This invention relates to improved cutting tools for the cutting, drilling or sawing of hard materials, such as rock, stone, concrete and the like. The invention particularly relates to a pick, a saw and a drill, each including a diamond composite tip, and methods of using same.
Machinery employed in the excavation, mining, cutting, working, or drilling of rock, stone, concrete and similar hard materials employ a variety of tools, hereinafter collectively referred to as “cutting tools”. Three commonly used types of cutting tools are picks, saws and drills.
Picks
Picks are used as cutting tools in machinery used in such applications as the mining of coal and the tunnelling through of rock. The term “pick” (also called “drag-tool”) typically means a pointed or chisel shaped rock cutting tool which cuts rock by penetrating and scraping along the surface of the rock. Picks typically consist of a steel shank with a tungsten carbide-cobalt material forming the cutting tip. This process produces relatively large rock fragments (or “cuttings”) as compared with the finer cuttings formed using tools having tips made from diamond or polycrystalline diamond composite (PDC).
Currently, the cutting head of a piece of mining or tunnelling machinery is fitted with a number of tool holders for orientating the cutting tools at a desired angle for striking the rock (the “angle of attack”). The cutting tools are “laced”, i.e. arranged in a pattern designed to effect relieved cutting, wherein as the cutting head rotates, each cutting tool has its work facilitated by the action of tools that it follows and, similarly, facilitates the work of each tool that follows it. This process allows rock fragments to be broken free with less energy than would be required if each tool had to excavate undamaged rock by unrelieved cutting.
Conventional picks, as previously stated, typically have a cutting tip formed from a tungsten-carbide-cobalt composite. These picks have a number of disadvantages.
Principally, tungsten carbide wears quickly when used to cut abrasive rock. Pointed tungsten carbide tips are designed to rotate in their holders during use so as to evenly distribute the wear. In practice, most tips do not rotate, resulting in the formation of wear flat. Even tips which do rotate as intended wear to a cone which contacts the rock surface along a line rather than at a point, thereby requiring much larger forces to fracture the rock compared to when the tip was new. Because of this wear, tungsten carbide tips can only effectively be used for cutting coal or soft rock. Accordingly, the average life span of a tungsten carbide tip is short and it must be replaced frequently.
There is clearly a need for a pick which has an increased life span, maintains a pointed shape throughout its use and which is strong and wear resistant enough to cut hard rock, such as granite.
Saws
Existing equipment for the cutting by sawing of rock, stone or concrete largely comprises impregnated diamond saw wheels and rock wheels.
Rock wheels are large wheels having pointed tungsten carbide tipped cutting elements, called “drag bits”, which remove rock in a chipping action. Due to the wear characteristics of the tungsten carbide tips, rock wheels are limited to use on rocks having a strength limit of about 100 to 120 MPa, such as sandstones. Accordingly, while they can be quite successfully used on soft rocks, rock wheels cannot be used on harder rock, such as granite.
Impregnated diamond saw wheels include as cutting elements peripheral segments of metal matrix composite material containing diamond grit. The sawing action is achieved by the scraping against the rock of the tiny protruding diamond particles which causes microfracturing. With each pass of the saw, only a very small amount of rock, e.g. a few microns, is removed as very small fragments. While such saws can be used to cut hard rock, the sawing process is very energy intensive and very slow.
There is clearly a need for a saw which can be used to cut hard rock, but wears at a slower rate than prior art tungsten carbide rock wheels, but saws at a faster and more energy efficient rate than prior art impregnated diamond saw wheels.
Drills
The drilling of soft rocks (e.g. coal, sandstone) is conventionally performed using drill bits incorporating largely pointed or chisel shaped tungsten carbide cutting elements. Cutting elements of such shape are termed “drag bits” in the art. These drag bits operate using a “chipping” action, removing a relatively large amount of rock as fragments at each pass, and so drill rapidly. However, due to the rapid wear of the tungsten carbide, these drill bits are not practical for use in drilling hard rock, such as granite.
