Cutting insert and machining tool

Information

  • Patent Grant
  • 12186813
  • Patent Number
    12,186,813
  • Date Filed
    Tuesday, June 29, 2021
    3 years ago
  • Date Issued
    Tuesday, January 7, 2025
    19 days ago
Abstract
A cutting insert for a machining tool having a cutting edge and a flute extending along the cutting edge is described. A chip breaker element which projects into the interior of the flute is disposed in the flute. Said chip breaker element comprises a chip guiding surface and each point of the chip guiding surface has a spacing from a flute contour that is greater than zero. The chip guiding surface furthermore either extends parallel to the flute contour and/or curved along two directions. A machining tool having such a cutting insert is presented as well.
Description
RELATED APPLICATION DATA

The present application claims priority pursuant to 35 U.S.C. § 119(a) to German Patent Application Number 102020117101.3 filed Jun. 29, 2020 which is incorporated herein by reference in its entirety.


FIELD

The invention relates to a cutting insert for a machining tool having a cutting edge and a flute which extends along the cutting edge, whereby a chip breaker element which projects into the interior of the flute is disposed in the flute.


The invention further relates to a machining tool, in particular a turning tool, comprising such a cutting insert.


BACKGROUND

Such machining tools and cutting inserts are known from the state of the art. These are typically designed such that the flute separates the cutting edge from a fastening portion of the cutting insert. In other words, the flute is disposed between the cutting edge and a fastening portion of the cutting insert as a trench-like depression. It goes without saying that the flute is disposed on the same side of the cutting edge as the rake face.


A chip breaker element is typically used to create a multidimensional stress state within a chip lifted from a workpiece by means of the cutting insert, so that the chip breaks.


Of course, the chip breaker element may only offer a comparatively low resistance to the chip flow directed away from the workpiece, so that the chip breaker element does not prevent the chips from flowing away from the workpiece. Chip breaker elements have to therefore always be designed for the stress field of good chip breaking, which is facilitated by comparatively large chip breaker elements, and reliable chip evacuation from the workpiece, which is facilitated by comparatively small chip breaker elements.


SUMMARY

The object of the invention is to further improve such cutting inserts and associated machining tools. The intent is to eliminate or at least mitigate the conflict of objectives between reliable chip breaking and low-resistance chip evacuation. A cutting insert is therefore to be specified by means of which the chips can easily be guided away from a machined workpiece, while at the same time being reliably broken.


The object is achieved by a cutting insert of the abovementioned type, in which the chip breaker element comprises a chip guiding surface and each point of the chip guiding surface has a spacing from a flute contour that is greater than zero. The chip guiding surface furthermore either extends parallel to the flute contour and/or curved along two directions. In other words, the chip guiding surface of the chip breaker element is raised from the flute contour. Of course, the chip guiding surface can merge into the flute contour via one or more transition surfaces. However, the transition surfaces have to then be designed such that at least some points of the transition surfaces coincide with the flute contour. These points are therefore not spaced apart from the flute contour and are consequently not to be regarded as chip guiding surfaces. A parallel course of the chip guiding surface to the flute contour can be seen particularly well when looking at the chip guiding surface along a course direction of the flute. The spacing between the chip guiding surface and the flute contour is then constant. If the flute contour is curved, the chip guiding surface in that variant is curved as well. If the chip guiding surface is alternatively or additionally curved along a second direction, this curvature preferably occurs with reference to a straight line oriented along the course of the flute. In this context, a curvature is understood to be a deviation from a straight course. Such chip breaker elements present only a comparatively low resistance to chip flow. The chips can thus flow away from the workpiece to be machined comparatively easily. At the same time, the chip guiding surface can create a multidimensional stress state within the chips, so that they break in the desired manner. The abovementioned conflict is thus resolved or at least mitigated.


Of course, in this context, it is not excluded for the cutting insert according to the invention to additionally be equipped with further chip breaker elements which may be known per se. Such chip breaker elements can be disposed inside the flute. This can further boost the breaking of the chips.


The cutting edge of the cutting insert can be straight or curved.


