The present invention relates to a cutting tool, in particular for hollowing drill holes, having a clamp component for securing the tool in a tool holder. A neck component is tapered in cross section relative to the clamp component adjoining on the side of the clamp component facing away from the tool holder. An integral cutting component is provided at its extremity with a cutting edge which adjoins a face of the cutting component in the direction of the neck component. An inner cutter for machining the interior surface of drill holes is provided, for example, for cutting circumferential grooves into the drill hole wall, for precision machining of the drill hole wall by finish turning of the drill hole wall, for thread cutting in a bore hole, and the like.
A comparable cutting tool is disclosed in EP-B-0 385 280. The cutting edge of the tool moves in a radial direction of advance during parting in machining the interior wall of a drill hole. In the process, the cutting edge must be positioned with the greatest accuracy possible in a diametral advance plane extending parallel to this radial direction of advance. Only with the cutting edge in this position is an optimal clearance angle obtained. Spacing the cutting edge away from the diametral advance plane results in clearance angles which may lead to unfavorable results in metal removal, such as vibration of the tool. For this reason, very precise rotary positioning of the tool in the tool holder must be achieved. The position of the tool must not vary appreciably when a load is applied to the tool. Distances between the cutting edge and this diametral plane are especially critical in the case of drill holes of small diameter which are to be machined, since, in this situation, even a slight variation of such spacing from zero results in major change in the clearance angle. To prevent such occurrence, the cutting tool disclosed in the European prior publication has on its clamp component clamping surfaces which at least to some extent converge toward each other. By these surfaces, the cutting tool may be secured on a processing machine, such as one in the form of a lathe. It is being possible to bring such converging surfaces in contact with correspondingly converging contact surfaces of the tool holder. By the mould closure referred to, a precisely defined rotary position of the disclosed clasp tool may be achieved in that radial enlargement in the seating recess in the tool holder. The radial projection on the shaft component of the clasp tool results through the action of the clamping means in rigorously defined application of the clamping surfaces of the radial projection to the contact surfaces of the enlargement. Change in the cutting position perpendicular to the diametral advance plane, when load is applied to the tool, is prevented, since the rotary position of the cutting tool relative to the tool holder is ensured in that application of the clamping surfaces to the application surface acts on a radius enlarged in relation to the radius of the receptacle bore.
To permit machining of drill holes of extremely small diameter, it has been recognized in the disclosed solution as advantageous to configure the clasping tool as one piece. Other advantages to this end are achieved if the clasping tool is formed of a cutting alloy, since, because of the large elasticity modulus of cutting alloy tools, the cutting edge remains precisely in the position originally set even under relatively high loads, so that change in the cutting position relative to the diametral advance plane when a load is applied is virtually eliminated.
It has been found, however, that, despite the measures described, the disclosed cutting tool approaches its limits when drill holes of extremely small diameter, less than one millimeter, such as 0.7 mm, are to be machined. Despite the advantageous tool holding, the integrated configuration of the tool, and its construction by use of cutting alloy materials, these disclosed measures do not make it possible to advance in this range of operation with boring diameters smaller than 1 mm to achieve the machining qualities desired.
EP-A-0 947 267 discloses a generic tool having a holder in which a plate with three cutting edges may be secured by means of a threaded connection. The free end of the holder on which the cutting tool may be seated has recesses by means of which reinforcing ribs are produced. Despite the holder components reduced by the cut-out recesses, such good reinforcement is obtained thereby for the cutting plate that vibrations impairing the machining quality during machining are absorbed and the holder is reinforced. Because of the flat application of the plate with three cutting edges on the end of the holder and the disclosed possibility of fastening by means of a screw connection, misadjustment of the machining edge may occur, and the configuration of the disclosed solution is so large that application of this for drill holes of extremely small diameter is not possible.
Objects of the present invention are to provide an improved cutting tool for the purpose of making it possible, while retaining the advantages of this tool, to machine drill holes of extremely small diameters, such as ones appreciably smaller than 1 mm, while maintaining high quality standards.
