the cable thimble in the other of the first direction and the second direction.
The inner cable 74 of the Bowden cable is adjustably secured to throttle lever 50 with a set screw 76. In this way, when the operator engages the manipulable actuator 44, the inner cable 74 withdraws and pulls the throttle lever 50 towards the other end 72 of the bracket 54, into its cutting speed position, against the bias of spring 60. When the operator disengages the manipulable actuator 44, spring 60 pulls the throttle lever 50 towards the one end 66 of the bracket 54, into its idle speed position, thereby extending the inner cable 74 from the outer sheath 68.
Although, including the adjustable guide for the throttle link 46 is preferred, it is contemplated that other embodiments may omit the adjustable guide and instead include a simple passageway in the bracket 54, for the throttle link 46 to pass through to the throttle lever 50. An aperture, a channel, a groove, a C-shaped opening, and the like are examples of such passageways. All such embodiments of the present invention are comprehended by the present invention.
Preferably, a valve assembly 78 is also attached to the other end 72 of the bracket 54, on the other side 80 of the throttle lever 50. A preferred valve assembly 78 is a MJV-2 normally-closed stem valve (available from Clippard Instrument Laboratory, Inc., Cincinnati, Ohio, U.S.A.) having a pair of ⅛ inch NPT, ¼ inch barbed hose fittings 82 attached to its ⅛ inch NPT inlet and outlet connectors 81, 83. One barbed hose fitting 82 is connected to the conduit 38 from the cutting fluid reservoir 32, while the second barbed hose fitting 82 is connected to the conduit 38 to the cutting fluid discharge outlet 36. Preferably, the valve assembly 78 may have a depressable valve actuator, such as for example a stem 84. When stem 84 is depressed to a depressed position, the cutting fluid is able to pass through the valve assembly 78 via a fluid flow path between the inlet 81 and the outlet 83 (i.e. the valve assembly 78 is open, or unblocked), and when the stem 84 of the valve assembly 78 is released, it is preferably biassed to an extended position, in which the cutting fluid is prevented from passing through the valve assembly 78 via the fluid flow path between the inlet 81 and the outlet 83 (i.e. the valve assembly 78 is closed, or blocked).
The valve assembly 78 is preferably attached to the other end 72 of the bracket 54 so that the stem 84 is oriented to extend generally towards the throttle lever 50, and a valve actuation tab 86 may be positioned between the stem 84 and the other side 80 of the throttle lever 50. When present, the valve actuation tab 86 may be resiliently attached to a post in the form of an M6×30 flat head screw 90, with a compression spring 88, a M6 washer 92, and a M6 lock nut 94, in the path of the throttle lever 50, to allow the valve actuation tab 86 to be deflected from its initial position, towards the stem 84, when struck by the throttle lever 50, as will be explained in more detail below. Preferably, the flat head screw 90 may be positioned at a height above the stem 84, and parallel to the stem 84, so that the valve actuation tab 86 may hang downwardly from the flat head screw 90 to a height below the stem 84.
Mounting of the valve actuation tab 86 resiliently in this manner, using a compression spring 88 or the like is preferred because it allows the valve actuation tab 86 to pivot in two axes (i.e. a vertical axis, and a horizontal axis), as well as translocate, relative to the flat head screw 90, to better engage with the other side 80 of the throttle lever 50. However, it is contemplated that in other embodiments of the present invention, the valve actuation tab 86 may be mounted to permit free pivoting in only one axis, or to permit only translocation along one axis, whether in a resilient or non-resilient manner, so long as, the valve actuation tab 86 will still function as an intervening member to allow a pushing force to be transferred from the throttle lever 50 to the stem 84, to cause the stem 84 to depress when the throttle lever 50 is pulled into the cutting speed position. Most preferably, the throttle lever 50 may be pivotally and/or slidably movable between the idle speed position and the cutting speed position. All such embodiments are comprehended by the present invention.
Preferably, the valve actuation tab 86 may include a passageway, such as for example an aperture 87 (or a channel, a groove, a c-shaped opening, etc.) to allow the inner cable 74 to pass through the valve actuation tab 86 to the throttle lever 50, without interfering with the valve actuation tab 86. Good results have been obtained by aligning the aperture 87 (or other passageway in the valve actuation tab 86) with the cable thimble 70 (or other passageway in the bracket 54), to allow the inner cable 74 to pass on through to the throttle lever 50.