Attempts have been made to produce tungsten carbide tool tips in which a very thin layer of diamond is grown over the tungsten carbide. However, such attempts have been unsuccessful due to distortion of tungsten carbide or decomposition of diamond at high temperatures.
Much of the drilling done in strong (hard) rock is currently effected using drill bits incorporating the relatively harder materials, diamond or polycrystalline diamond compact (PDC).
Diamond impregnated bits comprise diamond fragments embedded in a metal matrix composite (MMC) material. Diamond set bits comprise relatively larger natural diamonds mounted in MMC.
Alternatively, some drilling of hard rock is done using drill bits incorporating polycrystalline diamond compact (PDC) or thermally stable PDC. These drill bits comprise discs of the PDC mounted on a tungsten carbide-cobalt composite such that the edges of the discs scrape against the rock.
In all prior art drill bits which incorporate diamond or PDC as cutting elements, the cutting of the rock is effected by scraping the cutting element across the surface of the rock. Each pass causes microfracturing and removes a very small amount of rock, typically less than {fraction (1/10)} mm per pass. The rock is removed as tiny fragments, a process which is very energy intensive. The drilling process is accordingly slow, given the small amount of rock removed at each pass, and results in a drilling rate of only a meter or so per hour.
There is clearly a need for a drill bit for drilling hard rock which is strong and wears at a slower rate than prior art tungsten carbide bits, but operates more rapidly and efficiently than prior art diamond or PDC containing bits.
There have been numerous attempts to manufacture cutting tools having tips made from diamond or polycrystalline diamond composite (PDC) materials, with little success.
The present inventors have recognised that the inefficiency of prior art diamond or PDC containing cutting tools resides at least partially in the failure to provide such materials in the form of pointed or chisel shaped cutting bodies termed in the art as “drag bits”. Pointed bodies are able to press into the rock surface and remove rock as relatively large fragments which requires less specific energy with each pass than that required by prior art drag bits which scrape against the rock surface producing much smaller fragments. Furthermore, pointed bodies remove more rock with each pass, which results in a more rapid cutting process.
Diamond containing materials have typically been available in only a very limited range of shapes due to limitations of the moulding and machining processes used. Those shapes are triangles, squares, rectangles and half cylinders as cut from discs and cylinders by either laser cutting or electric discharge machining (EDM). It has not been possible to produce by direct synthesis pointed bodies, such as cones.
New generation diamond composite materials have been developed with properties superior to prior art composite materials. Such materials are termed “advanced diamond composites” (“ADC”) and are described, for example, in WO88/07409 and WO90/01986, the disclosures of which are incorporated herein by reference.
The ADC are typically formed by mixtures of diamond crystals and silicon to high pressures and temperatures to cause melting of the silicon which infiltrates between diamond particles and reacts with carbon of the diamonds to form silicon carbide. The silicon carbide forms a strong bond between the diamond crystals.
The diamond-silicon mixture may be placed adjacent silicon bodies during the reaction in order to enhance the infiltration of silicon into the mixture. This modification, which is the subject of WO88/07409, minimises detrimental porosity and microcracking and increases density, and thereby enhances the mechanical properties of the ADC.
In another modification, which is described in WO90/01986, a nitrogen and/or phosphorous containing material is introduced into the diamond-silicon mixture and/or the silicon bodies (if used) prior to reaction, such that the resulting silicon carbide bond in the ADC contains greater than a threshold amount of nitrogen and/or phosphorus. This threshold amount is typically 500 parts per million. The ADC product has low electrical resistivity—typically less than 0.2 ohm cm. A low electrical resistivity is advantageous in that it enables the shaping, working and machining of the ADC bodies by Electrical Discharge Machining (“EDM”)—also termed “wire-cutting” or “spark erosion”. EDM is far more versatile than conventional shaping techniques, such as laser cutting, both in terms of the size of bodies worked and the ranges of shapes able to be produced.
