Claims
- 1. A method of cutting a sheet of heat strengthened glass having its major surfaces in compression and its interior in tension, by means of an abrasive fluid jet, comprising supporting the sheet upon one of its major surfaces, directing a highly concentrated fluid jet into which abrasive particles have been introduced against the other major surface of said sheet at a first, lower cutting pressure on the order of 10,000 psi to initially penetrate the sheet without causing venting and chipping of the heat strengthened glass along the initial cut, substantially increasing the pressure of the fluid to a second, higher cutting level on the order of 30,000 psi after the initial penetration, moving the abrasive fluid jet relative to the sheet of glass along the desired line of cut with the cutting pressure at the higher level, and establishing the line speed of the fluid jet relative to the glass at the second cutting pressure so as to produce a smooth cut wherein the adjacent heat strengthened glass is free from vents and chips.
- 2. A method of cutting a sheet of strengthened glass as claimed in claim 1, wherein said fluid jet is discharged toward said surface of said sheet with a diameter not greater than about 0.074 inch (1.88 mm).
- 3. A method of cutting a sheet of strengthened glass as claimed in claim 1, wherein said fluid jet is directed against said surface of said sheet from a distance not greater than about 0.052 inch (1.32 mm).
- 4. A method of cutting a sheet of strengthened glass as claimed in claim 1, wherein said abrasive particles are of nominal 100 grit size.
- 5. A method of cutting a sheet of strengthened glass as claimed in claim 1, wherein said abrasive particles are introduced to said fluid jet at a rate of about one pound (0.45 kg) per minute).
- 6. A method of cutting a sheet of strengthened glass as claimed in claim 2, wherein said fluid jet is directed against said surface of said sheet from a distance of about 0.052 inch (1.32 mm) and said abrasive particles are of nominal 100 grit size.
- 7. A method of cutting a sheet of strengthened glass as claimed in claim 6, wherein said abrasive particles are garnet and are introduced to said fluid jet at a rate of about one pound (0.45 kg) per minute.
- 8. A method of cutting a sheet of strengthened glass as claimed in claim 7, wherein said sheet comprises a sheet of heat strengthened glass about 1/4 inch (6.4 mm) thick, and said abrasive fluid jet is moved along the desired line of cut at a line speed less than about 10 inches (254 mm) per minute.
- 9. A method of cutting a sheet of strengthened glass as claimed in claim 8, wherein said abrasive fluid jet is moved relative to said glass sheet at a line speed of about 5 inches (127 mm) per minute.
- 10. A method of cutting a sheet of strengthened glass as claimed in claim 1, wherein said abrasive particles are of nominal 150 grit size.
- 11. A method of cutting a sheet of strengthened glass as claimed in claim 10, wherein said fluid jet is discharged toward said other major surface of said sheet with a diameter not greater than about 0.074 inch (1.88 mm) at a distance of about 0.052 inch (1.32 mm) from said other surfaces, and said abrasive particles are introduced to said fluid jet at a rate of about one pound (0.45 kg) per minute.
- 12. A method of cutting a sheet of strengthened glass as claimed in claim 11, wherein said sheet comprises a sheet of 1/4 inch (6.4 mm) heat strengthened glass, said abrasive particles being Barton garnet, and said abrasive fluid jet is moved along the desired line of cut at a line speed not greater than about 20 inches (508 mm) per minute.
- 13. A method of cutting a sheet of strengthened glass as claimed in claim 12, wherein said line speed is about 20 inches (508 mm) per minute.
CROSS REFERENCE TO RELATED APPLICATION
The present application is a continuation-in-part application of copending application Ser. No. 654,975 filed Sept. 27, 1984, now U.S. Pat. No. 4,656,791 and assigned to the assignee of the present invention.
US Referenced Citations (4)
Non-Patent Literature Citations (1)
Entry |
"Abrasive Jet Machining", Tool and Manufacturing Engineer, Nov. 1967; Ingulli. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
654975 |
Sep 1984 |
|