In one embodiment, the chip breaker element is spaced apart from a cutting edge-side edge of the flute. The chip breaker element therefore does not extend to the cutting edge-side edge of the flute. An influence of the chip breaker element on the machining process is thus excluded or at least kept to a minimum. This is in particular true for the undisturbed flow of chips out of the machining zone.


In plan view, the chip breaker element can include an angle of less than 90° with the cutting edge. In other words, the chip breaker element is inclined relative to the cutting edge. It is thus particularly easy to create a multidimensional stress state within the chips so that they break in the desired manner. This moreover defines a direction along which the chips are discharged from the machining zone.


The cutting edge preferably connects two corners of the cutting insert. The corners, too, can be used for machining. The cutting insert in particular comprises three or more corners, which are respectively connected to a cutting edge in pairs.


According to one variant, a chip guide finger is provided in an end region of the flute adjoining one of the corners and is positioned in the flute. The chip guide finger is curved in both plan view and in a view along the course of the flute. The chip guide finger also serves to guide chips out of the process zone. The chip guide finger furthermore deforms the chips. A multidimensional stress state can thus be created in the chips to cause them to break. If cutting edges with flutes exist on both sides of a corner, chip guiding fingers can be provided in both end regions of the respective flutes adjoining the corner. In that case, the chip guide fingers can be implemented as a double finger element.


The chip guide finger is advantageously positioned closer to the associated corner than the chip breaker element. The chip guide fingers and the chip breaker element are thus disposed along the cutting edge with a specific spacing. The chips can thus easily be discharged and caused to break along the entire cutting edge.


The chip guide finger can furthermore have a smaller spacing to the cutting edge than the chip breaker element. This, too, serves to reliably discharge and break the chips.


At least one first chamfer can be provided at the transition from the cutting edge to the flute. Such a chamfer can be referred to as a protective chamfer. Its purpose is to transfer tensile stresses into compressive stresses in the rake face-side region of the cutting edge and thus protect the cutting edge from high cutting forces. This results in a long service life for the cutting insert.


To that end, the first chamfer can have a chamfer angle of −2° to 6° and/or a chamfer width of 0.05 mm to 0.5 mm.


A second chamfer, which is separate from the first chamfer, or a transition radius can be provided at the transition from the cutting edge to the flute as well. Thus, in a first variant, two chamfers are provided between the cutting edge and the flute which differ in particular in terms of their angle and/or in terms of their width. In a second variant, a chamfer and a transition radius are provided. This makes it possible to achieve a particularly smooth transition between the cutting edge and the flute.


A chamfer angle of the second chamfer can be in the range from −2° to 6°.


A chamfer width of the second chamfer can be in a range from 0.05 mm to 0.5 mm.


A size of the transition radius preferably results from the fact that it merges tangentially into adjoining surfaces on both sides. The size of the transition radius can change along the cutting edge, depending on the course of the surfaces to be connected.


In one embodiment, a chamfer angle and/or a chamfer width of the first chamfer and/or a chamfer angle and/or a chamfer width of the second chamfer changes or change along the cutting edge. In the event that the chamfer angles overall are in the negative range, the chamfer angle is preferably more positive in the region of the corner in order to reduce cutting forces, and more negative in the central region of the cutting edge in order to stabilize the cutting edge. This results in a good compromise between a long service life for the cutting insert and a high machining performance.


An edge delimiting the first chamfer and/or the second chamfer can be rounded. This results in a smooth transition between the cutting edge and the flute.


The rounding can have a radius of 0.2 mm to 1 mm.


In an alternative, a deflection channel for coolant is provided on an upper side of the cutting insert in an installed position of the cutting insert. Consequently, coolant can be directed into the machining zone and/or onto the cutting edge via the deflection channel. As a result, a high cooling capacity can be achieved. This applies in particular to cutting depths of more than 1.5 mm.


In this context, the deflection channel in particular comprises at least one deflection geometry by means of which a jet of coolant can be deflected. To do this, the jet has to hit the deflection geometry. A wall of the deflection channel, for example, represents such a deflection geometry. Said wall is then disposed at a specific angle, non-parallel to a jet direction. In such a case, the deflection channel must in particular be distinguished from a clearance, which serves only to allow a jet of coolant to pass as freely as possible.