It has been found possible to mould and/or machine these ADC materials into a variety of shapes, including pointed bodies such as cones and bullet or ogival shaped bodies.
Although it is now possible to produce an effective shape using ADC materials, a further problem has been encountered, namely a means of effectively attaching the ADC bodies to tool bodies. Tool bodies are typically manufactured from steel, although they may include tungsten carbide components. The inventors have found that conventional methods of attaching the cutting tips to the tool body, such as by vacuum brazing, do not always provide a strong enough bond and the tips can accordingly break off during use. The inventors have surprisingly discovered that using a metal matrix composite to bond the cutting tip to the tool body produces a very strong and effective bond.
According to the present invention, there is provided a cutting tool for cutting hard rock, said cutting tool including one or more cutting elements each comprising a pointed or chisel shaped body including a diamond composite material including diamond crystals bonded together by a silicon carbide matrix, the or each cutting element being mounted into a supporting matrix comprising a metal matrix composite material, such that the point or chisel edge of the or each element protrudes from said matrix.
The present invention also provides a pick for cutting hard rock, said pick including one or more cutting elements each comprising a pointed or chisel shaped body including a diamond composite material including diamond crystals bonded together by a silicon carbide matrix, the or each cutting element being mounted into a supporting matrix comprising a metal composite material, such that the point or chisel edge of the or each element protrudes from said matrix.
The present invention further provides a saw for cutting hard rock, said saw including a plurality of cutting elements mounted in a supporting matrix of a metal composite material, wherein each cutting element comprises a pointed or chisel shaped body including a diamond composite material including diamond crystals bonded together by a silicon carbide matrix, and each cutting element is mounted in the metal composite material such that the point or chisel edge of each element protrudes from the matrix.
According to the present invention there is also provided a drill bit for cutting hard rock, said drill bit including a plurality of cutting elements mounted in a supporting matrix of a metal composite material, wherein each cutting element comprises a pointed or chisel shaped body including a diamond composite material including diamond crystals bonded together by a silicon carbide matrix, and each cutting element is mounted in the metal composite material such that the point or chisel edge of each element protrudes from the matrix.
Preferably the cutting element is a pointed body.
Accordingly, the present inventors have developed a cutting tool which incorporates a cutting element comprising a suitably shaped body made from ADC material. The cutting element includes a mounting portion for mounting on or in the pick body and a cutting portion protruding from the pick body and carrying thereon the cutting surface. The shape of the cutting portion may be a cone, a truncated cone, a wedge, a chisel, a bullet shape, a rounded point, a flat plate, a pyramid, a triangle, a corner of a cube, a tetrahedron, a parrot's beak or a snow plough shape.
As previously noted, while the cutting tips of prior art tools have usually been attached to the tool body by a brazing process, the inventors have found that brazing of an ADC tip to either a WC or steel base does not provide a strong enough bond. Instead, the inventors have surprisingly found that bonding the ADC tip to a WC or steel substrate using a metal matrix composite provides a very strong and durable bond. Further, metal matrix composite provides a highly suitable matrix for embedding ADC elements therein.
The composition of the metal matrix composite material can vary but typically contains as major components copper, zinc, silver and tin. The composite can also contain tungsten carbide grains. Such metal matrix composite can suitably be formed using metallic powders, such as those sold as “Matrix Powders” by Kennametal. One such suitable powder is type P-75S Matrix Powder. The metallic powders are turned into a solid metal composite by sintering under pressure. In one form of the invention, the composite is formed by a fusion process, in which the metal powders partially melt and are squeezed together and densified. Alternatively the composite may be formed by a process of infiltration in which a molten metal is added to the powder under pressure and the molten metal fills the interstices between powder particles.
