The present invention relates to a cutting insert for turning according to the preamble of the independent claim 1.
Many of the cutting inserts found today have some form of projection near the nose-cutting edge in order to form, lead, and/or angle the chip flow. Because of said design, high pressures have to be used to enable to lift formed chips by means of a high-pressure jet. This entails higher costs because of expensive equipment and expensive operation. Furthermore, known cutting inserts entail high cutting forces. A known cutting insert has recesses, preferably near the cutting edge or even breaking through the cutting edge. The latter geometry cannot be used in practice in dry machining, since the edge will be weakened.
An object of the present invention is to provide a cutting insert, the geometry of which is especially adapted to both dry machining and machining in combination with high-pressure cooling.
Another object of the present invention is to provide a cutting insert having improved service life and improved machining results.
Another object of the present invention is to provide a cutting insert that allows flat angles what relates to the cooling jet.
Another object of the present invention according to a preferred embodiment is to provide a cutting insert that gives low cutting forces.
Another object of the present invention is to provide a cutting insert that gives controlled chip forming.
These and other objects of the present invention are realized by means of a cutting insert, which has been given the features defined in the appended claims and which is shown in the appended drawings, where equal parts have been depicted by the same reference numerals.
The cutting insert 10 is developed to be used foremost in turning of metallic workpieces. The cutting insert has an upper surface 12 and a lower surface, not shown, provided in separate, essentially parallel planes, and a plurality of edge surfaces 13, 140 uniting said surfaces. The edge surfaces 13, 14 meet in rounded portions 21. The shown cutting insert 10 has a rhombic basic shape and comprises a central fastening hole 15. The cutting insert may have two acute-angled cutting corners 11 on each of the upper and lower surface. In the shown embodiment example, said tip angle is 80° but may alternatively be 55° or 60°. Cutting inserts having perpendicular and other corners are also comprised in the present invention.
The upper side 12 has an essentially planar support surface 16, formed to abut against a base surface in a pocket of a holder, not shown. The limiting lines of the support surface 16 essentially follow the basic shape of the cutting insert. The support surface 16 may surround the fastening hole 15. In the embodiment illustrated, the two support surfaces 16 are essentially plane-parallel, the same extending substantially perpendicularly to a centre axis of the hole 15.
Each cutting corner 11 comprises a portion 17 countersunk in relation to the surface 16. In this case, the portion 17 is a sintered-in chip-former or chip breaker. The intersecting line between the countersunk portion 17 and the edge surfaces 13 and 14 forms cutting edges, i.e., a first cutting edge 18, a nose-cutting edge 19 and a second cutting edge 20. The nose-cutting edge 19 is a substantially partly circular cutting edge, the radius of which is designated R and the radius centre of which is designated Z. The cutting edges 18-20 may be situated in a common plane.
At least one chip-breaker arrangement 22 may be provided in both the lower and upper surface 12, on one hand for lifting the chip during the turning and on the other hand so that both sides of the cutting insert should be possible to be used in an economical way. In the preferred embodiment example, the upper and lower surfaces are identical but mirror-inverted so that when the cutting insert is indexed with the lower surface upward for turning, it has a geometry that is identical to the upper surface 12. The cutting edges 18 and 20 of the cutting corner 11 enclose an angle, the centre of which defines a bisector B. In this case, the chip-breaker arrangement 22 is composed of two chip-breaker segments 22A, 22B, which have the purpose of lifting the chip and thereby allowing a high-pressure cooling jet 23 to come under the chip and closer to the cutting zone in order to, in this way, cool the cutting insert more efficiently and increase the service life of the cutting insert. The segments 22A, 22B are formed in such a way that an opening 24 is present between them, and thereby the possibility of directing the high-pressure jet between them is given and hence lift the chip further. Here, by “opening”, reference is made to a generally countersunk portion between two chip-breaker segments provided next to each other. The segments 22A, 22B may connect somewhat to each other as is seen in the figures and are, in this case, arranged symmetrically in relation to the bisector B.
With reference foremost to
The countersunk portion 17 comprises a chip surface 25 sloping downward inward from the cutting edges 18-20. Frequently, a reinforcement bevel 26 is provided in direct connection to the cutting edge 18-20. Each segment 22A, 22B protrudes from said chip surface 25. Thus, each segment 22A, 22B has a similar inclination as the chip surface 25, obliquely inward downward toward the bisector B, as is seen from the schematic cross section in
Furthermore, the countersunk portion 17 comprises a bottom surface 27 provided essentially to form a space for the jet 23. Therefore, the countersunk portion 17 is provided with a wall 28 running upward toward the centre of the cutting insert. The wall 28 is displaced toward the centre of the cutting insert from the segments 22A, 22B by a distance that is at least equally large as the length l of the segment, preferably at least twice as large as the length l. The latter may also be described as the extension of the bottom surface 27 from the segments toward the centre of the cutting insert being at least equally large as the length l of the segment, preferably at least twice as large as the length l of the segment. The bottom surface 27 is essentially arranged lower, i.e., arranged closer to the opposite lower surface, than the segments and the wall.
In combination with or entirely independently of the chip-lifting segments 22A, 22B mentioned above, moreover, the angle of the jet may be further decreased in order to increase the accessibility by forming one or more recesses 29 in the support surface of the cutting insert. In
The recesses on the top side of the cutting insert are generally not intended to cool the cutting insert, but rather to avoid blocking of the jet, i.e., to enable a further reduction of the inclination of the jet.
However, the cutting insert is not formed to be used together with high-pressure cooling only, but rather the opposite, i.e., it is a cutting insert formed to operate with conventional cooling or with dry machining. By the fact that the cutting insert has a chip-breaker arrangement 22 divided in two parts near the nose-cutting edge, the portion works as an ordinary chip breaker in conventionally cooled as well as dry machining. The two segments are arranged in such a way that an opening 24 is present between them. Said opening 24 has two functions, on one hand the risk of crater wear is decreased, which otherwise is common when the chip impinges on a conventional projection in the chip surface, and on the other hand a space is provided for the high-pressure jet to impinge under the chip. With high-pressure cooling applications, here, pressures greater than 100 bar are intended.
The recess 29 is provided in order to further decrease the angle of inclination of the jet without being blocked by some part of the cutting insert, and also to guide the user to set the jet at the correct angle in relation to the cutting edge.
Thus, the present invention relates to a cutting insert for turning, the geometry of which is especially adapted, among other things, to both dry machining and machining in combination with high-pressure cooling, having improved service life and improved machining result, and which allows flat angles what relates to the cooling jet.
The disclosures in Swedish patent application Nos. 0501575-5 and 0501576-3, from which this application claims priority are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
0501575-5 | Jul 2005 | SE | national |
0501576-3 | Jul 2005 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2006/000799 | 6/29/2006 | WO | 00 | 12/10/2007 |