An outlet-side end of the deflection channel can then be directed toward the cutting edge. The deflection channel can therefore be used to direct coolant onto the cutting edge in order to cool it in a targeted manner. This also takes place in particular outside a region of a corner of the cutting insert.


Alternatively or additionally, a central axis of the outlet-side end of the deflection channel can extend parallel to a tangent to the chip breaker element. Coolant can therefore be introduced comparatively directly into a machining zone for cooling, whereby regions spaced apart from a corner and an associated corner radius can preferably be cooled as well. This also creates a kind of lubricating film on the chip breaker element, which reduces friction and wear as the chips slide off the chip breaker element.


The cutting insert is preferably an indexable insert. The cutting insert then comprises a plurality of cutting edges and a plurality of corners. Such an indexable insert is polygonal, for example.


The object is further achieved by a machining tool of the abovementioned type, which comprises a cutting insert according to the invention. The effects and advantages already mentioned with regard to the cutting insert result for the cutting tool as well.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained below with the aid of different design examples, which are shown in the accompanying drawings. The figures show:



FIG. 1 a machining tool according to the invention comprising a cutting insert according to the invention in a perspective view,



FIG. 2 the cutting insert of FIG. 1 in an isolated perspective view,



FIG. 3 the cutting insert of FIG. 2 in a view onto an upper side,



FIG. 4 the cutting insert of FIG. 2 in a view onto an underside of the cutting insert,



FIG. 5 the cutting insert of FIGS. 2 to 4 in a side view along the direction V in FIG. 3,



FIG. 6 the cutting insert of FIGS. 2 to 5 in a side view along the direction VI in FIG. 3,



FIG. 7 an enlarged section VII of the cutting insert of FIG. 2,



FIG. 8 the section of FIG. 7 in plan view,



FIG. 9 the section of FIG. 7 in a different perspective view,



FIG. 10 a detail view of a chip breaker element of the cutting insert of FIG. 2,



FIG. 11 another detail view of the chip breaker element of FIG. 10,



FIG. 12 a detail view of a chip breaker element according to an alternative, and



FIG. 13 another detail view of the chip breaker element of FIG. 12.





DETAILED DESCRIPTION


FIG. 1 shows a machining tool 10, which in the embodiment shown is a turning tool.


The machining tool 10 comprises a tool holder 12, to which a cutting insert 14 is attached.


The cutting insert 14 here is implemented as an indexable insert, which is diamond shaped in plan view.


Two outlet openings 16, 18 for coolant are additionally provided on the tool holder 12. These openings are oriented such that a respective exiting coolant jet 20, 22 is directed toward the cutting insert 14. As will be explained later, the cutting insert 14 is configured such that at least the coolant jet 22 divides into a first coolant subjet 22a and a second coolant subjet 22b.


The cutting insert 14 has a total of four cutting edges 26 on its upper side 24, which respectively connect adjacent corners 28 to one another.


A flute 30 disposed as a depression in the region of a rake face of the cutting edge 26 extends along each one of the cutting edges 26.


The flutes 30 are therefore respectively positioned between an associated cutting edge 26 and a central fastening opening 32 of the cutting insert 14.


Since all four cutting edges 26 and the associated flutes 30 are configured in the same way in the shown example, there is no need to distinguish between them in the following.


A first chamfer 34 and a second chamfer 36, which are separate from one another, are provided at the transition of the cutting edge 26 to the associated flute 30.


The edges delimiting the chamfers 34, 36 are rounded.


The first chamfer 34 in the shown design example has a chamfer angle that is substantially constant over the entire length of the associated cutting edge 26.


The same applies to a chamfer width of the first chamfer 34. This, too, is substantially constant along the entire length of the associated cutting edge 26.


Of course, in this context it is also possible for the chamfer angle and/or the chamfer width to change along the cutting edge 26, i.e. not be constant.