Preferably at least the cutting portion of the cutting element is conical, bullet or ogival shaped, with the apex forming the cutting tip. Preferably the cutting element comprises a tapered, elongate body and an ogival head. The overall shape of the cutting element may be similar to a 22 calibre rifle projectile. A bullet shaped cutting tip is preferred to a cone shaped tip as it is inherently stronger and less likely to break.
The mounting portion of the cutting element is preferably not straight sided but is instead tapered towards the cutting tip. That is, it is preferred that the mounting portion be frustoconical, instead of cylindrical because a frustoconical shape has inherently greater strength than a cylindrical shape.
Another preferred shape of the cutting element is a “double cone”, based upon the shape of two cones joined together at their bases. One of the cones forms a mounting portion and is received in a recess provided in the tool body and/or the metal matrix composite, while the other cone forms the cutting portion and protrudes from the tool body for contact with the rock being excavated. The cones may be of differing height, with the more elongate cone being received in the recess and/or MMC and the squat cone forming the cutting tip. The double cone shape is advantageous in that it requires only a minimum amount of diamond composite material and therefore is relatively inexpensive to manufacture. The cone forming the cutting portion may have advantageously a bullet shaped or ogival profile, which as previously stated, provides a stronger cutting tip than a conical profile.
Pick
The pick preferably includes a steel shank at one end thereof, for attachment to a tool holder, with the cutting element provided at the other end.
The mounting portion of the cutting element is preferably at least partly received in a recess provided in the pick body and therefore needs to be sufficiently elongated to ensure that a sufficient length of the cutting portion protrudes to enable cutting to be effected. There is preferably a gap between the mounting portion and the inner surface of the recess to accommodate enough metal matrix composite material to bond the cutting element in place. By mounting the cutting element in a recess, the subsequent bond is considerably stronger.
The recess into which is received the mounting portion of the cutting element is shaped so as to complement the shape of the mounting portion. Accordingly, where the mounting portion is frustoconical, the recess is preferably also frustoconical and where the mounting portion is conical, the recess is also preferably conical.
The gap between the mounting portion and the recess wall is filled with a metal matrix composite material, which bonds the cutting element to the pick body.
The pick body may further include a tungsten carbide component in addition to the steel component. In such an embodiment, the steel component preferably forms at least part of the shank with the tungsten carbide component brazed thereto and housing the recess for receiving the cutting element. Again, MMC is used to bond the cutting tip to the pick body.
The addition of tungsten carbide having an intermediate flexibility between the steel and ADC components enhances the overall strength of the pick. Moreover, MMC also has modulus of elasticity intermediate those of steel and ADC and similarly enhances the overall strength, even where there is no intervening tungsten carbide present.
The present inventors have also discovered that superior cutting results are achieved by using the pick of the invention, at an angle of attack different from the angle conventionally used for prior art picks.
Conventionally, picks are orientated in their tool holders such that in use the “angle of attack”, i.e. the angle between the surface of the rock being cut and the axis of the pick, is about 40° to 60°. Such an angle has previously been necessary due to the particular wear characteristics of the dominantly WC—Co cutting tips.
However, the present inventors have found that in using the pick of the present invention, far superior results are obtained at a higher angle of attack that is above 60°. Preferably the angle of attack is in the range of 60° to 80° more preferably, 65° to 75° most preferably about 70°. This steeper angle of attack is made possible due to the cutting element being considerably harder than those of the prior art, resulting in a different wearing pattern. Also, it has been found that using some embodiments of the pick of the invention at the conventional lower angles of attack can, under some circumstances, result in detachment of the cutting element from the pick body. However, by increasing the angle of attack to above 60°, the force applied to the cutting tip runs as close as possible to the axis of rotation of the pick, so that there is a minimum bending movement applied to the cutting tip which could cause the cutting element to detach.
Saw
As previously noted, the inventors have surprisingly found that metal matrix composite materials provide a highly suitable matrix for embedding the ADC cutting elements therein. The saw of the invention preferably comprises a substantially circular saw body having the cutting elements mounted about its periphery to thereby form a cutting face.