It will now be understood that
With reference now to
In contrast to
What is important is that the cutting fluid delivery controller 34 is configured such that engaging the operator manipulable actuator 44 pulls the throttle lever 50 into the cutting speed position, which causes the stem 84 of the valve assembly 78 to depress, thereby allowing cutting fluid to flow through the valve assembly 78 to the blade 26. The provision of the valve actuation tab 86 between the stem 84 and the throttle lever 50 may be used to allow the stem 84 to be offset from the path of the throttle lever 50, and still be depressed by pulling the throttle lever 50 into the cutting speed position.
Accordingly, it is contemplated that the valve actuation tab 86 may be omitted entirely in other embodiments of the invention, for example where the path of throttle lever 50 aligns with the stem 84 such that pulling the throttle lever 50 to the cutting speed position is sufficient to depress the stem 84. It is also contemplated that the valve actuation tab 86 may be fixedly attached to, or integrally formed with, the throttle lever 50, such that the valve actuation tab 86 will strike the stem 84 to cause it to depress, when the throttle lever 50 is pulled to its cutting speed position. In some embodiments, an extension member (not shown) may also need to be attached to the throttle lever 50 to extend a length thereof. All such embodiments are comprehended by the present invention.
The components shown in
The cutting fluid delivery controller 34 may be provided in the form of a kit for assembly and attachment to a sawmill 10, or it may be provided preassembled and ready for installation in a sawmill 10. Furthermore, the cutting fluid delivery controller 34 may be provided with instructions for assembly and/or attachment to said sawmill 10. As another example, the cutting fluid delivery controller 34 may be provided as part of a throttle assembly 30, apart from the sawmill 10.
Advantageously, the cutting fluid delivery controller 34 may be used in methods of retrofitting a conventional sawmill to provide a sawmill 10 having a cutting fluid delivery system according to embodiments of the present invention. It will be appreciated that such methods may include providing and attaching to the conventional sawmill a cutting fluid reservoir 32, and an operator manipulable actuator 44, providing and attaching to the saw head of the conventional sawmill a cutting fluid discharge outlet 36, providing and attaching to the motor of the conventional sawmill a cutting fluid delivery controller 34, providing and attaching a conduit 38 between the cutting fluid reservoir 32 and the cutting fluid delivery controller 34, providing and attaching a conduit 38 between the cutting fluid delivery controller 34 and the cutting fluid discharge outlet 36, and providing and attaching a throttle link 46 between the operator manipulable actuator 44 and the cutting fluid delivery controller 34.
Also advantageous is the fact that embodiments of the present invention may provide one or more of the following benefits:
Also advantageous is the fact that embodiments of the present invention may provide auto lubrication of a blade 26 in a sawmill 10 wherein a single throttle link 46, such as a Bowden cable may be employed to simultaneously actuate the valve assembly 78 to commence delivery of the lubricant to the blade 26, and the throttle assembly to commence driving the blade 26. Furthermore, the ergonomic effort to depress the operator manipulable actuator 44 is not increased.
Also advantageous is the fact that the embodiments of the present invention may provide auto lubrication of a blade 26 in a sawmill 10 without requiring a source of electrical power to deliver the lubricant to the blade 26.
While reference has been made to various preferred embodiments of the invention other variations, implementations, modifications, alterations and embodiments are comprehended by the broad scope of the appended claims. Some of these have been discussed in detail in this specification and others will be apparent to those skilled in the art. Those of ordinary skill in the art having access to the teachings herein will recognize these additional variations, implementations, modifications, alterations and embodiments, all of which are within the scope of the present invention, which invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
3041479 | Apr 2019 | CA | national |
3079275 | Apr 2020 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
2746495 | Greenlaw | May 1956 | A |
2838825 | Knollenberg | Jun 1958 | A |
3097675 | Benedict | Jul 1963 | A |
3188010 | James | Jun 1965 | A |
4275632 | Ross | Jun 1981 | A |
6000387 | Lee | Dec 1999 | A |
7784387 | Dale | Aug 2010 | B2 |
8215216 | Dale | Jul 2012 | B2 |
20050081690 | Biro | Apr 2005 | A1 |
20090255390 | Chaffin | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20200353640 A1 | Nov 2020 | US |