In the region of the corners 28 delimiting the associated cutting edge 26, the second chamfer 36 is respectively implemented with a first chamfer angle that differs from a second chamfer angle assumed by the second chamfer 36 in a central region 38.


The second chamfer 36 slopes more steeply toward the associated flute 30 in the region of the corners 28 than in the central region 38. In other words, the first chamfer angle is larger than the second chamfer angle in terms of magnitude.


Since, in accordance with the customary designations, both the first chamfer angle and the second chamfer angle assume negative values, the second chamfer angle, i.e. the chamfer angle in the central region 38, can be described as being more positive than the first chamfer angle, i.e. the chamfer angle in the region of the corners 28.


A chamfer width of the second chamfer 36 also changes along the associated cutting edge 26. The second chamfer 36 has a greater chamfer width in the region of the corners 28 than in the central region 38.


In this context, both the chamfer angle and the chamfer width change continuously along the associated cutting edge 26.


In other not shown examples, the second chamfer angle can alternatively be greater in terms of magnitude than the first chamfer angle.


The cutting insert 14 is equipped with various elements for guiding and breaking chips.


These will be explained in the following with reference to FIGS. 7 to 11, which show the region of a corner 28 of the cutting insert 14 as an example. The other corner regions are configured in the same way.


A chip guide finger 40 is disposed in an end region of the flute 30 adjoining a corner 28 delimiting the cutting edge 26.


Starting from a flute contour of the flute 30, it has a height of 0.02 mm to 0.3 mm.


It is furthermore curved in plan view, i.e. in a view onto the upper side 24. This is symbolized by the indicated line of curvature 42 in FIG. 8.


An associated radius of curvature is in the range from 0.8 mm to 6 mm.


The chip guide finger 40 is furthermore also curved in a view along a course 44 of the associated flute 30. This is symbolized by the indicated line of curvature 46 in FIG. 7.


An associated radius of curvature can be 1 mm to 3 mm.


It goes without saying that the contour of the chip guide finger 40 can also be composed of a plurality of curves.


The chip guide finger 40 serves to direct chips away from a workpiece to be machined. The chip guide finger 40 moreover creates multidimensional stress states within the chips to be guided away so that they break.


A chip breaker element 48 is further provided on a side of the chip guide finger 40 opposite to the respective associated corner 28.


The chip breaker element 48 is likewise disposed in the flute 30 and projects into the interior of the flute 30.


The chip breaker element 48 comprises a chip guiding surface 50 which is raised from a flute contour defining the flute 30.


This means that each point of the chip guiding surface 50 has a spacing from the flute contour that is greater than zero. This is in particular visible in a view along the course 44 of the associated flute 30.


The flute contour is understood to be the entirety of the surfaces defining the geometry of the flute 30. The flute contour of the flute 30 therefore in particular includes a flute base and flute walls.


In the embodiment shown in FIGS. 1 to 11, the chip guiding surface 50 extends parallel to the associated flute contour.


This means that each point of the chip guiding surface 50 has substantially the same spacing from the flute contour of the flute 30, whereby the flute contour is imagined to continue underneath the chip guiding surface 50.


This spacing can be 0.02 mm to 0.1 mm.


The chip breaker element 48 starts at an edge of the flute 30 facing away from the cutting edge 26 and ends with a specific spacing from a cutting edge-side edge of the flute 30.


In plan view, the chip breaker element 48 furthermore includes an angle 52 of substantially 50° with the cutting edge 26.


The cutting insert 14 also comprises another chip breaker element 54 in the central region 38, which includes a chip guiding surface 56.


In contrast to the chip breaker element 54, however, the chip guiding surface 56 now extends from the flute contour of the flute 30 in a substantially ramp-like manner.


The chip breaker elements 48, 54 also serve to place chips into a multidimensional stress state that promotes their breaking.


The cutting insert 14 is further provided with deflection channel 58 for coolant.


These are disposed on the upper side 24.


The deflection channels 58 each comprise a first end 58a that faces the respective associated outlet opening 16, 18 and a second end 58b that faces the respective associated cutting edge 26.


The first end 58a can therefore also be referred to as the inlet-side end and the second end 58b can be referred to as the outlet-side end.