In one embodiment the saw body includes a plurality of arcuate cutting segments receivable on and spaced about the periphery of the saw body. Each cutting segment typically comprises a plurality of cutting elements mounted in MMC such that the cutting segments jointly make up the cutting face.
In a preferred embodiment, the saw was manufactured by mounting the cutting elements directly into holes or apertures provided about the periphery of the saw body. The cutting elements were set into place using MMC provided in each hole.
Preferably, the cutting elements arranged on the saw are laced. That is, the cutting elements are arranged in a pattern designed to effect relieved cutting: as the saw rotates, each cutting element has its work facilitated by the action of cutting elements it follows and, similarly, facilitates the work of each cutting element that follows it. This process allows rock fragments to be broken free with less energy than would be required if each tool had to excavate undamaged rock by unrelieved cutting. It is to be noted that it has not been possible to lace prior art tungsten carbide cutting elements as they have to be comparatively larger and to follow one another in the same groove. Using the saw of the present invention, it has been possible to remove rock at the astonishing rate of 1 mm each pass.
Conventional WC—Co drag bits are orientated in use such that the “angle of attack”, i.e. the angle between the surface of the rock being cut and the axis of the drag bit is about 40°, to 60°. Such an angle has previously been necessary due to the particular wear characteristics of the WC—Co cutting tips.
However, the present inventors have found that in using the saw of the present invention, far superior results are obtained where the cutting elements are mounted in the saw body and/or supporting matrix such that the angle of attack of each cutting element is in the range of 60° to 80°. More preferably, the angle of attack is in the range of 65° to 75°, most preferably about 70°. This steeper angle of attack is made possible due to the cutting elements being considerably harder than those of the prior art resulting in different wear characteristics.
A saw incorporating the ADC cutting elements supported in a metal matrix composite material provides highly superior cutting performance over any of the saws of the prior art. The saw of the invention can cut through hard rock very rapidly, advancing by a millimeter at each pass, corresponding to 1 meter a minute for a speed of 1000 rpm. This cutting rate is many times faster than a diamond impregnated saw, and can be largely attributable to the process of indentation by the pointed cutting elements and formation of crack propagation. Such a process is considerably different to the cutting action of any existing saw. Moreover, the saw of the invention is able to cut a slot in rock having a width which is considerably smaller than that produced by prior art rock wheels, meaning that there is less rock wastage.
The advantages of the saw of the invention are summarised below:
A drill bit in accordance with the present invention incorporates a plurality of cutting elements, each comprising a “drag bit”, i.e. a pointed body made from ADC material. Each cutting element includes a mounting portion for mounting in the metal matrix composite material, and a cutting portion protruding from the supporting matrix and carrying thereon the cutting surface.
The drill bit of the present invention may comprise a simple drill bit for drilling holes or a core drill bit. A core drill bit is annular in shape and drills an annular hole with the core thereby produced being able to be retrieved and examined for information about the geology of the rock through which the hole has passed.
There are different methods available for bringing the rock core or cuttings from the hole to the surface. A flow of drilling fluid comprising air, water or mud is typically circulated during drilling to cool the drill bit, and can also be used to bring rock cuttings to the surface. In conventional circulation, the drilling fluid travels to the bottom of the hole down the inside of the pipe string joined to the drill bit. In reverse circulation, the drilling fluid flows down the outside of the pipe string and up the inside of the pipe string where the pipe string is a dual wall tube, having one pipe within another, the drilling fluid flows down the annular space between the pipes, then up the central pipe.
In one preferred embodiment of the invention, the drill bit of the invention is used in a dual pipe reverse circulation core drilling. The drill bit includes a core breaker for breaking the core into short lengths as the core drilling proceeds. The lengths of core are then lifted to the surface up the central pipe by the drilling fluid.