According to the present invention, a high degree of reinforcement is achieved for the neck component of the cutting tool. Also, the cutting component with cutting edge mounted on its free end is achieved in that, the retaining component has, extending transversely to the plane of the cutting edge, two reinforcing components such as reinforcing ribs. The reinforcing ribs taper as they converge in the direction of the cutting component. The reinforcing compounds are positioned diametrically opposite each other in relation to the retaining component, and assume their greatest width at the point of their transition to the shank component. In the case of a conventionally designed retainer, the reinforcing ribs of the cutting component permit sure absorption of the machining forces introduced into the cutting component by the retaining component into the shank component and then into the holding component to be associated with the machine. In particular, the reinforcing ribs counter vibrations occurring during machining with the cutting component, and retain the cutting component precisely in its required machining plane. Since the reinforcing ribs extend perpendicular to the plane of the cutting component with its cutting edge, they occupy little structural space. Because of their convergent configuration, the ribs permit engagement of the cutting components even in drill holes of small diameter.
In that the reinforcing ribs preferably are obtained from the neck component by a grinding process from the neck component and always have two different grinding patterns with different, preferably concave, radii of curvature in the direction of the cutting component, very high supporting forces can be achieved for the cutting component. The structural space required for the reinforcing ribs is optimized as well, so that a high degree of stiffening is achieved with geometrically small reinforcing ribs, which thus permit engagement of the cutting component also in drill holes for a machining process whose diameter is smaller than 1 mm, and 0.7 mm in particular.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
Referring to the drawings which form a part of this disclosure:
The cutting tool illustrated in the figures is used in particular for hollowing drill holes having a bore diameter less than 1 mm, preferably in the area of 0.7 mm. The cutting tool has a clamping component 10 for securing the tool in tool holder not shown. Use may be made, for example, of the tool holders as described in European Patent 0 385 280 issued to the applicant. The side of the clamping component 10 facing away from the tool holder is adjoined by a neck component 12 tapered in relation to the clamping component 10. The neck component 12 has integral with it, on its free end a cutting component 14 provided at its extremity with a cutting edge 16. Cutting edge 16 adjoins a face 18 of the cutting component 14 in the direction of the neck component 12. The direction of machining with the tool is indicated in
As seen in
The two reinforcing ribs 20, 22, as well as the other geometric configurations of the cutting tool, are obtained in particular by a grinding process. The reinforcing ribs 20, 22 thus obtained from the neck component 12 each exhibits in the direction of the cutting component 14 two different grinding patterns 23, 25 with different, preferably concave, radii of curvature. To ensure a high degree of engagement depth for the cutting edge 16, the grinding patterns selected for the two reinforcing ribs 20, 22 accordingly have greater curvature in the direction of the cutting edge 16 than in the direction of the clamping component 10, that is, pattern 23 has a greater radius of curvature than that of pattern 25.
The free surface 26 of the cutting component 14 is situated at the front end in the direction of machining X, and is slanted backward at an angle A, preferably 5°, from the vertical (see
The illustrations in
Hard alloys such as MG12, TN 35, T125, or TF45 have been found to be especially well suited. The cutting tool configuration also illustrated in the figures is that of a “right-hand” embodiment. A mirror-image configuration of the figures presented yields a corresponding “left-hand” embodiment, should such prove to be necessary for the machining purpose pursued.
While one embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101 45 667 | Sep 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/09856 | 9/4/2002 | WO | 00 | 7/1/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/022491 | 3/20/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2225326 | Walker | Dec 1940 | A |
3060554 | Kirchner | Oct 1962 | A |
3109222 | Wiseman | Nov 1963 | A |
3192603 | Greenleaf | Jul 1965 | A |
3368257 | Andreasson | Feb 1968 | A |
3548473 | Stein | Dec 1970 | A |
3663116 | Muller et al. | May 1972 | A |
3912413 | Werther | Oct 1975 | A |
4021134 | Turner | May 1977 | A |
4470732 | Lindsay | Sep 1984 | A |
5085540 | Pagliaccio | Feb 1992 | A |
5405221 | Ducker et al. | Apr 1995 | A |
5529440 | Schmidt | Jun 1996 | A |
5733073 | Zitzlaff et al. | Mar 1998 | A |
6808340 | Travez et al. | Oct 2004 | B1 |
Number | Date | Country |
---|---|---|
2713529 | Sep 1978 | DE |
0385280 | Sep 1990 | EP |
0947267 | Oct 1999 | EP |
0983814 | Mar 2000 | EP |
2228695 | Sep 1990 | GB |
Number | Date | Country | |
---|---|---|---|
20040052592 A1 | Mar 2004 | US |