The outlet-side end 58b is directed toward the cutting edge 26.


A central axis of the deflection channels 58 at the outlet-side end 58b moreover extends substantially parallel to a tangent to the chip breaker element 48.


The coolant can thus flow past the chip breaker element 48 substantially unhindered.


In the embodiment shown, a wall 62 of the deflection channel 58 further serves to deflect a portion of the coolant jet 20, 22 (see also FIG. 1).


The first coolant subjet 22a is thus directed toward the corner 28 and a second coolant subjet 22b is directed toward a region of the cutting edge 26 spaced apart from the corner 28.



FIGS. 12 and 13 show a cutting insert 14, in which the chip breaker element 48 is configured according to one variant.


The chip guiding surface 50 now no longer extends parallel to a flute contour of the flute 30.


The chip guiding surface 50 is instead curved along two directions.


This results in a curvature along a first direction 64 because the chip breaker element 48 assumes the curvature of the contour of the flute 30.


The chip guiding surface 50 is also curved along a second direction 66, however, that corresponds substantially to the course 44 of the flute.


In other words, the chip guiding surface 50 in the second variant deviates from a straight course along the directions 64, 66.


In this variant, the spacing of the chip guiding surface 50 from the flute contour varies from 0.02 mm to 0.1 mm.


It goes without saying that the two mentioned variants of the chip guiding surface 50 can also be present in combinations.


The chip guiding surface 50 then extends both parallel to the flute contour of the flute 30 and curved along two directions. This can be the case if the flute contour is curved along two directions and the chip guiding surface 50 extends parallel to it.


The chip breaker element 48 according to the second variant also serves to place chips into a multidimensional stress state and thus cause them to break.


As already mentioned, the cutting insert 14 is implemented as an indexable insert. An underside 68 of the cutting insert 14 can therefore be configured in the same manner as the upper side 24.