The drill bit preferably comprises an annular or cylindrical drill bit body having a plurality of cutting elements mounted in MMC at one end of the body to form a cutting face. The annular or cylindrical drill bit body has an inner wall and an outer wall which preferably contain drilling fluid channels formed therein through which drilling fluid can pass during use.
As was the case with the saw of the invention, it is preferred that the cutting elements of the drill are laced. That is, the cutting elements are arranged in a pattern designed to effect relieved cutting: as the drill bit rotates, each cutting element has its work facilitated by the action of cutting elements it follows and, similarly, facilitates the work of each cutting element that follows it. This process allows rock fragments to be broken free with less energy than would be required if each tool had to excavate undamaged rock by unrelieved cutting. It is to be noted that it has not been possible to lace prior art tungsten carbide bits as they have to be comparatively larger and to follow one another in the same groove.
Using the drill bit of the present invention, it has been possible to remove rock at the astonishing rate of 1 mm each pass.
Conventional WC—Co drag bits are orientated in use such that the “angle of attack”, i.e. the angle between the surface of the rock being cut and the axis of the drag bit is about 40° to 60°. Such an angle has previously been necessary due to the particular wear characteristics of the WC—Co cutting tips.
However, the present inventors have found that in using the drill bit of the present invention, far superior results are obtained where the cutting elements are mounted in the supporting matrix such that the angle of attack of each cutting element is in the range of 60° to 80°. More preferably, the angle of attack is in the range of 65° to 75°, most preferably about 70°. This steeper angle of attack is made possible due to the cutting elements being considerably harder than those of the prior art resulting in different wear characteristics.
The advantages of the drill bit of the invention are summarised below:
In order that the invention can be more readily understood, non-limiting embodiments thereof are now described with reference to the accompanying drawings.
a is a detailed perspective view of a cutting segment of the saw illustrated in FIG. 3.
a is a detailed cut-away view of the periphery of the saw illustrated in FIG. 4.
In the following detailed description of the preferred embodiments as illustrated in the accompanying drawings, like reference numerals refer to like parts.
In
Bonding the cutting element 12 to the pick body 14 is a layer of metal matrix composite (MMC) material 22.
The inner surface 19 of recess 17 is shaped so as to complement the shape of the mounting portion 16, with a sufficient gap therebetween to receive therein the MMC material. Given the large difference in the modulus of elasticity between steel and ADC, there is preferably no direct contact between the cutting element 12 and the pick body 14, but instead complete separation of the two by the intervening layer of MMC 22.
The pick body 14 further includes a shank 26 for attachment to a tool holder.
With reference to
a shows the detail of a cutting segment 232. The cutting segment 232 includes an inner, circumferential channel 233 which is received on the peripheral edge of the saw body 230. The cutting segment 232 comprises a plurality of cutting elements 10 (as illustrated in
The cutting elements 10 are “laced”, that is they are arranged on the cutting face 240 such that as the saw 210 rotates, each cutting element 10 exploits relieved cutting from other cutting elements 10 that it follows and it in turn provides relieved cutting opportunity for each of the following cutting elements 10. Moreover, each cutting element 10 is orientated such that in use, the angle between the surface of the rock being cut and the axis of the cutting element 18 is in the range of 60° to 80°.
a illustrate a variation on the saw embodiment of
Turning now to
The drill bit body 350 is also provided with drilling fluid channels 362 in the inner 352 and outer 354 walls of the drill bit body 350, for the passage of drilling fluid during use.
Again, the cutting elements 10 are “laced”, that is they are arranged on the cutting face 356 such that as the drill bit 310 rotates, each cutting element 10 exploits relieved cutting from other cutting elements 10 that it follows and in turn provides relieved cutting opportunity for each of the following cutting elements 10. It is to be noted that despite the different orientations of the cutting elements, the axis A passing through the point of each cutting element 10 is at an angle of approximately 70° to the axis of rotation X—X of the drill bit 310.
