The present invention relates to a cutting tool and, more particularly, to the cooperative engagement of a cutting tool and a tool holder. Most particularly, the invention relates to an improved cutting tool structure that cooperates with a tool holder to minimize vibration during a milling operation that results in chatter.
Metal working machines are well known. A conventional metal working machine typically includes a power drive unit, such as an electric, hydraulic, or pneumatic motor; a suitable cutting tool, such as a drill, boring tool, probe or the like; and a tool holder for connecting the cutting tool to the power drive unit. The tool holder typically includes a socket or sleeve member, which is mounted directly to the power drive unit, and which is adapted to support the cutting tool in order to connect the cutting tool to the power drive unit.
A typical cutting tool has a cylindrical shank with a specific diameter that fits within a close tolerance in the sleeve member of the tool holder. The shank may be provided with a single flat, or multiple, usually two, axial aligned flats, which are typically machined along the peripheral surface of the shank. This type of shank is commonly referred to as a “Weldon Shank”. The sleeve member supports a setscrew for each flat. The setscrews are adapted to be tightened against the flats. The force of each setscrew is transmitted to the shank, causing a portion of the shank, opposite (i.e., 180 degrees from) the flats, to meet or engage an inner surface of the sleeve member to secure the cutting tool therein.
The aforementioned tool and holder arrangement theoretically results in two points, or a single line, of contact between the cutting tool and the tool holder that is parallel to the toolholder. These two points of contact allow a cutting tool to move or vibrate relative to the tool holder, creating chatter under certain conditions. This is due to the combined natural frequencies of the power drive unit, the cutting tool, and the tool holder and the harmonic nature of these elements when operating the cutting machine at various parameters. When the chatter occurs, minute particles of material are removed from either the shank or the sleeve member. These particles typically become embedded in one of the opposing mating surfaces of the shank or the sleeve member, normally in the shank because it is softer than the sleeve member, also commonly known as fretting.
The aforementioned tool and holder arrangement has another drawback. When tightening the setscrews against the flats, the center of the shank or cutting tool is often offset from the center of the sleeve member or tool holder.
What is needed is a tool and holder arrangement, which eliminates or minimizes vibration that results in chatter, and which results in less offset between the center of the cutting tool and the center of the tool holder.
Generally speaking, the invention is directed to a cutting tool that has a shank with a cylindrical portion that is adapted to fit equal to or more closely within a tool holder. The shank is adapted to be engaged by a setscrew of the tool holder at a first contact point. A clearance surface is provided opposite the first contact point. The clearance surface terminates adjacent two circumferentially spaced points that make contact with the tool holder upon tightening the setscrew. These contact points are circumferentially spaced from the first contact point angular distances greater than 90 degrees and less than 270 degrees.
Further features of the present invention, as well as the advantages derived therefrom, will become clear from the following detailed description made with reference to the drawings in which:
With reference now to the drawings, wherein like numerals designate like components throughout all of the several figures, there is illustrated in
The shank 12 may be provided with one or more flats 18, which may be machined, or otherwise provided, along one side of the peripheral surface 20 of the shank 12. In accordance with a preferred embodiment the invention, two flats 18 are arranged in axial alignment along the peripheral surface 20 of the shank 12, as shown in
The sleeve member 14 supports a setscrew 22 for each flat 18. The setscrews 22 are adapted to be tightened against the flats 18, which cooperatively define a first contact point along one side of the shank 12. The force of each setscrew 22 is transmitted to the shank 12. This force causes portions 24 of the shank 12 (i.e., lower portions of the shank 12 when viewing
Now, with reference to
The aforementioned cutting tool 10, when used in cooperation with the aforementioned sleeve member 14, eliminates or minimizes vibration that results in chatter. Moreover, the relief or clearance surface (i.e., portion 28) permits the shank 12 to be dimensioned to fit more closely within the sleeve member 14 than conventional or known shanks. Consequently, the present invention results in less runout, or offset between the center of the cutting tool 10 and the center of the tool holder 16.
A cutting tool 30 according to an alternative embodiment of the invention is illustrated in
The shank 32 may be provided with one of more flats 38, which may be machined, or otherwise provided, along one side of the peripheral surface 40 of the shank 32. In accordance with a preferred embodiment the invention, two flats 38 are arranged in axial alignment along the peripheral surface 40 of the shank 32, similar to that of the shank 12 described above.
The sleeve member 14 supports a setscrew 22 for each flat 38. The setscrews 22 are adapted to be tightened against the flats 38, which cooperatively define a first contact point along one side of the shank 12. The force of each setscrew 22 is transmitted to the shank 32. This force causes portions 44 of the shank 32 opposite the flats 38 (i.e., lower portions of the shank 32 when viewing
In accordance with this embodiment of the invention, the flats 38 are provided along one side or portion of the peripheral surface 40 of the shank 32. A portion (e.g., a relief or clearance surface) of the shank 32 opposite the flats 38, or along another side or portion of the peripheral surface 40 (i.e., a bottom portion of the shank 32 when viewing
The immediately preceding cutting tool 30, when used in cooperation with the aforementioned sleeve member 14, eliminates or minimizes vibration that results in chatter. Moreover, the relief or clearance surface (i.e., portion 48) permits the shank 32 to be dimensioned to fit equal to or more closely within the sleeve member 14 than conventional or known shanks. Consequently, the present invention should result in less runout, or offset between the center of the cutting tool 30 and the center of the tool holder 16.
It should be appreciated that in both of the aforementioned embodiments, the depth of the relief or clearance surfaces is minimized so that the integrity of the shank 12, 32 is not compromised.
While the invention has been described with respect to several preferred embodiments, various modifications and additions will become apparent to persons of ordinary skill in the art. All such modifications and additions are intended to be encompassed within the scope of this patent, which is limited only by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
1647802 | Josef | Nov 1927 | A |
2073430 | Tautz | Mar 1937 | A |
2362053 | Danielson | Nov 1944 | A |
2416285 | Buckingham et al. | Feb 1947 | A |
3320833 | Andreasson | May 1967 | A |
3507508 | Andrews | Apr 1970 | A |
4550476 | DeCaro | Nov 1985 | A |
4575292 | Pape et al. | Mar 1986 | A |
4647052 | Butikofer | Mar 1987 | A |
4705435 | Christoffel | Nov 1987 | A |
4877360 | Pfalzgraf | Oct 1989 | A |
5026224 | Andersson et al. | Jun 1991 | A |
5032043 | Hollifield | Jul 1991 | A |
5163790 | Vig | Nov 1992 | A |
5402696 | Hecht et al. | Apr 1995 | A |
5601295 | Baker | Feb 1997 | A |
5683212 | Cirino et al. | Nov 1997 | A |
5769577 | Boddy | Jun 1998 | A |
5873682 | Tripsa | Feb 1999 | A |
6299180 | Satran et al. | Oct 2001 | B1 |
6444941 | Russo | Sep 2002 | B1 |
20060048615 | Treige | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
2848227 | Apr 1980 | DE |
145985 | Jun 1985 | EP |
Number | Date | Country | |
---|---|---|---|
20040253070 A1 | Dec 2004 | US |