Claims
  • 1. A cutting insert for a machining tool, comprising: a cutting edge connecting two corners of the cutting insert, a first chamfer proximate the cutting edge;a second chamfer disposed between the first chamfer and a flute, the flute having a surface defining a flute contour;a first chip breaker element projecting into an interior of the flute;a second chip breaker element disposed only in a central region approximately midway between the two corners of the cutting insert, the second chip breaker element including a chip guiding surface extending from the flute contour of the flute; anda chip guide finger disposed in an end region of the flute,wherein the first chip breaker element comprises a first chip guiding surface higher in elevation than the flute contour along an entire length of the chip guiding surface, andwherein the chip guide finger is positioned between one of the two corners of the cutting insert and the chip breaker element.
  • 2. The cutting insert according to claim 1, wherein the first chip breaker element is spaced apart from a cutting edge-side edge of the flute.
  • 3. The cutting insert according to claim 1, wherein, in plan view, the first chip breaker element includes an angle of less than 90° with respect to the cutting edge.
  • 4. The cutting insert according to claim 1, further comprising a deflection channel on an upper side of the cutting insert for directing coolant toward the cutting edge.
  • 5. The cutting insert according to claim 4, wherein an outlet-side end of the deflection channel is directed toward the cutting edge.
  • 6. The cutting insert according to claim 5, wherein a central axis of the outlet-side end of the deflection channel extends parallel to a tangent to the chip breaker element.
  • 7. The cutting insert according to claim 1, wherein the cutting insert is an indexable insert.
  • 8. A machining tool having a cutting insert according to claim 1.
  • 9. The machining tool of claim 8, wherein the machining tool is a turning tool.
  • 10. A cutting insert for a machining tool, comprising: a cutting edge connecting two corners of the cutting insert;a first chamfer proximate the cutting edge;a second chamfer disposed between the first chamfer and a flute, the flute having a surface defining a flute contour;a first chip breaker element projecting into an interior of the flute;a second chip breaker element disposed only in a central region approximately midway between the two corners of the cutting insert, the second chip breaker element including a chip guiding surface extending from the flute contour of the flute; anda chip guide finger disposed in an end region of the flute,wherein the first chip breaker element comprises a first chip guiding surface higher in elevation than the flute contour along an entire length of the chip guiding surface,wherein the chip guide finger is positioned between one of the two corners of the cutting insert and the chip breaker element,wherein the first chamfer has a first chamfer angle, the first chamfer a first chamfer width that is substantially constant over an entire length of the first chamfer, andwherein the second chamfer has a second chamfer angle and a second chamfer width that continuously changes along an entire length of the second chamfer.
  • 11. The cutting insert according to claim 10, wherein the second chamfer angle of the second chamfer proximate the two corners is more negative in magnitude than in a central region of the cutting insert.
  • 12. The cutting insert according to claim 10, wherein the second chamfer width of the second chamfer proximate the two corners is greater in magnitude than in a central region of the cutting insert.
  • 13. The cutting insert according to claim 10, wherein the first chamfer angle is substantially constant along the entire length of the first chamfer.
  • 14. The cutting insert according to claim 1, wherein, in plan view, the chip guide finger is curved along a line of curvature having a radius of curvature between about 0.8 mm and about 6 mm.
  • 15. A cutting insert for a machining tool, comprising: a cutting edge connecting two corners of the cutting insert;a first chamfer proximate the cutting edge;a second chamfer adjoining the first chamfer;a flute adjoining the second chamfer, the flute having a surface defining a flute contour;a first chip breaker element projecting into an interior of the flute;a second chip breaker element disposed only in a central region approximately midway between the two corners of the cutting insert, the second chip breaker element including a chip guiding surface extending from the flute contour of the flute; anda chip guide finger disposed in an end region of the flute adjoining one of the two corners of the cutting insert,wherein the first chip breaker element comprises a chip guiding surface higher in elevation than the flute contour along an entire length of the chip guiding surface, andwherein the first chip breaker element is formed at an angle less than 90° with respect to the cutting edge.