Finally, it is to be understood that various alterations, modifications and/or additions may be introduced into the constructions and arrangements of parts previously described without departing from the spirit or ambit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PQ7588 | May 2000 | AU | national |
PQ7589 | May 2000 | AU | national |
PQ7590 | May 2000 | AU | national |
This is a continuation of PCT/AU01/00567, filed May 18, 2001 and published in English.
Number | Name | Date | Kind |
---|---|---|---|
1945240 | Tupica | Jan 1934 | A |
2013838 | Pickin' | Sep 1935 | A |
2025260 | Zublin | Dec 1935 | A |
2025261 | Zublin | Dec 1935 | A |
2362860 | Rossman | Nov 1944 | A |
2598518 | Dufilho | May 1952 | A |
3338322 | Henderson | Aug 1967 | A |
3429390 | Bennett | Feb 1969 | A |
3941196 | Curington et al. | Feb 1976 | A |
4057118 | Ford | Nov 1977 | A |
4124401 | Lee et al. | Nov 1978 | A |
4168755 | Willis | Sep 1979 | A |
4211508 | Dill et al. | Jul 1980 | A |
4246977 | Allen | Jan 1981 | A |
4253533 | Baker | Mar 1981 | A |
4303136 | Ball | Dec 1981 | A |
4325439 | Vezirian | Apr 1982 | A |
5282512 | Besson et al. | Feb 1984 | A |
4491457 | Pope | Jan 1985 | A |
4533004 | Ecer | Aug 1985 | A |
4552231 | Pay et al. | Nov 1985 | A |
4553615 | Grainger | Nov 1985 | A |
4558753 | Barr | Dec 1985 | A |
4569558 | Hood | Feb 1986 | A |
4593777 | Hall | Jun 1986 | A |
4604106 | Hall | Aug 1986 | A |
4608226 | Lauvinerie et al. | Aug 1986 | A |
4646857 | Thompson | Mar 1987 | A |
4676124 | Fischer | Jun 1987 | A |
4719979 | Jones | Jan 1988 | A |
4755004 | Palmquist et al. | Jul 1988 | A |
4793828 | Burnand | Dec 1988 | A |
4813500 | Jones | Mar 1989 | A |
5030276 | Sung et al. | Jul 1991 | A |
5078219 | Morrell et al. | Jan 1992 | A |
5119714 | Scott et al. | Jun 1992 | A |
5161627 | Burkett | Nov 1992 | A |
5213171 | Clench et al. | May 1993 | A |
5282513 | Jones | Feb 1994 | A |
5379853 | Lockwood et al. | Jan 1995 | A |
5449048 | Thigpen et al. | Sep 1995 | A |
5976205 | Andrews et al. | Nov 1999 | A |
6009962 | Beaton | Jan 2000 | A |
6176888 | Ritt et al. | Jan 2001 | B1 |
6196340 | Jensen et al. | Mar 2001 | B1 |
6209660 | Cox | Apr 2001 | B1 |
6258139 | Jensen | Jul 2001 | B1 |
6346689 | Willis et al. | Feb 2002 | B1 |
6374932 | Brady | Apr 2002 | B1 |
6419574 | Takahashi et al. | Jul 2002 | B1 |
20030123934 | Weaver et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
1398288 | Nov 1988 | AU |
3852289 | Mar 1990 | AU |
0087283 | Aug 1983 | EP |
0087283 | Aug 1983 | EP |
0311422 | Apr 1989 | EP |
2121087 | Dec 1983 | GB |
2275690 | Sep 1994 | GB |
2275690 | Sep 1994 | GB |
172629 | Dec 1986 | SU |
252776 | Apr 1987 | SU |
279433 | Jul 1987 | SU |
Number | Date | Country | |
---|---|---|---|
20030150442 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTAU01/00567 | May 2001 | US |
Child | 10298227 | US |