  • 16. The cutting insert according to claim 15, wherein the chip guiding surface is curved in a first direction at an angle with respect to the cutting edge and in a second direction that follows a course of the flute.
Priority Claims (1)
Number Date Country Kind
102020117101.3 Jun 2020 DE national
US Referenced Citations (98)
Number Name Date Kind
3968550 Gehri Jul 1976 A
4215957 Andersson Aug 1980 A
4318645 McCreery Mar 1982 A
4411565 Hazra et al. Oct 1983 A
4441841 Mori Apr 1984 A
4685844 McCreery et al. Aug 1987 A
4969779 Barten Nov 1990 A
5000626 Bernadic et al. Mar 1991 A
5006020 Roos Apr 1991 A
5011340 Pettersson et al. Apr 1991 A
5044839 Takahashi Sep 1991 A
5056963 Kameno Oct 1991 A
5203649 Katbi et al. Apr 1993 A
5215415 Fukuoka Jun 1993 A
5221164 Allaire Jun 1993 A
5222843 Katbi Jun 1993 A
5249894 Bernadic et al. Oct 1993 A
5372463 Takahashi et al. Dec 1994 A
5437522 Satran et al. Aug 1995 A
5449255 Katbi Sep 1995 A
5456557 Bernadic Oct 1995 A
5549424 Bernadic et al. Aug 1996 A
5577867 Paya Nov 1996 A
5688081 Paya Nov 1997 A
5704737 Alford Jan 1998 A
5722803 Battaglia et al. Mar 1998 A
5743681 Wiman et al. Apr 1998 A
5758994 Hintze Jun 1998 A
5772365 Vogel et al. Jun 1998 A
5791832 Yamayose Aug 1998 A
5876154 Enderle Mar 1999 A
5921722 Paya Jul 1999 A
5924824 Satran et al. Jul 1999 A
6164878 Satran et al. Dec 2000 A
6186705 Kumar et al. Feb 2001 B1
6234726 Okada May 2001 B1
6241430 Norstrom Jun 2001 B1
6267541 Isakov Jul 2001 B1
6447218 Lagerberg Sep 2002 B1
6599061 Nelson Jul 2003 B1
7341408 Kratz Mar 2008 B2
7438508 Alm Oct 2008 B2
7455483 Koskinen Nov 2008 B2
7758287 Alm Jul 2010 B2
8342779 Kobayashi Jan 2013 B2
8585330 Yamazaki et al. Nov 2013 B2
8616810 Kaufmann Dec 2013 B2
8690496 Komatsuka Apr 2014 B2
8702354 Schleinkofer et al. Apr 2014 B2
8777525 Löf Jul 2014 B2
8814480 Cohen Aug 2014 B2
8967920 Krishtul Mar 2015 B2
8997610 Ishida Apr 2015 B2
9278395 Matsuo et al. Mar 2016 B2
9302326 Höfermann Apr 2016 B2
9409237 Majima Aug 2016 B2
9511422 Scherman et al. Dec 2016 B2
9586264 Dufour et al. Mar 2017 B2
9707625 Onodera Jul 2017 B2
10076788 Krishtul Sep 2018 B2
10286455 Tomoda May 2019 B2
10442006 Inoue Oct 2019 B2
20020159846 Horiike et al. Oct 2002 A1
20050019111 Kitagawa et al. Jan 2005 A1
20050244232 Jonsson Nov 2005 A1
20060188347 Kratz Aug 2006 A1
20060228179 Alm et al. Oct 2006 A1
20070071559 Koskinen Mar 2007 A1
20070166545 Tanibuchi et al. Jul 2007 A1
20080193231 Jonsson Aug 2008 A1
20080219784 Yamazaki Sep 2008 A1
20080253848 Alm et al. Oct 2008 A1
20080292415 Kuroda Nov 2008 A1
20100003089 Horiike Jan 2010 A1
20100275749 Kobayashi Nov 2010 A1
20110020073 Chen Jan 2011 A1
20110033252 Nishida Feb 2011 A1
20110070039 Park et al. Mar 2011 A1
20110070040 Park et al. Mar 2011 A1
20110142555 Yamazaki et al. Jun 2011 A1
20120128438 Tanaka May 2012 A1
20120170987 Komatsuka Jul 2012 A1
20120198973 Schleinkofer et al. Aug 2012 A1
20120308318 Burtscher Dec 2012 A1
20130064613 Krishtul Mar 2013 A1
20130094914 Majima Apr 2013 A1
20130236258 Nada et al. Sep 2013 A1
20130251468 Lof Sep 2013 A1
20130272808 Cohen Oct 2013 A1
20140286717 Lof et al. Sep 2014 A1
20140286718 Scherman et al. Sep 2014 A1
20150063926 Wu Mar 2015 A1
20150336175 Krishtul Nov 2015 A1
20170320143 Lof Nov 2017 A1
20180169767 Inoue Jun 2018 A1
20180257146 Deguchi et al. Sep 2018 A1
20190314901 Sakai Oct 2019 A1
20210008637 Nagae Jan 2021 A1
Foreign Referenced Citations (12)
Number Date Country
102317018 Jan 2012 CN
106312113 Jan 2017 CN
10308234 Sep 2004 DE
2570211 Jul 2014 EP
2093379 Sep 1982 GB
H10118810 Dec 2001 JP
5260924 Aug 2013 JP
WO9939853 Aug 1999 WO
WO2009005218 Jan 2009 WO
WO2013038405 Mar 2013 WO
WO2018042957 Mar 2018 WO
WO-2019189406 Oct 2019 WO
Non-Patent Literature Citations (6)
Entry
CN-102317018-A Machine Translation (Year: 2023).
Aug. 23, 2022 Office action (3 months) (US Only) US App. No. 20220097145.
Mar. 16, 2023 Non-Final Office Action U.S. Appl. No. 17/490,300, 6 Pages.
Aug. 2, 2023 Foreign Office Action Chinese Application No. CN20211179274, 2 Pages.
May 4, 2023 Foreign Office Action Chinese Application No. CN202110690566.1, 2 Pages.
Sep. 13, 2023 Notice of Allowance for U.S. Appl. No. 17/490,300, 7 Pages.
Related Publications (1)
Number Date Country
20210402488 A1 Dec 2021 US